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Adhesion between a thin elastic plate and a hard randomly rough substrate
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In this paper we discuss the adhesion of a thin elastic plate to a randomly rough hard substrate. It is shown
that at small magnificatiofiong length scaleshe plate, because of its higher compliance, is able to adhere in
apparent full contact to the long wavelength corrugation of the underlying surface. That is, at length scales
longer than the plate thickness, the gain in the adhesion energy upon the contact with the substrate overcomes
the repulsive elastic energy produced by the elastic deformations, and the plate is able to fill out the large
cavities of the rigid substrate. This produces a larger area of contact and an enhanced capability to adhere to a
rough surface in comparison to the semi-infinite elastic solid case. However, at large enough magnification
(small length scalgsthe plate behaves as a semi-infinite solid, and, depending on the roughness statistical
properties, the area of true atomic contact may be much smaller than the nominal contact area.
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I. INTRODUCTION films.2! In the paper we consider in detail the case of a thin
late in partial contact with a hard substrate with a self-affine

The interaction between two contacting surfaces at th ractal rouah surface. We assume that the plate deform ac-
nanoscale is fundamental for many modern high-tech appli- 9 ' P

cations, e.g. electromechanical deviéesnd in biological cording to linear elasticity theory, e.g., we assume that the
system’s"- In particular, adhesion may ,be deleterious in Stress in the film is everywhere below the yield stress of the

micro- and nano-devices, e.g. in electromechanical switcher@aterial. We show that at large magnifications the plate can
that can fail because of the permanent adhesion of their mo\R€ regarded as an infinitely thick elastic slab, whereas, at
ing component.0n the other hand, in some cases, adhesio§™Mall magnifications, because of its higher compliance, the
may be beneficial, as for thin films used as protectivePlate is able to adhere tmpparentfull contact with the long
coatings for the manufacturing of multilayered wafer wavelength feature of the rough substrate. This, in turn, pro-
structure$, or in bio-films for orthopedic implants.Since ~ duces a real contact area much larger than for the semi-
the area of real contact is largely influenced by adhesion, infinite elastic solid. In other words, the_ repulswg elastic
i of direct importance also for sliding frictidit!4and it will ~ €nergy, produced by the plate deformation, will in many
influence the contact resistivity and the heat transfer betweefS€S not be able to counterbalance the adhesion energy, re-
the solids. In previous pap&® we have studied the prob- sulting in a residual attractive _ma(_:rpscoplc_lnterf_amal energy
lem of a semi-infinite elastic solid in adhesive partial contactMuch larger than for the semi-infinite elastic solid.
with a rigid profile with “roughness” on a single length scale. ' NiS paper is organized as follows. In Sec. Il we present a
For this system the effective adhesion enéfgand the quahtat;ve dlscgssmn of the |mport§1nce qf many length
forces for jump into contact and jump out of contact havescales in adh_eS|on. In_Sec. 1] we review b(lefly the contact
been evaluatei The problem of partial contact between a Mechanics with adhesion and give expressions for the adhe-
semi-infinite elastic solid and a randomly rough profile hasSion and elastic energies, and the effective interfacial energy
been studied in Ref. 7, and in Ref. 16 one of us has studieder IN Sec. IV we present and discuss the numerical result
the contact between elastic plates and a hard substrate wifitained. In Sec. V we summarize the most important result,
“roughness” on a single length scale. These works hav@&nd in the.Appendlx we discuss briefly the contribution of
shown that, for very soft materials, a roughness-induced inthe stretching energy of the plate.
crease in the effective adhesion energy can be observed for
small roughness amplitudes, a result observed experimen-
tally by Briggs and Briscoé’ It was also shown that stronger [l. QUALITATIVE DISCUSSION
roughness is able to almost completely remove the adhesive
bond, as observed in the classical paper by Fuller and Consider a thin elastic platghicknessd) in frictionless
Tabor!® contact with a corrugated rigid substrate. Let us estimate
The case of an elastic plate in contact with a randomlythe change in the elastic energy needed to deform the plate,
rough substrate has been treated by one of us for full contasb that it goes in full contact with a substrate cavity of di-
conditions? and in this paper we extend the treatment to theameterh and height (we consided/\ andh/\ sufficiently
case of partial contact. The problem under consideration is admall). The bending elastic energy stored in the plat&is
great practical importance for understanding the adhesion of Ee?AV where ¢ ~hd/\? is the strain in the plate, and
flies, bugs, and lizards to a rough substfdt€,or the adhe- AV~ \?d is the volume where the elastic energy is stored.
sive behavior of recently biologically-inspired adhesive We get
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clastic plate slab remains nearly flat. This is analogous to what happens to
thin wetting films on rough surfacés.

The change in the adhesion energy upon complete contact
with the considered cavity is

Uag~ = ANN%, )

where Ay=y,+v,—v,, is the change of the surface energy
per unit area due to the interaction between the elastic-solid
and the substrate. We define the adhesion paramétexsd

65 for the plate and the semi-infinite elastic solid, respec-

j tively, as
’ Cotes L. Ed® (h)z (Ue)p
: - © O = = ~—, 4
clastic slab‘ e P Ay)\z N Ung (4)
Ex(h)2 (U
05: _(_) . ( eI)S. (5)
A’)/ N Uad
LTI o It is clear thatfp and 65 represent the competition between
substrate the attractive adhesion energy and the restoring elastic en-
(b) ergy, and control the adhesive capability of an elastic body.

~When both 6, and 65<1, the elastic plate or the semi-
FIG. 1. (8 When the wavelength of the surface roughness isiyfinjte solid will be able to fill out the cavities and adhere in
much longer than the thickness of the elastic slab, the plate is ablﬁm contact to the substrate. If, on the contrags, 6> 1
to partially follow the substrate profiléb) When the thickness of only partial contact will occu'r. Observe that 'since the
the slab is larger than the wavelength of the substrate the uppet iy =(d/\)3, we expect the thin platéd/) <1) tio have a
surface of the plate remains nearly flat. pruST L : XP P
much higher capability to adhere to a rough surface than the
5 semi-infinite elastic solid. This explains why in many bio-
(U)o ~ Edg(ﬂ) 1) logical systems, showing a high adhesive ability, as for ex-
e’p N ample the gecko foot pad, a very thin leaf-like pl&patula
is found at the end of each thin fiber: the plate can easily
If, instead of a thin plate, we consider a semi-infinite elastichend to follow the long-wave surface roughness prafiee
solid, the strain is~h/\, and the volume where the elastic Fig. 2).

displacement field is localized is\3, giving Most surfaces have roughness on a wide range of length
) scales. For example, many real surfaces are nearly a self-
o h affine fractal. In these cases the statistical properties of the

(Ua)s~EN®| | - ) o el

surface are invariant under the transformation:

H
If d<\ the elastic energy stored in plate is much smaller X—=xg, z=27,

than the elastic energy stored in a semi-infinite elastic solidwherex=(x,y) is the 2D position vector in the mean plane of
Hence, the plate is elastically much softer than the semithe corrugated surface, armis the perpendicular distance
infinite elastic solid, and may be able to partially follow the away from this plane. The Hurst exponetof the fractal
substrate profile as shown in Figal. Whend>\, Eq.(1)is  surface is related to the surface fractal dimension via the
not valid, and the plate will behave as a very thick elasticrelationD;=3-H, with 0<H< 1. For this type of surface a
slab, and its upper surface will not be able to follow thesimple scaling relation can be found between the surface
substrate profile. This is illustrated in Fig(bl. Since for amplitudeh and the length scal. Let h, be the surface
d>\ the displacement field decays as ex@nz/\) (zis the  amplitude at the reference length scejethen the amplitude
distance away from the substrgtéhe upper surface of the h of the rough profile at the length scaleis of the order

A Musca domestica A Gastrophysa viridula

FIG. 2. Insect attachment system. Leaf-like
element of the fiber in the flyl. domesticaA,
and in the beetl&. viridula, B (from Refs. 2 and

27).

()
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2001 sion, i.e. the solid becomes more and more compliant and
[ may rest in full contact with the short length scale structure

1501 of the rough profile. On the other handHf< 0.5 (D;>2.5)
i the elastic energy which would be stored at the interface in

o 100_1 order to allow full contact, rapidly increases: in this case

A only partial contact occurs at the interface between the solid
A and the fine scale surface roughness.

50 Here we must point out that the arguments, presented
i above, are strictly true only if the substrate has roughness in

0l only one direction. In this case, assuming no friction at the

0 interface, the bending of the plate will not generate any ten-

log, (%) ' sile stress inside the plate, and no stretching energy will be
produced. For a two-dimensional roughness, the plate bend-

FIG. 3. The adhesive parametgas a function of the logarithm ing may be accompanied by stretchfigso that an addi-
of the magnification/. The thick and thin lines correspond to the tional restoring force due to stretching elastic energy should

plate (6p) and the semi-infinite solidfs) respectively. be added at the largest scalas the shortest scales the plate
behaves as semi-infinite solids and this contribution does not

h A\ 9y exist. However, this will not affect the basic physics of the
o ()\—) =L, (6)  problem and the results we present in this paper. In the Ap-

pendix we briefly discuss under which conditions this
where we have introduced the magnification\,/\. Now  stretching energy becomes important.
suppose that at the reference length sagléhe thickness of

the elastic slab isl<\,. Let us define the magnificatiaf:
Ill. CONTACT MECHANICS

L= d- (7) In this section we present the physical model and the ba-
sic set of equations that will be used to study the contact of
At wavelengths smaller thagh that is{> ¢, the elastic slab a thin plate on a randomly rough surface. The theory is based
can be regarded as a semi-infinite solid. We define the adhen the formalism developed in Refs. 7 and 23; for the de-
sion parametet, for the elastic plate by means of the fol- tailed derivations the readers are referred to these references.
lowing relation:

) (092, <, @® A. The stress probability distribution and the apparent
P {g(ﬁp)agl_ZH, (> contact area
where Consider the system at the length scetel/ £, whereL is
) the diameter of the nominal contact area, and define the wave
(0p).= E(E) vectorg=2x/\. The smallest wave vector ¢ =2#/L, and
Pa AYNZ\ Ny the magnification can be written d@sqg/q.. Now let o be

the normal stress at the interface, @@, {) the stress prob-

Figure 3 compares the value of the adhesion paraméfers ,pijity distribution in the contact area at the magnification

(plate) and 65 (semi-infinite solid for two different values of P(, ) satisfies the following diffusion equatidi?
the Hurst exponenH. It is clear that at large wavelength,

A>d, that is{ < {;, the adhesion parameterds<1, and the P PP

plate is able to fill out the large substrate cavities and adhere —=1())—, 9
to it in apparent full contact. The semi-infinite solid, on the 9 g0’

other hand, will touch the substrate only on a small fraction . L .

of the nominal contact area because of its very large adhesiV¥ith the initial and boundary conditions

parametems> 1. In this case during pull-off, the elastic en-

ergy stored at the interface will be released to overcome the P(0,1) = o = 09),
change in the surface energy, and, as a consequence, no ad-
herence force will be detected. P(-0,,0) =0, (10)

At higher magnification{>{. the plate behaves as a
semi-infinite solid, but Fig. 3 shows that two completely dif-
ferent scenarios may result, depending on the values of the P(x,{) =0.
Hurst exponent. IH=0.8 a further reduction of the adhesive
parameter will be achieved by increasing the magnificationHere o,(¢) is the tensile stress needed to cause detachment
whereas ifH=0.4 the adhesive parameter continuously in-over an area of diametar=L/¢{. f({)=G'({)a} is a function
creases. Thus, ifi>0.5(D;< 2.5), as the magnification in- of the magnification, andr, denotes the average normal
creases the elastic energy stored at the interface becomsiess in the contact are&’({) is the {-derivative of the
increasingly less important compared to the energy of adhgunction
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do.

G(0) = moy” J aM4a) "M £~ q)*C(a)dg.  (12)
a.

The quantityM,/q) links the Fourier transforriai(q) of the

normal displacement field(x) to the Fourier transforrizr(q)

PHYSICAL REVIEW B70, 125407(2004

to the total range of wavelength involved in the adhesion
problem.

For a semi-infinite elastic solid it has been shéfviat
[M;X(a)]s=Ea/[2(1-v?)], but here we must calculate this
quantity for the thin plate case. The equilibrium equation that

of the normal stress field(x) at the interface: governs the weak bending of an elastic thin platé is

U(g) =M, Laq)a(q).

We will derive an expression fdvl,, in the next section. The
surface roughness power spectra is

3

By Fourier transforming this equation one gets

-1 _ Eq (qd)®
[Mzz q)]P_Z(l—VZ) 6 '

1
(2m)?
whereh(x) is the height of the rough profile above the meanand for fp(?),

plane of the surface. For a self-affine fractal surface the
power spectra is given by

H m)2<ﬂ)—2m+u
Clg) = 277(% % , (14)

where qq is the long-wave cut off vector, anld, is deter- E
mined by the rms roughness amplitugh)=h3/2 of the sur- fo(0) =GY{)os= 7—T< q 5
face. 4\1-v
If A(¢) denote the area of real contagrojected on the  The diffusivity functionf(¢) enables us to calculate the quan-
xy-plang when the system is observed at the magnificationjty (7). For a self-affine fractal surface, E(L7) gives, for

C(g) = f (h(x)h(0))e™*d?, (13) (19

E 2 3d3 2
fP(é):Gé’(f)O"gzg(ﬁ) Qqu(qT) C(g). (20

This should be compared with the result for a semi-infinite
solid:

2
) q.9°C(q). (21)

=L/, then we defin€(0)=A({)/ Ay [whereAy=A(1) is the
nominal contact ar§aOne can show that

P(g”):J_ P(o,))do.

Solving Eq.(9) with the conditions Eq(10), one obtainé
¢
P =1 —f dg's({’), (15
1

whereS(¢{) can be calculated from the integral equation

Coan] e }1’2 p{_[aa@—aa(z;')?}
f s )[ 20-a2)) Y a0 -a@)]

B _[oa(Q) + oo)?
—exp{ e } (16)

¢
a() =f dg"f(Z'). (17)
1

with

B. Diffusivity function f(Z)
In this section we will derive an expression ) which

varies smoothly between the thin-film and the semi-infinite
solid case. Since most real surfagasd of course all self-
affine fractal surfacgshave roughness over many decades of
length scales, we believe that interpolating between the bulk
and thin film limiting cases is highly accurately in the

the thin plate and the semi-infinite solid, respectively,

1 E \2 q3d3 2 §2(4—H)_1
ap(g):quth(l_ Vz)( s Thn o @
1 E 2(2(1—H)_1

as@):EqShSH(l_yz) T @

Since at large magnification the plate behaves as a semi-
infinite elastic solid, we can interpolate smoothly between
the relations Eqs(22) and(23) by using the expression

(IS
al= ( 4 ) 1-12
H(qod)®(£24™ - 1)(21 ) - 1)

36[(4 = H)(2MH = 1)]+ (god)8(L - H) (P4 - 1)
(24)

C. Detachment stresso,

It is clear that to solve the integral equati@i6), we need
to know the detachment stresg({). Let us, for the case of a
thin plate, calculate the stress required to generate a detached
zone of diametek. For a circular plate of radius/2 under
the action of a uniform applied stress the displacement
field in the normal direction can be obtained from KE48)
and is given by?

(25

U= ———=o| —-r?

31-/° <>\2 )2
16 EC® "\ 4 '

present application, since the wavelength region where thelere we have assumed that(\/2)=0. The elastic energy
interpolation may not be so accurate is very small compareeequired to deform the plate can be calculated as
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AE
41—
In order to evaluate the detachment stregswe require that We can interpolate smoothly betwedB2) and (33) by
the total energyU,,,=—myes\2/4+Ug has a minimum, so means of the following formula:

Uelzf %pu(r)dzxzil_—vza'z)\6 (26) (Ue)s=

2048 Ed? : J d?qqC(q). (33)

that
AE f > q’d®
Ug = d«qC . 34
(7a)e= [ Eyeﬁ(i)zqrz(fs—idsqa)lmy @7 Can-a ) TG
2(1=) 3m For partial contact, we get
where we have introduced the effective interfacial enexgy omE o 3
(see Sec. Il D. For the semi-infinite solid case, one obtains Ug = ﬁp\of quP(Q)C(q)qzeiq%? (35)
_| Ever(© 1z 28 %
(0a)s= 1-2 2| (28 Now let us give an expression for the adhesion en&igy

_ _ . Consider first the plate adhered (fictionless full contact
and we can interpolate smoothly by using the following ex-to the substrate. In this case the total area of contact equals
pression for the detachment stress: the ared® A, of the undeformed plat@ote: when the plate is

Everd(O)q |12 Pof 1/2 in full contact the contact area projected on theplane is
= € ) 29 smaller thanA,), and the total energy of adhesion is
O'a(@ 2(1 _ V2) <37T4/64 +d3q3) ( ) nAO) ay
(Uadp =~ AcAy. (36)
D. Elastic energy and effective energy of adhesion On the other hand when an elastic semi-infinite solid is con-

The detachment stress defined above depends on the valgigered to adhere in full contact to the substrate, the apparent
of the effective interfacial energy.q, which is a measure of Ccontact area does not change, and the real area of cénimct
the change in the plate free energy per unit area upon thi@rger thanA. In this case the adhesion energys
contact with the substrate. Thus when the system is studied o
at the magnificatior?, (see also Ref. 7 for a detailed treat- (Uads=—AcAy f (1 +x&H)YV2%e™dx, (37
men), the effective interfacial energy.x(¢,) is defined as 0

~ YerA(La) = ~ YerAoP(La) = Uad(la) + Ue().  (30)  Where

Thus, in order to evaluate.; we must calculate the elastic 2= J d?qC(9)q
energy of the system and the adhesion energy. For the plate s '

case the elastic energy can be writtef*as .
oy In order to take into account that the plate behaves as a

Ed® 2 semi-infinite elastic solid at large magnifications we should
(Uedp = m f d°x interpolate between the two formulas. To perform this inter-
5 ) polation note that the elastic displacement vector field in the
X{«Vzu)z) —2(1- V)<@ﬂ _ (ﬂ) >} plate decreases as é€xp2), so that, when the system is stud-
ax2ay?  \ oxay ' ied at the magnificatiod,=0d./q,, we can write

(31 a
£=2m J dqC(a)g*(1 —e). (38)

Now assume first that the plate makes contact everywhere Ua
with the substrate, so thatx)=h(x). By using the definition

of the inverse Fourier transform of the height substrate pm]’hus, by accounting for partial contact, the energy of adhe-

sion at the magnificatiod, is

file:
| 2 i Uad(Za) = = AAYP(Z0) J (1 +x)Y%e™dx,  (39)
h(x) = f d“gh(a)e'?™, ad Y],
we get and, by recalling Eq(30), we get for the effective interfacial
energy,
(Ualp= 5 f F9@daC@), (32 P(Zy) [~
el’P 24(1 - VZ) ' Yetf _ 1 f (1 +X§2)1/Ze—xdx
Ay P(L)Jo
where we have used that . s
2 f 1 P(Q) g°d
- -—| da———C? , (40
H@h-a)= 22 0. 5 )y, @ Pia) "V 6+ i
(2m) 2
At large magnification the plate behaves as an elastic sem\|there we have introduced the adhesion length
infinite solid where the elastic energyis 5=4(1-17AyIE. (41)
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H=04
qod=0.63
¢= 100

g It
= 1 = 154
3 .
1t
0.5- s
0.5]
0 t t Y t t t t 0+ t } t t t t t
0 0.2 0.4 0.6 0.8 1 1.2 1.4 0 0.2 0.4 0.6 0.8 1 1.2 1.4
(a) qaho (a) qoho

PE) PEL)

0 02 04 06 08 1 12 14
(b) Qo (b)

FIG. 4. (8 The normalized macroscopic interfacial energy FIG. 5. (a) The normalized macroscopic interfacial energy
vetf({=1)/Avy and (b) the normalized area of real conta&((;) vet{=1)/Ay and (b) the normalized area of real conta&({;)
=A({1)/Aqy as a function of the dimensionless surface amplitude=A({;)/Aq as a function of the dimensionless surface amplitude
goho- Results are shown fod=0.8, {;=100, q,d=0.63, and for  qghy. Results are shown foH=0.4, {;=100, qyd=0.63, and for
different values ofjgd. different values of,é.

contact and, hence, of the surface energy. However this is no
more true at largé,, because of the reduction of the area of

. real contact. Figure 4 also shows that, as expected, the
Equations(15), (16), (29), and(40) can be solved by an 4 ,ghness-induced increment of the macroscopic interfacial

iterative numerical procedure. In this section we present "€nergy grows by increasing the adhesion lengthAy/E

sults for a surface which is a self-affine fractal on all lengthgnq that the full contact condition remains to higher ampli-
scales, i.e.q =qp. The calculations have been performed fortyde h, as § increases.

two values of the Hurst exponeii,=0.8 andH=0.4, and for In Fig. 5 we report the same quantities as in Fig. 4 but for
a maximum magnificatiod; =d;/qo=100. The effective ad- 3 smaller Hurst exponet=0.4 (fractal surface dimension
hesion energy(¢) and the normalized area of cont®)  p=2.6). In this case the enhancement in the macroscopic
are compared to the those obtained for the semi-infinite elasnterfacial energy is much larger than fei=0.8. This result
tic solid. is expected since, when the plate adheres in full contact with
Figure 4 shows(a) the macroscopic interfacial energy the substrate, the roughness-induced increase in the contact
Yer(1), i.€. the effective interfacial energy calculated at thearea is larger for a higher surface fractal dimension. This, in
magnification{=1, and(b) the normalized area of real con- turn, increases the adhesive contribution to the interfacial
tactP(¢,) at the maximum magnificatiof{;, as a function  energy. However, we also observe that at high enough am-
of the dimensionless roughness amplitugi,. We show  plitudesh, both the macroscopic interfacial energy and the
results for three different values gjd, where the adhesion real contact area decrease much faster thamife0.8. This
length ¢ is defined by Eq(41). The results are plotted for result is expected since the adhesion parametgiven by
H=0.8, i.e.D¢=2.2, and for a dimensionless thickness of theEq. (8) always increases as the fractal dimensidy+3-H
plate equal ta,d=0.63. Note that the macroscopic interfa- of the surface increases. This implies that when only partial
cial energy initially increases with the amplituttg of the  contact occurglarge enoughgyh, valuey, the area of real
rough profile up to a maximum value, and after decreasesontact will be much smaller fdd=0.4 than forH=0.8, and
with hy. This is caused by the increase in the real contacthe macroscopic interfacial energy will be significantly re-
area produced by the fine structure of the rough profile. Figduced.
ure 4b) shows, indeed, that at smdi} the plate adheres in Figures 6 and 7 compare the results obtained for the plate
full contact to the substrate, so that an increase in the surfacsase(thick lineg with those of the semi-infinite soli¢thin
roughness produces a corresponding increases of the arealipks), for H=0.8 andH=0.4. As expected, because of the

IV. RESULTS AND DISCUSSION
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1o] H= 9.8 27 H=04
qed=0.63 [ qod=0.63
1 5= 100 157 £,=100
i— 0.8 g [
<, 06 z 1 05=04
0.41 =
0.5]
021
0 . . . , , , 0 . . . . . . . .
0 02 04 06 08 1 12 0 01 02 03 04 05 06 07 08
(@) q.h, (@) ol

PEC) P(C)

0 02 04 0.6 08 1 12 0 01 02 03 04 05 06 07 08
®) Golts (0) aehy

FIG. 6. (@ The normalized macroscopic interfacial energy gy, 7. (a) The normalized macroscopic interfacial energy
Yerf(¢=1)/Ay and (b) the normalized area of real conta(y) ., (r=1)/Ay and (b) the normalized area of real conta(Z,)
=A({1)/Ao, as a function of the dimensionless surface amplitude- 5(;.)/a, as a function of the dimensionless surface amplitude
dohg. Thick lines are for the plate case and thin lines are for theqoho. Thick lines are for the plate case and thin lines are for the
semi-infinite solid case. Results are shown f6r0.8, £,=100,  semj.infinite solid case. Results are shown fér0.4, £, =100,
God=0.63, and for two different values of4. 0od=0.63, and for two different values @fé.

higher compliance of the plate, both the macroscopic inter
facial energyy.;{1) and the normalized area of real contact
P(Z,) are larger than for the semi-infinite solid case. How-
ever, forH=0.4 this difference is less significafsee Fig. 7.
This can be easily understood if we consider that ffor

=0.4 the adhesive parameteérapidly increasessee Fig. 3 . N
with the magnificatior: the small scale roughness contribu- Figure 8b) also shows that fof> £, =10 the slope of the

tion is how much more important than fa1=0.8. Thus (¢ curves does not appreciably vary when considering the
whenH < 0.5 the long wave-length contribution to the mac- thin plate or the semi-infinite solid. However, because of the
roscopic interfacial energy is less significant, and the platéumulative nature oP({), the contact area of the plate is
behavior is much closer to that of a semi-infinite solid. larger than that of the semi-infinite solid over the whole
Figure 8 shows(a) the normalized effective energy of {-range. This is a consequence of the higher plate compli-
adhesion, andb) the normalizedapparent area of contact ance at small magnification, which allows for an apparent
P(¢) as a function of the logarithm of the magnificatign  full contact condition up to much larger values{ofObserve,
The plate resultgsolid lineg are compared with those of the additionally, that forH=0.8>0.5, the normalized area of
semi-infinite elastic solidthin lines for H=0.8 andH=0.4.  contactP({) reaches a constant value as the magnification is
The curves have been plotted for the dimensionless platecreased, i.e. the plate adheres in full contact to the short
thicknessg,d=0.63, that is for{,=\o/d=10. Therefore, we length scale structure of the rough surface. On the other
expect that for logy {>1 no appreciable differences should hand, wherH=0.4< 0.5, the normalized area of contd(t,)
be noticed in comparison to the semi-infinite solid case. Incontinuously decreases with increasing magnificationhis
deed, Fig. 8) shows that the thick and thin curves cannot beconfirms the qualitative results of Sec. Il obtained by means
distinguished when log > 1. On the other hand, at smaller of scaling law considerations. Moreover, FigaBshows
magnifications the influence of the higher plate compliancehat, in the transition zone where the plate behavior changes
is clearly seen, and the macroscopic interfacial energgmoothly toward the semi-infinite solid characteristic behav-
Yeif({=1) is much larger for the plate than for the semi- ior, the effective interfacial energy is smaller for the plate
infinite solid. than for the semi-infinite solid. However, if we observe that
Note also that at short length scales;{{) increases with  the free energy of the plate is proportional t&(£€) yet( ),
decreasing magnification. This effect is due to the increase iand considering that in the same zone the are@pparent

the contact area as more and more short-wavelength rough-
ness components are “integrated-out.” However at small
enough magnifications the contribution to the interfacial en-
ergy from the roughness-induced elastic energy leads to a
reduction of the effective adhesion energy.
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FIG. 8. (a9 The normalized effective energy of adhesion FIG. 9. (@) The normalized effective energy of adhesion
veif({)/ Ay and (b) the normalizedapparent area of contacP(¢) veif(0)/ Ay and (b) the normalizedapparent area of contacP()
=A(Q) /A, as a function of logy({). Results are reported for two =A({)/Ay as a function of logy({). Results are reported fdd
valuesH=0.8 andH=0.4 of the Hurst fractal exponent. Thick lines =0.8 and different values of the dimensionless thickrggsof the
are for the plate case and thin lines are for the semi-infinite solicplate. Thick lines are for the plate case and thin lines are for the
case. semi-infinite solid case.

contact is much larger for the plate than for the semi-infinite
solid, we conclude that the total free energy of the plate isadhesive abilities, have a leaf-like plate structure at the end
smaller than for the semi-infinite solid over the whole of the thin fibergsee Fig. 2, of which the foot-pad surface is
g—rar_wge. _ ) made-up.

Figure 9 shows(a) the normalized effective energy of | the paper we also show that at length scales equal to or
adhesion andb) the normalizedapparentarea of contact  gajier than the plate thickness, no appreciable differences
P({) as a function of the logarithm of the magnificatigrior .o pe ghserved with the semi-infinite solid case. Thus, for

different values of the dimensionless thickness of plte o, ample in a typical case the plate will be able to rest in full

Itis clear that by increasing the thickness of the platg .th.econtact with the fine structure of the rough surface only if the

culr_\ées appro?jches thos? gorres;:ﬁnglgg to(;/r'ffim"'nf'n"ﬁactal dimension is close to 2, whereas only partial contact
solid case, and, as expected, wiggd=6.3(i.e., =110 il occur for surface fractal dimension higher than 2.5.

appreciable difference can be observed between the two
cases.

APPENDIX: THE CONTRIBUTION OF STRETCHING
V. CONCLUSION ENERGY

We have studied the adhesion of a thin elastic plate to a
randomly rough rigid substrate with self-affine fractal rough- In this section we present a short derivation of the stretch-
ness. It has been shown that, because of its higher compling elastic energy produced by the bending of the plate. We
ance, the plate may adhere in apparent full contact to thessume that full contact occurs between the plate and sub-
long-length scale structure of the rough substrate. This prostrate. Let us first estimate the elastic energy due to the
duces a larger area of real contact and a significantly highestretching of the plate. Suppose that the plate is deformed so
effective energy of adhesion, in comparison to the semithat it goes in full contact with a substrate cavity of diameter
infinite elastic solid case. Thus, the plate adheres mora and heighth. The stretching elastic energy lis~ Es2AV
strongly to the substrate, and this may justify why lizards,where e~ (h/\)? and AV~ \?d is the volume where the
beetles, or spiders, all characterized by exceptionally higtelastic energy is stored. Thus we get

125407-8



ADHESION BETWEEN A THIN ELASTIC PLATE AND A... PHYSICAL REVIEW B 70, 125407(2004)

,[h 4 Moreover, by means of EqgA5) it is possible to find
Us~ ErAd (A1) g(g) as a function ofy(g), that in turn can be expressed in
terms ofh(q) by means of Eq(A4):
If we compare this quantity with the elastic energy due to the
. - 2 . E
{Jhe;[dlng of the plateJ,~ Ed®(h/\)? [see Eq.(1)], we find X(q):_gf 29'h(q")h(q - q )[qxz(qy qy)z
Up/Us~ (d/h)?. (A2) — 00y (0 — A (ay — q)]

Thus, ifh>d the contribution of the stretching deformations The stretching elastic energy is therefore
of the plate can, in general, not be neglected. In this case the

governing equations até Ug= E_zd(zﬂ_)zf d2qclq’d?q’
212(V Yu-dl —5 2ol ol o 2—&)@/—%y = ><<1(q )h(g")h(q-qg")h(-q-a"))
(A3) x@l‘(q,q’)f(—q,q”), (A8)
azu azu ( U )2} where
22 _

f(,9") = ax(ay — ay)(axdy — Gxly) -

whereu is the normal displacement field; is the normal  Now observe that for a Gaussian random varidtfls)

stress acting on the plate, ajds the stress function defined

as (h(g")h(@")h(a -g")h(-a-a")
&2)( 82)( 82)( _ M / —q’
011= W, 012=— wy, O2= 2 (A5) - (ZW)ZC(q )Ca-qa’)
The stretching elastic energy can be calculated as X[a@"+q") + @' -q-q")] (A9)

d so that we can write
Us:_fdz)«sij(x)a'ij(x»y (A6) 1
2 U= 7 AEd f d’gdfq’ |(q) (T4)(qqu Oyaly)*

where(: --) stands for the ensemble average, afjdande;;

(i,j=1,2) are the in-plane stress and strain tensors, respec- 1 20k lgxq’|*
tively, related to each-other by the constitutive equations of = /oEd | d"qdg ‘Clac(q’) q+q'*’
elasticity:
where in the last equation we have defingd(qy,qy,0).
21 Introducing the polar coordinates gives
11— E(0'11‘ Vo)),
1
Us= ZAOEdf dadq C(q)C(q')q°q"®
1
€227 E(U'zz‘ Vo), (A7) f T sin(0- ')
[a*+q'?+2qq  cog 6~ 6)]*
£1p= 5(1 + V)0 Now, note that
E
. , ) siff(6-6")
By using Eqs(A4), (A5), and(A7) we can derive an expres- dede [o?+q'2+2qq codd- )] =g(a,q"),
sion for the elastic energy as a function of the elastic dis- o’ +q aq’
placement field. Let us define where
_ 372 | lUg% q=q,
- = d2 . . e'q'x, , M = —— X
aij () f qo;(q) 9.0 =~ {1/q,4; a<q.

so that by using EqgA7) we can express the elastic energy Therefore the stretching energy is
as

1
Us= 7 Adkd f dgdq a°q'°g(q,')C(a)C(q’). (A10)

Us= 2E dq{[Ull(Q) vo(Q) Joa(— q) + [022(q)

For a self-affine rough surface, Eq44) and(A10) give the
= vo11(q)]oos(— q) + 2(1 + v)or1(q) o12(— Q) } following expression for the stretching energy:
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Ed 3 . H Hg H2(1-H) - (2-H) Us 9 2H ™M+ 2(1-H)( M - (2-H)
s— _AO_(qO 0) _ ’ = _( ) 4-2H
1-H Up 8 L-H)(T* -1
=—1-v){— —— .
where{.=\y/d is the cut-off magnification corresponding to 8 d/ 1-H>¢

a wavelengthh=d. For magnificationg> ¢, the plate be-
haves as a semi-infinite solid and the stretching effect van-

ishes. Let us compare this energy with the bending energy dfor the case considered in the paper we havel10, d/ho
the plate[see Eq(32)]: ~1 so we gety,/U,=0.1. If we consider the gecko case, we

haved/hy~0.25, {;=\/d~ 100, andU¢,/U,=0.02, and the

U, = 1 Ao( L H qo (54 H_q) stretching contribution can be neglected. In general, we be-
PT4(1-12) 2 %Mo)~ 6 ' lieve that the basic physics will not change when the influ-
(A12) ence of the stretching energy is included, but in a future
publication we plan to consider the effect of the stretching
By taking the ratio, one gets energy also for the partial contact case.
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