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Received 9 August 2005
Published online 17 January 2006 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2006

Abstract. The friction and adhesion between elastic bodies are strongly influenced by the roughness of
the surfaces in contact. Here we develop a multiscale molecular dynamics approach to contact mechanics,
which can be used also when the surfaces have roughness on many different length-scales, e.g., for self affine
fractal surfaces. As an illustration we consider the contact between randomly rough surfaces, and show
that the contact area varies linearly with the load for small load. We also analyze the contact morphology
and the pressure distribution at different magnification, both with and without adhesion. The calculations
are compared with analytical contact mechanics models based on continuum mechanics.

PACS. 46.55.+d Tribology and mechanical contacts – 68.35.Af Atomic scale friction – 02.70.Ns Molecular
dynamics and particle methods – 68.35.Np Adhesion

1 Introduction

Adhesion and friction between solid surfaces are common
phenomenons in nature and of extreme importance in bi-
ology and technology. Most surfaces of solids have rough-
ness on many different length scales [1,2], and it is usually
necessary to consider many decades in length scale when
describing the contact between solids [3]. This makes it
very hard to describe accurately the contact mechanics be-
tween macroscopic solids using computer simulation meth-
ods, e.g., atomistic molecular dynamics, or finite element
calculations based on continuum mechanics.

Consider a solid with a nominally flat surface. Let
x, y, z be a coordinate system with the x, y plane par-
allel to the surface plane. Assume that z = h(x) describes
the surface height profile, where x = (x, y) is the posi-
tion vector within the surface plane. The most important
property characterizing a randomly rough surface is the
surface roughness power spectrum C(q) defined by [3,4]

C(q) =
1

(2π)2

∫
d2x 〈h(x)h(0)〉eiq·x. (1)

Here 〈...〉 stands for ensemble average and we have as-
sumed that h(x) is measured from the average surface
plane so that 〈h〉 = 0. In what follows we will assume
that the statistical properties of the surface are isotropic,
in which case C(q) will only depend on the magnitude
q = |q| of the wave vector q.

Many surfaces tend to be nearly self-affine fractal. A
self-affine fractal surface has the property that if part of
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the surface is magnified, with a magnification which in
general is appropriately different in the perpendicular di-
rection to the surface as compared to the lateral direc-
tions, then the surface “looks the same”, i.e., the statisti-
cal properties of the surface are invariant under the scale
transformation [3]. For a self-affine surface the power spec-
trum has the power-law behavior

C(q) ∼ q−2(H+1),

where the Hurst exponent H is related to the fractal di-
mension Df of the surface via H = 3 − Df . Of course, for
real surfaces this relation only holds in some finite wave
vector region q0 < q < q1, and in a typical case C(q)
has the form shown in Figure 1. Note that in many cases
there is a roll-off wavevector q0 below which C(q) is ap-
proximately constant.

Let us consider the contact between an elastic solid
with a flat surface and a hard randomly rough substrate.
Figure 2 shows the contact between the solids at increasing
magnification ζ. At low magnification (ζ = 1) it looks as if
complete contact occurs between the solids at many macro
asperity contact regions, but when the magnification is in-
creased smaller length scale roughness is detected, and it
is observed that only partial contact occurs at the asperi-
ties. In fact, if there would be no short distance cut-off the
true contact area would vanish. In reality, however, a short
distance cut-off will always exist since the shortest possi-
ble length is an atomic distance. In many cases the local
pressure at asperity contact regions at high magnification
will become so high that the material yields plastically
before reaching the atomic dimension. In these cases the
size of the real contact area will be determined mainly by
the yield stress of the solid.
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Fig. 1. Surface roughness power spectrum of a surface which
is self affine fractal for q1 > q > q0. The long-distance roll-
off wave vector q0 and the short distance cut-off wave vector
q1 depend on the system under consideration. The slope of
the log C − log q relation for q > q0 determines the fractal
exponent of the surface. The lateral size L of the surface (or
of the studied surface region) determines the smallest possible
wave vector qL = 2π/L.

Fig. 2. A rubber block (dotted area) in adhesive contact with a
hard rough substrate (dashed area). The substrate has rough-
ness on many different length scales and the rubber makes
partial contact with the substrate on all length scales. When a
contact area is studied at low magnification (ζ = 1) it appears
as if complete contact occurs in the macro asperity contact re-
gions, but when the magnification is increased it is observed
that in reality only partial contact occurs.

The magnification ζ refers to some (arbitrary) chosen
reference length scale. This could be, e.g., the lateral size
L of the nominal contact area in which case ζ = L/λ,
where λ is the shortest wavelength roughness which can be
resolved at magnification ζ. In this paper we will instead
use the roll-off wavelength λ0 = 2π/q0 as the reference
length so that ζ = λ0/λ.

Recently, a very general contact mechanics theory has
been developed which can be applied to both stationary
and sliding contact for viscoelastic solids (which includes
elastic solids as a special case) [4]. The theory was orig-
inally developed in order to describe rubber friction on
rough substrates. For elastic solids the theory can also be
applied when the adhesional interaction is taken into ac-
count [5]. In contrast to earlier contact mechanics theories,
the theory presented in references [4,5] is particularly ac-
curate close to complete contact, as would be the case for,

e.g., rubber on smooth surfaces. The basic idea behind the
theory is to study the contact at different magnification.
In particular, the theory describes the change in the stress
distribution P (σ, ζ) as the magnifications ζ increases. Here

P (σ, ζ) = 〈δ(σ − σ(x, ζ))〉 (2)

is the stress distribution at the interface when the surface
roughness with wavelength smaller than λ = λ0/ζ has
been removed. In equation (2), 〈. . .〉 stands for ensemble
average, and σ(x, ζ) is the perpendicular stress at the in-
terface when surface roughness with wavelength shorter
than λ = λ0/ζ has been removed. It is clear that as the
magnification ζ increases, the distribution P (σ, ζ) will be
broader and broader and the theory describes this in de-
tail. The (normalized) area of real contact (projected on
the xy-plane) at the magnification ζ can be written as

A(ζ)
A0

=
∫ ∞

0+
dσ P (σ, ζ), (3)

where the lower integration limit 0+ indicate that the
delta function at the origin σ = 0 (arising from the non-
contact area) should be excluded from the integral. The
rubber friction theory described in reference [4] depends
on the function A(ζ)/A0 for all magnifications. This just
reflects the fact that the friction force results from the vis-
coelastic deformations of the rubber on all length scales,
and when evaluating the contribution to the friction from
the viscoelastic deformations on the length scale λ, it is
necessary to know the contact between the rubber and the
substrate at the magnification ζ = λ0/λ. Thus, not just
the area of real (atomic) contact is of great interest, but
many important applications require the whole function
A(ζ), and the pressure distribution P (σ, ζ).

In order to accurately reproduce the contact mechan-
ics between elastic solids, it is in general necessary to con-
sider solid blocks which extend a similar distance in the
direction normal to the nominal contact area as the linear
size of the contact area. This leads to an enormous num-
ber of atoms or dynamical variables already for relatively
small systems. In this paper we develop a multiscale ap-
proach to contact mechanics where the number of dynam-
ical variables scales like ∼N2 rather than as ∼N3, where
N × N is the number of atoms in the nominal contact
area. As application we consider the contact mechanics
between randomly rough surfaces both with and without
adhesion, and compare the results with analytical contact
mechanics theories.

2 Multiscale molecular dynamics

Let us discuss the minimum block-size necessary in a
computer simulation for an accurate description of the
contact mechanics between two semi-infinite elastic solids
with nominal flat surfaces. Assume that the surface rough-
ness power spectrum has a roll-off wavevector q = q0

corresponding to the roll-off wavelength λ0 = 2π/q0. In
this case the minimum block must extend Lx ≈ λ0 and
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Fig. 3. Schematic structure of the model. (a) The fully atom-
istic model. (b) The multiscale smartblock model, where the
solid in (a) is coarse grained by replacing groups of atoms with
bigger “atoms”.

Ly ≈ λ0 along the x and y-directions. Furthermore, the
block must extend at least a distance Lz ≈ λ0 in the direc-
tion perpendicular to the nominal contact area. The lat-
ter follows from the fact that a periodic stress distribution
with wavelength λ acting on the surface of a semi-infinite
elastic solid gives rise to a deformation field which extends
a distance ∼λ into the solid. Thus, the minimum block is
a cube with the side L = λ0.

As an example, if λ0 corresponds to 1000 atomic spac-
ings, one must at least consider a block with 1000 ×
1000 atoms within the xy-contact plane, i.e., one would
need to study the elastic deformation in a cubic block with
at least 109 atoms. However, it is possible to drastically
reduce the number of dynamical variables without loss of
accuracy if one notes that an interfacial roughness with
wavelength λ will give rise to a deformation field in the
block which extends a distance λ into the solid, and which
varies spatially over a typical length scale λ. Thus when
we study the deformation a distance z into the block we
do not need to describe the solid on the atomistic level,
but we can coarse-grain the solid by replacing groups of
atoms with bigger “atoms” as indicated schematically in
Figure 3. If there are N ×N atoms in the nominal contact
area one need n ≈ lnN “atomic” layers in the z-direction.
Moreover the number of atoms in each layer decreases in a
geometric progression every time the coarse graining pro-
cedure is applied, so that the total number of particles
is of order N2 instead of N3. This results in a huge re-
duction in the computation time for large systems. This
multiscale approach may be implemented in various ways,
and in the Appendix A we outline the procedure we have
used in this paper which we refer to as the smartblock.
Another implementation similar to our approach can be
found in reference [6].

The smartblock model should accurately describe the
deformations in the solids as long as the deformations
varies slowly enough with time. However, the model can-
not accurately describe the propagation of short wave-
length phonons. This is, in fact, true with all forms of
Hamiltonian multiscale descriptions of solids, because of
the energy conservation together and the unavoidable loss
of information in the coarse grained region. In principle it

should be possible to prevent the back reflection of short
wavelength phonons by describing the coarse grained re-
gion as a continuum, where the numerical calculation can
be carried on through a Finite Element scheme [7–10].
This indeed would require no coarse graining at all in
the region treated with molecular dynamics, and a proper
choice of the matching conditions between the atomistic
and the continuum region. However, with respect to con-
tact mechanics and adhesion the back reflection of short
wavelength phonons is not an important limitation. With
respect to sliding friction it may be a more severe limita-
tion in some cases.

Figure 3 illustrates a case where the block is in the form
of a cube with atomically flat surfaces. It is possible to ob-
tain curved surfaces of nearly arbitrary shape by “gluing”
the upper surface of the block to a hard curved surface
profile. This was described in detail in reference [4]. The
elastic modulus and the shear modulus of the solid can
be fixed at any value by proper choice of the elongation
and bending spring constants for the springs between the
atoms (see Ref. [4] and Appendix A). The upper surface
of the smartblock can be moved with arbitrary velocity in
any direction, or an external force of arbitrary magnitude
can be applied to the upper surface of the smartblock. We
have also studied sliding friction problems where the upper
surface of the smartblock is connected to a spring which is
pulled in some prescribed way. The computer code also al-
lows for various lubricant fluids between the solid surfaces
of the block and the substrate. Thus the present model
is extremely flexible and can be used to study many in-
teresting adhesion and friction phenomena, which we will
report on elsewhere.

We note that with respect to contact mechanics, when
the slopes of the surfaces are small, i.e. when the sur-
faces are almost horizontal, one of the two surfaces can be
considered flat, while the profile of the other surface has
to be replaced by the difference of the two original pro-
files [11]. Thus, if the substrate has the profile z = h1(x)
and the block has the profile z = h2(x), then we can
replace the actual system with a fictive one where the
block has an atomically smooth surface while the sub-
strate profile h(x) = h2(x) − h1(x). Furthermore, if the
original solids have the elastic modulus E1 and E2, and the
Poisson ratio ν1 and ν2, then the substrate in the fictive
system can be treated as rigid and the block as elastic
with the elastic modulus E and Poisson ratio ν chosen so
that (1 − ν2)/E = (1 − ν2

1 )/E1 + (1 − ν2
2)/E2.

The results presented below have been obtained for a
rigid and rough substrate. The atoms in the bottom layer
of the block form a simple square lattice with lattice con-
stant a. The lateral dimensions Lx = Nxa and Ly = Nya.
For the block, Nx = 400 and Ny = 400. Periodic bound-
ary conditions are applied in the xy plane. The lateral size
of the block is equal to that of substrate, but we use dif-
ferent lattice constant b ≈ a/φ, where φ = (1 +

√
5)/2 is

the golden mean, in order to avoid the formation of com-
mensurate structures at the interface. The mass of a block
atom is 197 amu and the lattice constant of the block is
a = 2.6 Å, reproducing the atomic mass and the density of
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gold. We consider solid blocks with two different Young’s
moduli: a hard solid with E = 77 GPa, like in gold, and
a soft one with 0.5 GPa. The corresponding shear moduli
were G = 27 GPa and 0.18 GPa, respectively.

The atoms at the interface between the block and the
substrate interact with the potential

U(r) = 4ε

[(r0

r

)12

− α
(r0

r

)6
]

(4)

where r is the distance between a pair of atoms. When
α = 1, equation (4) is the standard Lennard-Jones po-
tential. The parameter ε is the binding energy between
two atoms at the separation r = 21/6r0. When we study
contact mechanics without adhesion we put α = 0. In the
calculations presented below we have used r0 = 3.28 Å
and ε = 18.6 meV, which (when α = 1) gives an inter-
facial binding energy (per unit area) [12] ∆γ ≈ 4ε/a2 ≈
11 meV/Å

2
.

3 Self affine fractal surfaces

In our calculations we have used self affine fractal surfaces
generated as outlined in reference [3]. Thus, the surface
height is written as

h(x) =
∑
q

B(q)ei[q·x+φ(q)] (5)

where, since h(x) is real, B(−q) = B(q) and φ(−q) =
−φ(q). If φ(q) are independent random variables, uni-
formly distributed in the interval [0, 2π[, then one can eas-
ily show that higher order correlation functions involving
h(x) can be decomposed into a product of pair correla-
tions, which implies that the height probability distribu-
tion Ph = 〈δ(h − h(x))〉 is Gaussian [3]. However, such
surfaces can have arbitrary surface roughness power spec-
trum. To prove this, substitute equations (5) into (1) and
use that

〈eiφ(q′)eiφ(q′′)〉 = δq′,−q′′

gives

C(q) =
1

(2π)2

∫
d2x

∑
q′

|B(q′)|2ei(q−q′)·x

=
∑
q′

|B(q′)|2δ(q − q′).

Replacing ∑
q

→ A0

(2π)2

∫
d2q,

where A0 is the nominal surface area, gives

C(q) =
A0

(2π)2
|B(q)|2.

Thus, if we choose

B(q) = (2π/L)[C(q)]1/2, (6)

Fig. 4. (a) Fractal surface with the large wavevector cut-off
q1 = 2π/b ≈ 216 q0. (b) The same surface as in (a) but at lower
resolution with q1 = 4q0. For a square 1040 Å× 1040 Å surface
area. The fractal dimension Df = 2.2 and the root-mean-square
roughness amplitude is 10 Å.

where L = A
1/2
0 , then the surface roughness profile (5)

has the surface roughness power density C(q). If we as-
sume that the statistical properties of the rough surface
are isotropic, then C(q) = C(q) is a function of the magni-
tude q = |q|, but not of the direction of q. The randomly
rough substrate surfaces used in our numerical calcula-
tions where generated using equations (5) and (6) and
assuming that the surface roughness power spectra have
the form shown in Figure 1, with the fractal dimension
Df = 2.2 and the roll-off wavevector q0 = 3qL, where
qL = 2π/Lx. We have chosen q0 = 3qL rather than q0 = qL

since the former value gives some self-averaging and less
noisy numerical results. We also used q1 = 2π/b ≈ 216q0

(topography (a) in Fig. 4) and some surfaces with sev-
eral smaller values for q1 (Fig. 4b shows the topography
when q1 = 4q0), corresponding to lower magnification (see
Sect. 4).

4 Numerical results

In this section we illustrate our multiscale molecular dy-
namics (MD) approach by some applications. We first
compare the MD results to two known contact mechanics
results from continuum mechanics. Next we discuss con-
tact mechanics for randomly rough surfaces both with and
without adhesion.

4.1 Test cases: Hertz contact and complete contact

In 1881 Hertz presented an exact solution for the contact
between two perfectly elastic solids with local quadratic
profiles. The results were derived using the elastic con-
tinuum model and neglecting the adhesion between the
solids. In addition, Hertz assumed that the interfacial fric-
tion vanishes so that no shear stress can develop at the
interface between the solids. When a spherical asperity
is squeezed against a flat surface a circular contact area
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Fig. 5. The pressure in the contact region between a spherical
tip and a flat elastic surface. We show the simulation data and
the theoretical Hertz result. The spherical tip has the radius
of curvature R = 1040 Å and the loading force 4.6 × 10−7 N.

(radius rH) is formed, where the pressure decreases con-
tinuously from the center r = 0 to the periphery r = rH

of the contact according to

σ = σH

[
1 −

(
r

rH

)2
]1/2

· (7)

Let us compare the prediction of our atomistic model
with the Hertz theory. We use the Lennard-Jones potential
with α = 0, i.e. without the attractive term. In Figure 5
we compare the Hertz contact pressure (green line) with
our numerical data (red data points). The numerical data
were obtained for a rigid spherical tip squeezed against
a flat elastic surface. Note that the pressure obtained
from the MD calculation has a tail beyond the Hertz con-
tact radius rH. Similar “pressure tails” were recently ob-
served in molecular dynamics simulations by Luan and
Robbins [13]. The tail reflects the non-zero extent of the
atom-atom interaction potential. The deviation between
the molecular dynamics results and the continuum me-
chanics results should decrease continuously as the size of
the system increases.

At the atomic level there is no unique way to define
when two solids are in contact, and one may use several
different criteria. One method is based on the force act-
ing between the atoms at the interface and works best
when the adhesional interaction is neglected. Thus, when
two surfaces approach each other, the repulsive force be-
tween the atoms increases. We may define contact when
the repulsive force is above some critical value. When ad-
hesion is included the interaction between the wall atoms
becomes more long-ranged and it is less obvious how to de-
fine contact based on a force criterion, and we find it more
convenient to use a criteria based on the nearest neigh-
bor distance between atoms on the two surfaces. Thus,
when the separation between two opposing surface atoms
is less than some critical value, contact is defined to oc-
cur. However, we have found that neither of these two
criteria gives fully satisfactory results. The reason is that
if the critical force or the critical distance used to define

when contact occurs is determined by fitting the Hertz
pressure profile (7) to the numerical data as in Figure 5,
then the resulting values depend on the radius of cur-
vature of the asperity. For example, for the Hertz con-
tact in Figure 5 the contact area deduced from the atom-
istic MD calculation agree with the Hertz theory if we
choose the cut-off pressure pc ≈ 0.7 GPa. However, if
the radius of curvature of the asperity is 10 times smaller
(R = 104 Å) then, for the same penetration, the cut-
off would be pc ≈ 2.5 GPa, i.e., more than three times
larger. On the other hand randomly rough surfaces have
a wide distribution of curvatures and it is not clear how
to choose the optimum cut-off distance or force. In this
paper we have therefore used another way of determining
the contact area which turned out to be more unique. We
will now describe this method.

Let us consider the pressure distribution P (σ, ζ) at the
interface. For Hertz contact we get the pressure distribu-
tion

P (σ) =
1

A0

∫
A0

d2x δ(σ − σ(x)). (8)

Using σ(x) from equation (7) for r < rH and σ(x) = 0 for
r > rH gives

P (σ) =
(

1 − A

A0

)
δ(σ) +

2σ

σ2
H

A

A0
(9)

where A = πr2
H is the Hertz contact area. In Figure 6 we

show the pressure distribution in the contact region be-
tween a hard spherical tip and an elastic solid with a flat
surface. The red curve shows the simulation data, while
the green curve is the theoretical Hertz result obtained
by a suitable choice of A in equation (9). Note that while
the Hertz solution and the atomic MD simulation results
agree very well for large pressure, there is a fundamental
difference for small pressure. Thus, for the Hertz solution,
for small pressure σ → 0, P (σ) ∼ σ, while in the atom-
istic model P (σ) increase monotonically as σ → 0. This
difference is due to the long-range interaction between the
solid walls in the atomistic model, which is absent in the
Hertz model. When the long range wall-wall interaction
is taken into account the delta function at σ = 0 in the
Hertz solution (9) will broaden, resulting in a P (σ) which
(for the small systems considered here) will decay mono-
tonically with increasing σ as observed for the atomistic
model. Note that this effect is of exactly the same origin
as the “pressure tail” for r > rH in Figure 5.

The fact that P (σ, ζ) vanish linearly with σ as σ → 0
is an exact result in continuum mechanics with contact
interaction (no long range wall-wall interaction), and is
valid not just for the Hertz contact case, but holds in
general [14]. However, as explained above, this effect will
never be observed in the atomistic model if the wall-wall
interaction is long-ranged.

Note that the contact area A can be determined di-
rectly by fitting the analytical expression for P (σ) for the
Hertz contact (Eq. (9)) to the numerical MD results for
large enough pressures (see Fig. 6). In the present case,
for FN = 4.6 × 10−7 N (Fig. 6a) this gives a contact area
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Fig. 6. The pressure distribution in the contact region between
a spherical tip and a flat surface. We show the simulation data
(red curves) and the theoretical Hertz result (green curves).
Loading force in (a) is 4.6 × 10−7 N and in (b) 7.3 × 10−7 N.

A = πr2
H which is nearly identical to the one deduced from

the fit in Figure 5. A similar procedure can be used to de-
termine the contact area between randomly rough surfaces
using the following analytical expression derived from the
contact mechanics theory of Persson (see Eq. (10) below):

P (σ, ζ) =
1

2(πG)1/2

(
e−(σ−σ0)

2/4G − e−(σ+σ0)2/4G
)

,

where σ0 is the nominal contact stress, and where the
fitting parameter G = G(ζ) can be related to the con-
tact area using equation (3). Thus, if A/A0 � 1 we have
G = (σ2

0/π)(A/A0)−2. We have found (see below) that
this expression for P (σ, ζ) can fit the numerical MD data
very well (lending support for the accuracy of the Pers-
son theory), and we have used this method to determine
the contact area as a function of the squeezing force for
randomly rough substrates.

Let us consider the pressure distribution at the inter-
face between a rigid randomly rough substrate and a flat
elastic surface when the solids are in complete contact.
Complete contact can result either by squeezing the solids
together by high enough force, or if the adhesional inter-
action between the solids is high enough (or the elastic
modulus small enough). However, when complete contact
occurs the pressure distribution is the same.

For an elastic solid with a flat surface in perfect contact
with a hard randomly rough surface, continuum mechanics
predict a Gaussian pressure distribution of the form (see
Appendix B):

P (σ) =
1

(2π)1/2σrms
e−(σ−σ0)2/2σ2

rms

Fig. 7. The normalized pressure distribution P (σ) at the in-
terface between an elastic block (elastic modulus E = 0.5 GPa)
with a flat surface and a rigid randomly rough substrate. Be-
cause of adhesion complete contact occurs at the interface.
The red curve is the simulation result and the green line is
the Gaussian fit to the simulation data with the root-mean-
square width σrms = 0.229 GPa. The blue line is the theoretical
Gaussian distribution obtained using continuum mechan-
ics (see Appendix B). The theoretical rms width σrms =
0.164 GPa.

where the root-mean-square width σrms is determined by
the power spectrum:

σ2
rms = 〈σ2〉 =

π

2
E2

(1 − ν2)2

∫ q1

q0

dq q3C(q).

In Figure 7 we compare the theoretical pressure distribu-
tion (blue curve) with the pressure distribution obtained
from the atomistic model for the case where the complete
contact results from the adhesive interaction between the
solids. The MD data are well fitted by a Gaussian curve,
but the width of the curve is slightly larger than ex-
pected from the continuum mechanics theory σrms(MD) =
0.229 GPa while σrms(theory) = 0.164 GPa. The randomly
rough surface used in the MD calculation is self affine frac-
tal the whole way down to the atomic distance, and one
can therefore not expect the continuum mechanics result
for P (σ), which assumes “smooth” surface roughness, to
agree perfectly with the MD result.

4.2 Contact mechanics without adhesion

Here we study contact mechanics without adhesion as ob-
tained with α = 0 in equation (4), corresponding to purely
repulsive interaction between the walls. Figure 8 shows the
contact morphologies at different magnifications ζ for the
same load. The red and blue color indicate the contact
area at low (ζ = 4) and high (ζ = 216) magnification,
respectively. Note that with increasing magnification the
contact area decreases, and the boundary line of the con-
tact islands becomes rougher. In references [15] and [16] it
has been shown that the statistical properties of the con-
tact regions exhibit power-law scaling behavior. At low
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Fig. 8. Contact morphology for two different magnifications.
The red color denotes contact regions for the low magnification
ζ = 4, while the blue color corresponds to the contact regions
for the high magnification ζ = 216.

Fig. 9. The pressure distribution in the contact area for two
different magnifications. The red line corresponds to the pres-
sure distribution for low magnification ζ = 4, while the green
line is for high magnification ζ = 216.

magnification (ζ = 4) it looks as if complete contact oc-
curs between the solids at asperity contact regions. How-
ever, when the magnification is increased, smaller length
scale roughness is detected and it is observed that only
partial contact occurs at the asperities. In fact, if there
were no short distance cut-off in the surface roughness, the
true contact area would eventually vanish. But in reality
a short distance cut-off always exists, e.g. the interatomic
distance.

Figure 9 shows the pressure distribution in the con-
tact area for two different magnifications. When we study
contact on shorter and shorter length scale, which corre-
sponds to increasing magnification ζ, the pressure distri-
bution becomes broader and broader.

Figure 10 shows that the contact area varies (approxi-
mately) linearly with the load for the small load at two dif-
ferent magnifications ζ = 4 and 32. The contact area was

Fig. 10. The relative contact area A/A0, as a function of
applied stress FN/A0. Results are presented for two different
magnifications ζ = λ0/λ = 4 and 32. The fractal dimension is
Df = 2.2.

determined as described in Section 4.1. by fitting the pres-
sure distribution to a function of the form (10). The pres-
sure distributions and the fitting functions are shown in
Figures 11 and 12 for ζ = 4 and 32, respectively. The slope
of the lines in Figure 10 is only a factor 1.14 larger than
predicted by the contact theory of Persson (see Sect. 5).

In Figure 13 we show the variation of the contact area
with the nominal squeezing pressure for the highest mag-
nification case ζ = 216. In this case we have defined con-
tact to occur when the separation between the surfaces is
below some critical value rc = 4.3615 Å. In contrast to
the definition used above, this definition does not give a
strict linear dependence of the contact area on the load
for small load as found above when the contact area is
defined using the stress distribution.

4.3 Contact mechanics with adhesion

In this section we include the adhesive interaction i.e. we
put α = 1 in equation (4). Figure 14 presents the contact
morphology both with and without the adhesion at the
highest magnification (ζ = 216). The regions with blue
color denotes the contact area without adhesion. The red
color region denotes the additional contact area when ad-
hesion is included. The contact area with adhesion is, of
course, larger than that without adhesion since the at-
tractive adhesional interaction will effectively increase the
external load [17–19].

Figure 15 shows the pressure distribution P (σ, ζ) at
high magnification with and without adhesion. When ad-
hesion is neglected (corresponding to the α = 0 in Eq. (4)),
the pressure is positive in the contact area and P (σ, ζ) = 0
for σ < 0. When the adhesive interaction is included, the
stress becomes tensile close to the edges of every contact
region and P (σ, ζ) is in general finite also for σ < 0.

5 Discussion

Several analytical theories, based on continuum mechan-
ics, have been developed to describe the contact between
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Fig. 11. The stress distribution for ζ = 4 for three different
nominal pressure.

Fig. 12. The stress distribution for ζ = 32 for three different
nominal pressure.

elastic bodies both with and without the adhesional inter-
action. Here we will compare the results presented above
with the predictions of some of these theories.

Persson [4,5] has developed a contact mechanics the-
ory where the surfaces are studied at different magnifica-
tion ζ = λ0/λ, where λ0 is the roll-off wavelength and λ
the shortest wavelength roughness which can be observed

Fig. 13. The relative contact area A/A0, as a function of ap-
plied stress FN/A0. Results are presented for the highest mag-
nification ζ = 216. Contact is defined when the separation
between the surfaces is below a critical value. The fractal di-
mension is Df = 2.2.

Fig. 14. Contact morphology with adhesion and without ad-
hesion. The blue color region denotes the contact without
adhesion. The red color region denote the additional contact
area when the adhesional interaction is included (figure avail-
able in colour at www.eurphysj.org).

at the magnification ζ. In this theory [4] the stress dis-
tribution P (σ, ζ) at the interface between the block and
the substrate has been shown to obey (approximately) a
diffusion-like equation where time is replaced by magnifi-
cation and spatial coordinate by the stress σ. When the
magnification is so small that no atomic structure can be
detected, the surface roughness will be smooth (no abrupt
or step-like changes in the height profile) and one can then
show [14] that in the absence of adhesion P (0, ζ) = 0. Us-
ing this boundary condition the solution to the diffusion-
like equation gives the pressure distribution at the inter-
face (σ > 0):

P (σ, ζ) =
1

2(πG)1/2

(
e−(σ−σ0)2/4G − e−(σ+σ0)

2/4G
)

(10)
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Fig. 15. The pressure distribution with and without adhesion.
The red curve denotes the pressure distribution with adhesion
while the green curve is without adhesion.

where

G =
π

4

(
E

1 − ν2

)2 ∫ ζq0

qL

dq q3C(q). (11)

The relative contact area

A

A0
=

∫ ∞

0

dσ P (σ, ζ) . (12)

Substituting equations (10) into (12) gives after some sim-
plifications

A

A0
=

1
(πG)1/2

∫ σ0

0

dσ e−σ2/4G. (13)

Thus, for small nominal squeezing pressure σ0 � G1/2 we
get

A

A0
=

σ0

(πG)1/2
· (14)

Since the squeezing force FN = σ0A0 we can also write

A = κ
FN

E∗

(∫
d2q q2C(q)

)−1/2

(15)

where E∗ = E/(1− ν2) and κ = (8/π)1/2. Thus, for small
squeezing force FN the theory predicts a linear dependence
of the area of real contact on the load.

For very high squeezing force σ0 � G1/2 complete con-
tact will occur at the interface. In this case the second
term on the rhs in equation (10) can be neglected, so the
pressure distribution is a Gaussian centered at σ0 and with
the root-mean-square width σrms = (2G)1/2. This result is
exact (see Appendix B). Thus, the theory of Persson is ex-
pected to give a good description of the contact mechanics
for all squeezing forces. All other analytical contact me-
chanics theories are only valid when the squeezing force is
so small that the area of real contact is (nearly) propor-
tional to FN. But in many important applications, e.g.,
in the context of rubber friction and rubber adhesion, the

area of real contact for smooth surfaces is often close to
the nominal contact area.

The standard theory of Greenwood and
Williamson [20] describe the contact between rough
surfaces (in the absence of adhesion), where the asperities
are approximated by spherical cups with equal radius of
curvature but with Gaussian distributed heights. In this
theory the area of real contact dependent (slightly) non-
linearly on the load for small load, and can therefore not
be directly compared with the Persson result (15). Bush
et al. [21] developed a more general and accurate contact
theory. They assumed that the rough surface consists of
a mean plane with hills and valleys randomly distributed
on it. The summits of these hills are approximated by
paraboloids, whose distributions and principal curvatures
are obtained from the random precess theory. As a result
of more random nature of the surface, Bush et al. found
that at small load the area of contact depends linearly on
the load according to equation (15) but with κ = (2π)1/2.
Thus the contact area of Persson’s theory is a factor
of 2/π smaller than that predicted by Bush. Both the
theory of Greenwood and Williamson and the theory
of Bush et al. assume that the asperity contact regions
are independent. However, as discussed in [14], for real
surfaces (which always have surface roughness on many
different length scales) this will never be the case even at
a very low nominal contact pressure, which may be the
origin of difference of 2/π between Persson’s theory and
Bush’s theory.

Hyun et al. performed a finite-element analysis of con-
tact between elastic self-affine fractal surfaces [16]. The
simulations were done for rough elastic surface contacting
a perfectly rigid flat surface. They found that the contact
area varies linearly with the load for small load. The fac-
tor κ was found to be between the results of the Bush
and Persson theories for all fractal dimensions Df . For
Df = 2.2 (corresponding to H = 0.8) they found that
κ was only ∼13% larger than predicted by the Persson
theory.

The red curves in Figure 16 shows the pressure distri-
bution from the simulations for several different values of
the magnification ζ = q1/q0 = 4, 8, 32 and 216, neglect-
ing the adhesion. In the simulations the nominal squeez-
ing pressure σ0 = 800 MPa. The best fit (green curves
in Fig. 16) of the pressure distribution (10) to the nu-
merical results is obtained if G−1/2 is taken to be a factor
1.14 larger than predicted by the Persson theory [Eq. (10)],
corresponding to a contact area which is 14% larger than
predicted by the analytical theory, in good agreement with
the results obtained by Hyun et al.

Our simulations show that the contact area varies lin-
early with the load for small load, see Figure 10. Fig-
ures 10 and 16 show that the slope α(ζ) of the line
A = α(ζ)F decreases with increasing magnification ζ, as
predicted by the analytical theory [14,15]. Thus, while
A/A0 = 0.072 for ζ = 4 we get A/A0 = 0.038 for
ζ = 32, which both are 14% larger than predicted by
equation (13).
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Fig. 16. The pressure distribution at four different magnifica-
tions ζ = q1/q0 = 4, 8, 32 and 216 for the squeezing pressure
σ0 = 800 MPa. The red curves is the pressure distribution ob-
tained from the computer simulation, while the green curves is
from the analytical theory assuming that G−1/2, and hence the
relative contact area, is a factor of 1.14 larger than predicted
by the analytical theory, equation (10).

6 Summary and conclusion

In this paper we have developed a Molecular Dynamics
multiscale model, which we have used to study the con-
tact between surfaces which are rough on many different
length scales. We have studied the contact morphologies
both at high and low magnification, with and without ad-
hesion. We have shown that in atomistic models it is a
non-trivial problem how to define the area of real contact
between two solids. Our study shows that the area of real
contact is best defined by studying the interfacial pres-
sure distribution, and fitting it to an analytical expression.
The numerical results are consistent with the theoretical
results that the contact area varies linearly with the load
for small load, where the proportionality constant depends
on the magnification L/λ. For a randomly rough surfaces
with the fractal dimension Df = 2.2 (which is typical for
many real surfaces, e.g., produced by fracture or by blast-
ing with small particles) we have found that for small load
(where the contact area is proportional to the load) the
numerical study gives an area of atomic contact which is

Fig. 17. The model of Persson and Ballone with long range
elasticity. Side view.

only ∼14% larger than predicted by the analytical theory
of Persson. Since the Persson’s theory is exact in the limit
of complete contact, it is likely that the Persson theory is
even better for higher squeezing loads.

This work was partly sponsored by MIUR FIRB RBAU017S8
R004, FIRB RBAU01LX5H, MIUR COFIN 2003 and PRIN-
COFIN2004.

Appendix A: The “smartblock” model for mul-
tiscale molecular dynamics

Here we present a detailed description of the multiscale
model implemented in our Molecular Dynamics (MD) sim-
ulations. Persson and Ballone [22] introduced a simple and
effective model to study the boundary lubrication between
elastic walls. For each wall only the outermost layer of
atoms was considered. These atoms were able to inter-
act with the lubricant or with the atoms of the other wall
with Lennard-Jones potentials. The walls’ atoms were con-
nected to a rigid surface through special springs which ex-
ert an elastic reaction not only to elongation, but also to
lateral bending. The walls’ atoms are coupled with their
in-plane neighbors with similar springs. It is also possi-
ble to use curved elastic walls by connecting the vertical
springs to a curved rigid surface rather than a flat surface
as in Figure 17.

The model of Persson and Ballone catches two essen-
tial features: firstly the walls are not rigid, they can de-
form (differently from previous models) and the descrip-
tion takes into account the elastic energy stored during
compression or stretching, which is an essential ingredi-
ent for the study of the squeeze-out. Secondly both the
Young modulus and the shear modulus can be indepen-
dently tuned via the choice of the elastic constants of the
springs.

The model of Persson and Ballone works well when the
solid is exposed to uniform shear or uniform elongation or
compression. However, when there are spatial variations
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in the stress at the surface of the solid, for instance when
the displacement at the interface comprises short wave-
length Fourier components, then the model does not al-
low a proper description of the elastic deformation field. In
particular, when a periodic stress acts on the surface of an
elastic solid, the displacement field decays exponentially
into the solid, and this aspect is absent in the Persson-
Ballone model.

The solution to overcome this limitation is straightfor-
ward: we explicitly introduce many layers of atoms, placed
on the points of a simple cubic lattice, and coupled with
springs to their nearest neighbors.

The “springs”, as in the previous model, are special,
since they can resist to lateral bending. The force due to
a vertical spring connecting two consecutive atoms 1 and
2 along the z-axis is given by the formulas below, where
a is the lattice spacing, that is the equilibrium length of
the spring:

Fx = −kb∆x = −kb(x2 − x1), (A1)

Fy = −kb∆y = −kb(y2 − y1), (A2)

Fz = −k(∆z − a) = −k[z2 − (z1 + a)]. (A3)

Analogous formulas hold for the springs parallel to the y-
and to the z-axes. The two elastic constants of the spring,
namely k and kb, are related to the Young modulus E and
the shear modulus G respectively: k = Ea and kb = Ga.

In some circumstances it is useful to simulate quite
large and thick samples. Moreover high resolution up to
the atomic level is needed in part of the sample, typically
at the interface. The solution to avoid excessive compu-
tational time is a multiscale approach: high resolution is
achieved where it is needed, but a coarse grained descrip-
tion is employed when it is feasible. The coarse graining
can happen more times, and to various degrees of resolu-
tion, so that a multilevel description of the system com-
prising many hierarchies is implemented.

The grid structure of the smartblock allows a simple
procedure to achieve a multiscale description: groups of
atoms can be replaced by single, bigger atoms, and the
elastic constants of the springs are redefined to guarantee
the same elastic response. In many calculations performed
by our group we used to replace a cube of 2×2×2 particles
with a single particle, repeating this merging procedure
every two layers. More generally any change of resolution
involves merging together a box made of mx × my × mz

particles. The three numbers mx, my and mz are called
merging factors along the three axes.

The equilibrium position of the new particle is in the
center of mass of the group of particles merged together.
Its mass is mxmymz times the mass of the original par-
ticles, so that the density does not change. In fact the
masses are only important to study the kinetic, but they
do not influence the static equilibrium configuration.

The three merging factors can be chosen indepen-
dently. The easiest way to calculate the new springs’ elas-
tic constants is by considering the merging only along
one of the axes. Figure 18 sketches the case mz = 2,
mx = my = 1 (no change of lattice constant along x

Fig. 18. The grid of particles is coarse grained by replacing
two atoms with a single one. Merging factors mx = my = 1,
mz = 2. Masses, equilibrium positions and spring constants
are changed accordingly.

and y). Along the direction of merging the new spring
constants for elongation and bending are k′ = k/mz and
k′

b = kb/mz respectively. The longer springs get pro-
portionally smaller elastic constants, as it happens when
springs are connected in series. In the two directions or-
thogonal each spring replaces mz old springs in parallel
configuration, so the elastic constants increase proportion-
ally: k′ = mxk, k′

b = mxkb. Below there is the general for-
mula giving the new elastic constants of the springs along
the z-axis, with arbitrary merging factors:

k′ =
mxmy

mz
k ; k′

b =
mxmy

mz
kb. (A4)

Analogous formulas hold for the springs parallel to the x-
and y-axes.

To get the whole picture we have to characterize the
springs at the interface between the two lattices, e.g., the
ones crossing the dashed line in Figure 18. When the merg-
ing is in the direction z orthogonal to the interface both
elastic constants k and kb get multiplied by the factor
2/(1+mz). Actually their length is 1

2 (mz +1)az, az being
the old lattice constant along z. Each of these interface
springs can be thought as half a spring of the old grid
connected with half a spring of the new grid.

When the merging is along a direction orthogonal
to the interface between the two grids, as sketched in
Figure 19, then the spring constants do not change, but
the forces between the particles are calculated taking into
account the in-plane shift between the atoms of the two
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Fig. 19. Change of lattice spacing along a direction parallel
to the interface between the two grids.

grids. Each interface particle of the upper lattice inter-
acts with mx × my particles of the lower lattice. The
equations (A1) and (A2) are modified: Fx = −kb(∆x +
x − shift), Fy = −kb(∆x + y − shift). The two in-plane
shifts depend on the pair of particles considered.

Appendix B: Pressure distribution at complete
contact between randomly rough surfaces

Here we calculate the pressure distribution at the interface
between two solids in complete contact. We assume that
one solid is rigid and randomly rough and the other solid
elastic with a flat surface. The pressure distribution

P (σ) = 〈δ(σ − σ(x))〉 =
1
2π

∫ ∞

−∞
dα 〈eiα(σ−σ(x))〉

=
1
2π

∫ ∞

−∞
dα eiασF (α) (B1)

where
F (α) = 〈e−iασ(x))〉

where σ(x) is the fluctuating pressure at the interface.
Next, writing

σ(x) =
∫

d2q σ(q)eiq·x

=
∫

d2q
Eq

2(1 − ν2)
h(q)eiq·x

where we have used the relation between σ(q) and the
Fourier transform h(q) of the height profile h(x) derived
in reference [4], we get

F =
〈

exp
(
−iα

∫
d2q

Eq

2(1 − ν2)
h(q)eiq·x

)〉
.

Next, using that h(q) are independent random variables
we get

F = e−α2ξ2/2 (B2)

where

ξ2 =
∫

d2qd2q′
(

E

2(1 − ν2)

)2

qq′〈h(q)h(q′)〉ei(q+q′)·x.

However (see Ref. [4])

〈h(q)h(q′)〉 = C(q)δ(q + q′)

so that

ξ2 =
∫

d2q

(
Eq

2(1 − ν2)

)2

C(q). (B3)

Substituting equations (B2) in (B1) and performing the
α-integral and using equation (B3) gives

P (σ) =
1

(2π)1/2σrms
e−σ2/2σ2

rms

where the root-mean-square width σrms is determined by
the power spectrum:

σ2
rms = 〈σ2〉 =

π

2
E2

(1 − ν2)2

∫ q1

q0

dq q3C(q).
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