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In this paper we discuss the adhesion of a thin elastic plate to a randomly rough hard substrate. It is shown
that at small magnification(long length scales) the plate, because of its higher compliance, is able to adhere in
apparent full contact to the long wavelength corrugation of the underlying surface. That is, at length scales
longer than the plate thickness, the gain in the adhesion energy upon the contact with the substrate overcomes
the repulsive elastic energy produced by the elastic deformations, and the plate is able to fill out the large
cavities of the rigid substrate. This produces a larger area of contact and an enhanced capability to adhere to a
rough surface in comparison to the semi-infinite elastic solid case. However, at large enough magnification
(small length scales) the plate behaves as a semi-infinite solid, and, depending on the roughness statistical
properties, the area of true atomic contact may be much smaller than the nominal contact area.
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I. INTRODUCTION

The interaction between two contacting surfaces at the
nanoscale is fundamental for many modern high-tech appli-
cations, e.g. electromechanical devices,1 and in biological
systems.2 In particular, adhesion may be deleterious in
micro- and nano-devices, e.g. in electromechanical switchers
that can fail because of the permanent adhesion of their mov-
ing components.3 On the other hand, in some cases, adhesion
may be beneficial, as for thin films used as protective
coatings,4 for the manufacturing of multilayered wafer
structures,6 or in bio-films for orthopedic implants.5 Since
the area of real contact is largely influenced by adhesion,7 it
is of direct importance also for sliding friction,8–14and it will
influence the contact resistivity and the heat transfer between
the solids. In previous papers9,15 we have studied the prob-
lem of a semi-infinite elastic solid in adhesive partial contact
with a rigid profile with “roughness” on a single length scale.
For this system the effective adhesion energy,15 and the
forces for jump into contact and jump out of contact have
been evaluated.9 The problem of partial contact between a
semi-infinite elastic solid and a randomly rough profile has
been studied in Ref. 7, and in Ref. 16 one of us has studied
the contact between elastic plates and a hard substrate with
“roughness” on a single length scale. These works have
shown that, for very soft materials, a roughness-induced in-
crease in the effective adhesion energy can be observed for
small roughness amplitudes, a result observed experimen-
tally by Briggs and Briscoe.17 It was also shown that stronger
roughness is able to almost completely remove the adhesive
bond, as observed in the classical paper by Fuller and
Tabor.18

The case of an elastic plate in contact with a randomly
rough substrate has been treated by one of us for full contact
conditions,2 and in this paper we extend the treatment to the
case of partial contact. The problem under consideration is of
great practical importance for understanding the adhesion of
flies, bugs, and lizards to a rough substrate,19,20 or the adhe-
sive behavior of recently biologically-inspired adhesive

films.21 In the paper we consider in detail the case of a thin
plate in partial contact with a hard substrate with a self-affine
fractal rough surface. We assume that the plate deform ac-
cording to linear elasticity theory, e.g., we assume that the
stress in the film is everywhere below the yield stress of the
material. We show that at large magnifications the plate can
be regarded as an infinitely thick elastic slab, whereas, at
small magnifications, because of its higher compliance, the
plate is able to adhere in(apparent) full contact with the long
wavelength feature of the rough substrate. This, in turn, pro-
duces a real contact area much larger than for the semi-
infinite elastic solid. In other words, the repulsive elastic
energy, produced by the plate deformation, will in many
cases not be able to counterbalance the adhesion energy, re-
sulting in a residual attractive macroscopic interfacial energy
much larger than for the semi-infinite elastic solid.

This paper is organized as follows. In Sec. II we present a
qualitative discussion of the importance of many length
scales in adhesion. In Sec. III we review briefly the contact
mechanics with adhesion and give expressions for the adhe-
sion and elastic energies, and the effective interfacial energy
gef f. In Sec. IV we present and discuss the numerical result
obtained. In Sec. V we summarize the most important result,
and in the Appendix we discuss briefly the contribution of
the stretching energy of the plate.

II. QUALITATIVE DISCUSSION

Consider a thin elastic plate(thicknessd) in frictionless
contact with a corrugated rigid substrate. Let us estimate
the change in the elastic energy needed to deform the plate,
so that it goes in full contact with a substrate cavity of di-
ameterl and heighth (we considerd/l andh/l sufficiently
small). The bending elastic energy stored in the plate isUel
,E«2DV where «,hd/l2 is the strain in the plate, and
DV,l2d is the volume where the elastic energy is stored.
We get
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If, instead of a thin plate, we consider a semi-infinite elastic
solid, the strain is,h/l, and the volume where the elastic
displacement field is localized is,l3, giving

sUeldS, El3Sh

l
D2

. s2d

If d!l the elastic energy stored in plate is much smaller
than the elastic energy stored in a semi-infinite elastic solid.
Hence, the plate is elastically much softer than the semi-
infinite elastic solid, and may be able to partially follow the
substrate profile as shown in Fig. 1(a). Whend.l, Eq.(1) is
not valid, and the plate will behave as a very thick elastic
slab, and its upper surface will not be able to follow the
substrate profile. This is illustrated in Fig. 1(b). Since for
d.l the displacement field decays as exps−2pz/ld (z is the
distance away from the substrate); the upper surface of the

slab remains nearly flat. This is analogous to what happens to
thin wetting films on rough surfaces.22

The change in the adhesion energy upon complete contact
with the considered cavity is

Uad , − Dgl2, s3d

whereDg=g1+g2−g12 is the change of the surface energy
per unit area due to the interaction between the elastic-solid
and the substrate. We define the adhesion parametersuP and
uS for the plate and the semi-infinite elastic solid, respec-
tively, as

uP =
Ed3

Dgl2Sh

l
D2

,
sUeldP

Uad
, s4d

uS=
El

Dg
Sh

l
D2

,
sUeldS

Uad
. s5d

It is clear thatuP and uS represent the competition between
the attractive adhesion energy and the restoring elastic en-
ergy, and control the adhesive capability of an elastic body.
When both uP and uS!1, the elastic plate or the semi-
infinite solid will be able to fill out the cavities and adhere in
full contact to the substrate. If, on the contrary,uP, uS.1
only partial contact will occur. Observe that, since the
uP/uS=sd/ld3, we expect the thin platesd/l!1d to have a
much higher capability to adhere to a rough surface than the
semi-infinite elastic solid. This explains why in many bio-
logical systems, showing a high adhesive ability, as for ex-
ample the gecko foot pad, a very thin leaf-like plate(spatula)
is found at the end of each thin fiber: the plate can easily
bend to follow the long-wave surface roughness profile(see
Fig. 2).

Most surfaces have roughness on a wide range of length
scales. For example, many real surfaces are nearly a self-
affine fractal. In these cases the statistical properties of the
surface are invariant under the transformation:

x → xz, z→ zzH,

wherex=sx,yd is the 2D position vector in the mean plane of
the corrugated surface, andz is the perpendicular distance
away from this plane. The Hurst exponentH of the fractal
surface is related to the surface fractal dimension via the
relationDf =3−H, with 0,H,1. For this type of surface a
simple scaling relation can be found between the surface
amplitudeh and the length scalel. Let ha be the surface
amplitude at the reference length scalela; then the amplitude
h of the rough profile at the length scalel is of the order

FIG. 1. (a) When the wavelength of the surface roughness is
much longer than the thickness of the elastic slab, the plate is able
to partially follow the substrate profile.(b) When the thickness of
the slab is larger than the wavelength of the substrate the upper
surface of the plate remains nearly flat.

FIG. 2. Insect attachment system. Leaf-like
element of the fiber in the flyM. domestica, A,
and in the beetleG. viridula, B (from Refs. 2 and
27).
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= z−H, s6d

where we have introduced the magnificationz=la/l. Now
suppose that at the reference length scalela the thickness of
the elastic slab isd!la. Let us define the magnificationzc:

zc =
la

d
. s7d

At wavelengths smaller thand, that isz.zc, the elastic slab
can be regarded as a semi-infinite solid. We define the adhe-
sion parameteruP for the elastic plate by means of the fol-
lowing relation:

uP = H suPdaz2s2−Hd, z , zc,

zc
3suPdaz1−2H, z . zc,

J s8d

where

suPda =
Ed3

Dgla
2Sha

la
D2

.

Figure 3 compares the value of the adhesion parametersuP
(plate) anduS (semi-infinite solid) for two different values of
the Hurst exponentH. It is clear that at large wavelength,
l@d, that isz!zc, the adhesion parameter isuP!1, and the
plate is able to fill out the large substrate cavities and adhere
to it in apparent full contact. The semi-infinite solid, on the
other hand, will touch the substrate only on a small fraction
of the nominal contact area because of its very large adhesive
parameteruS@1. In this case during pull-off, the elastic en-
ergy stored at the interface will be released to overcome the
change in the surface energy, and, as a consequence, no ad-
herence force will be detected.

At higher magnificationz.zc the plate behaves as a
semi-infinite solid, but Fig. 3 shows that two completely dif-
ferent scenarios may result, depending on the values of the
Hurst exponent. IfH=0.8 a further reduction of the adhesive
parameter will be achieved by increasing the magnification,
whereas ifH=0.4 the adhesive parameter continuously in-
creases. Thus, ifH.0.5 sDf ,2.5d, as the magnification in-
creases the elastic energy stored at the interface becomes
increasingly less important compared to the energy of adhe-

sion, i.e. the solid becomes more and more compliant and
may rest in full contact with the short length scale structure
of the rough profile. On the other hand, ifH,0.5 sDf .2.5d
the elastic energy which would be stored at the interface in
order to allow full contact, rapidly increases: in this case
only partial contact occurs at the interface between the solid
and the fine scale surface roughness.

Here we must point out that the arguments, presented
above, are strictly true only if the substrate has roughness in
only one direction. In this case, assuming no friction at the
interface, the bending of the plate will not generate any ten-
sile stress inside the plate, and no stretching energy will be
produced. For a two-dimensional roughness, the plate bend-
ing may be accompanied by stretching,23 so that an addi-
tional restoring force due to stretching elastic energy should
be added at the largest scales(at the shortest scales the plate
behaves as semi-infinite solids and this contribution does not
exist). However, this will not affect the basic physics of the
problem and the results we present in this paper. In the Ap-
pendix we briefly discuss under which conditions this
stretching energy becomes important.

III. CONTACT MECHANICS

In this section we present the physical model and the ba-
sic set of equations that will be used to study the contact of
a thin plate on a randomly rough surface. The theory is based
on the formalism developed in Refs. 7 and 23; for the de-
tailed derivations the readers are referred to these references.

A. The stress probability distribution and the apparent
contact area

Consider the system at the length scalel=L /z, whereL is
the diameter of the nominal contact area, and define the wave
vectorq=2p /l. The smallest wave vector isqL=2p /L, and
the magnification can be written asz=q/qL. Now let s be
the normal stress at the interface, andPss ,zd the stress prob-
ability distribution in the contact area at the magnificationz.
Pss ,zd satisfies the following diffusion equation:7,24

]P

]z
= fszd

]2P

]s2 , s9d

with the initial and boundary conditions

Pss,1d = dss − s0d,

Ps− sa,zd = 0, s10d

Ps`,zd = 0.

Here saszd is the tensile stress needed to cause detachment
over an area of diameterl=L /z. fszd=G8szds0

2 is a function
of the magnification, ands0 denotes the average normal
stress in the contact area.G8szd is the z-derivative of the
function

FIG. 3. The adhesive parameteru as a function of the logarithm
of the magnificationz. The thick and thin lines correspond to the
plate suPd and the semi-infinite solidsuSd respectively.
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Gszd = ps0
−2E

qL

zqL

qMzzsqd−1Mzzs− qd−1Csqddq. s11d

The quantityMzzsqd links the Fourier transformũsqd of the
normal displacement fieldusxd to the Fourier transforms̃sqd
of the normal stress fieldssxd at the interface:

ũsqd = Mzzsqds̃sqd. s12d

We will derive an expression forMzz in the next section. The
surface roughness power spectra is

Csqd =
1

s2pd2 E khsxdhs0dle−iq·xd2x, s13d

wherehsxd is the height of the rough profile above the mean
plane of the surface. For a self-affine fractal surface the
power spectra is given by

Csqd =
H

2p
Sh0

q0
D2S q

q0
D−2sH+1d

, s14d

where q0 is the long-wave cut off vector, andh0 is deter-
mined by the rms roughness amplitudekh2l=h0

2/2 of the sur-
face.

If Aszd denote the area of real contact(projected on the
xy-plane) when the system is observed at the magnification
z=L /l, then we definePszd=Aszd /A0 [whereA0=As1d is the
nominal contact area]. One can show that

Pszd =E
−sa

`

Pss,zdds.

Solving Eq.(9) with the conditions Eq.(10), one obtains7

Pszd = 1 −E
1

z

dz8Ssz8d, s15d

whereSszd can be calculated from the integral equation

E
1

z

dz8Ssz8dF aszd
aszd − asz8d

G1/2

expH−
fsaszd − sasz8dg2

4faszd − asz8dg J
= expH−

fsaszd + s0g2

4aszd J , s16d

with

aszd =E
1

z

dz8fsz8d. s17d

B. Diffusivity function f„z…

In this section we will derive an expression foraszd which
varies smoothly between the thin-film and the semi-infinite
solid case. Since most real surfaces(and of course all self-
affine fractal surfaces) have roughness over many decades of
length scales, we believe that interpolating between the bulk
and thin film limiting cases is highly accurately in the
present application, since the wavelength region where the
interpolation may not be so accurate is very small compared

to the total range of wavelength involved in the adhesion
problem.

For a semi-infinite elastic solid it has been shown24 that
fMzz

−1sqdgS=Eq/ f2s1−n 2dg, but here we must calculate this
quantity for the thin plate case. The equilibrium equation that
governs the weak bending of an elastic thin plate is23

d3

12

E

1 − n2s¹2d2u = s s18d

By Fourier transforming this equation one gets

fMzz
−1sqdgP =

Eq

2s1 − n2d
sqdd3

6
, s19d

and for fPszd,

fPszd = GP8szds0
2 =

p

4
S Eq

1 − n2D2

qLq3Sq3d3

6
D2

Csqd. s20d

This should be compared with the result for a semi-infinite
solid:

fSszd = GS8szds0
2 =

p

4
S Eq

1 − n2D2

qLq3Csqd. s21d

The diffusivity functionfszd enables us to calculate the quan-
tity aszd. For a self-affine fractal surface, Eq.(17) gives, for
the thin plate and the semi-infinite solid, respectively,

aPszd =
1

16
q0

2h0
2HS E

1 − n2D2Sq0
3d3

6
D2z2s4−Hd − 1

4 − H
, s22d

aSszd =
1

16
q0

2h0
2HS E

1 − n2D2z2s1−Hd − 1

1 − H
. s23d

Since at large magnification the plate behaves as a semi-
infinite elastic solid, we can interpolate smoothly between
the relations Eqs.(22) and (23) by using the expression

aszd = Sq0h0

4
D2S E

1 − n2D2

3
Hsq0dd6sz2s4−Hd − 1dsz2s1−Hd − 1d

36fs4 − Hdsz2s1−Hd − 1dg + sq0dd6s1 − Hdsz2s4−Hd − 1d
.

s24d

C. Detachment stresssa

It is clear that to solve the integral equation(16), we need
to know the detachment stresssaszd. Let us, for the case of a
thin plate, calculate the stress required to generate a detached
zone of diameterl. For a circular plate of radiusl /2 under
the action of a uniform applied stresss, the displacement
field in the normal direction can be obtained from Eq.(18)
and is given by23

u =
3

16

1 − n2

Ed3 sSl2

4
− r2D2

. s25d

Here we have assumed thatu8sl /2d=0. The elastic energy
required to deform the plate can be calculated as
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Uel =E 1

2
pusrdd2x =

p

2048

1 − n2

Ed3 s2l6. s26d

In order to evaluate the detachment stresssa, we require that
the total energyUtot=−pgeffl

2/4+Uel has a minimum, so
that

ssadP = FEgef fszdq
2s1 − n2d G1/2S 64

3p4d3q3D1/2

, s27d

where we have introduced the effective interfacial energygeff
(see Sec. III D). For the semi-infinite solid case, one obtains

ssadS= FEgef fszd
1 − n2

q

2
G1/2

, s28d

and we can interpolate smoothly by using the following ex-
pression for the detachment stress:

saszd = FEgef fszdq
2s1 − n2d G1/2S d3q3

3p4/64 +d3q3D1/2

. s29d

D. Elastic energy and effective energy of adhesion

The detachment stress defined above depends on the value
of the effective interfacial energygeff, which is a measure of
the change in the plate free energy per unit area upon the
contact with the substrate. Thus when the system is studied
at the magnificationza (see also Ref. 7 for a detailed treat-
ment), the effective interfacial energygeffszad is defined as

− gef fAszad = − gef fA0Pszad = Uadszad + Uelszad. s30d

Thus, in order to evaluategeff we must calculate the elastic
energy of the system and the adhesion energy. For the plate
case the elastic energy can be written as23

sUeldP =
Ed3

24s1 − n2d E d2x

3Hks¹2ud2l − 2s1 − ndK ]2u

]x2

]2u

]y2 − S ]2u

]x]y
D2LJ .

s31d

Now assume first that the plate makes contact everywhere
with the substrate, so thatusxd=hsxd. By using the definition
of the inverse Fourier transform of the height substrate pro-
file:

hsxd =E d2qh̃sqdeiq·x,

we get

sUeldP =
A0E

24s1 − n2d E d2qsqdd3qCsqd, s32d

where we have used that

kh̃sqdh̃s− qdl =
A0

s2pd2Csqd.

At large magnification the plate behaves as an elastic semi-
infinite solid where the elastic energy is25

sUeldS=
A0E

4s1 − n2d E d2qqCsqd. s33d

We can interpolate smoothly between(32) and (33) by
means of the following formula:

Uel =
A0E

4s1 − n2d E d2qCsqdq
q3d3

6 + q3d3 . s34d

For partial contact, we get

Uel =
2pE

4s1 − n2d
A0E

qa

q1

d2qPsqdCsqdq2 q3d3

6 + q3d3 . s35d

Now let us give an expression for the adhesion energyUad.
Consider first the plate adhered in(frictionless) full contact
to the substrate. In this case the total area of contact equals
the area26 A0 of the undeformed plate(note: when the plate is
in full contact the contact area projected on thexy-plane is
smaller thanA0), and the total energy of adhesion is

sUaddP = − A0Dg. s36d

On the other hand when an elastic semi-infinite solid is con-
sidered to adhere in full contact to the substrate, the apparent
contact area does not change, and the real area of contactA is
larger thanA0. In this case the adhesion energy is7,25

sUaddS= − A0DgE
0

`

s1 + xjS
2d1/2e−xdx, s37d

where

jS
2 =E d2qCsqdq2.

In order to take into account that the plate behaves as a
semi-infinite elastic solid at large magnifications we should
interpolate between the two formulas. To perform this inter-
polation note that the elastic displacement vector field in the
plate decreases as exps−qzd, so that, when the system is stud-
ied at the magnificationza=qa/qL, we can write

j2 = 2pE
qa

q1

dqCsqdq3s1 − e−qdd. s38d

Thus, by accounting for partial contact, the energy of adhe-
sion at the magnificationza is

Uadszad = − A0DgPsz1dE
0

`

s1 + xj2d1/2e−xdx, s39d

and, by recalling Eq.(30), we get for the effective interfacial
energy,

gef f

Dg
=

Psz1d
PszadE0

`

s1 + xj2d1/2e−xdx

−
2p

d
E

qa

q1

d2q
Psqd
Psqad

Csqdq2 q3d3

6 + q3d3 , s40d

where we have introduced the adhesion length

d = 4s1 − n2dDg/E. s41d
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IV. RESULTS AND DISCUSSION

Equations(15), (16), (29), and (40) can be solved by an
iterative numerical procedure. In this section we present re-
sults for a surface which is a self-affine fractal on all length
scales, i.e.,qL=q0. The calculations have been performed for
two values of the Hurst exponent,H=0.8 andH=0.4, and for
a maximum magnificationz1=q1/q0=100. The effective ad-
hesion energygef fszd and the normalized area of contactPszd
are compared to the those obtained for the semi-infinite elas-
tic solid.

Figure 4 shows(a) the macroscopic interfacial energy
gef fs1d, i.e. the effective interfacial energy calculated at the
magnificationz=1, and(b) the normalized area of real con-
tact Psz1d at the maximum magnificationz=z1, as a function
of the dimensionless roughness amplitudeq0h0. We show
results for three different values ofq0d, where the adhesion
length d is defined by Eq.(41). The results are plotted for
H=0.8, i.e.Df =2.2, and for a dimensionless thickness of the
plate equal toq0d=0.63. Note that the macroscopic interfa-
cial energy initially increases with the amplitudeh0 of the
rough profile up to a maximum value, and after decreases
with h0. This is caused by the increase in the real contact
area produced by the fine structure of the rough profile. Fig-
ure 4(b) shows, indeed, that at smallh0 the plate adheres in
full contact to the substrate, so that an increase in the surface
roughness produces a corresponding increases of the area of

contact and, hence, of the surface energy. However this is no
more true at largeh0, because of the reduction of the area of
real contact. Figure 4 also shows that, as expected, the
roughness-induced increment of the macroscopic interfacial
energy grows by increasing the adhesion lengthd,Dg /E,
and that the full contact condition remains to higher ampli-
tudeh0 asd increases.

In Fig. 5 we report the same quantities as in Fig. 4 but for
a smaller Hurst exponentH=0.4 (fractal surface dimension
Df =2.6). In this case the enhancement in the macroscopic
interfacial energy is much larger than forH=0.8. This result
is expected since, when the plate adheres in full contact with
the substrate, the roughness-induced increase in the contact
area is larger for a higher surface fractal dimension. This, in
turn, increases the adhesive contribution to the interfacial
energy. However, we also observe that at high enough am-
plitudesh0 both the macroscopic interfacial energy and the
real contact area decrease much faster than forH=0.8. This
result is expected since the adhesion parameteru given by
Eq. (8) always increases as the fractal dimensionDf =3−H
of the surface increases. This implies that when only partial
contact occurs(large enoughq0h0 values), the area of real
contact will be much smaller forH=0.4 than forH=0.8, and
the macroscopic interfacial energy will be significantly re-
duced.

Figures 6 and 7 compare the results obtained for the plate
case(thick lines) with those of the semi-infinite solid(thin
lines), for H=0.8 andH=0.4. As expected, because of the

FIG. 4. (a) The normalized macroscopic interfacial energy
gef fsz=1d /Dg and (b) the normalized area of real contact,Psz1d
=Asz1d /A0 as a function of the dimensionless surface amplitude
q0h0. Results are shown forH=0.8, z1=100, q0d=0.63, and for
different values ofq0d.

FIG. 5. (a) The normalized macroscopic interfacial energy
gef fsz=1d /Dg and (b) the normalized area of real contact,Psz1d
=Asz1d /A0 as a function of the dimensionless surface amplitude
q0h0. Results are shown forH=0.4, z1=100, q0d=0.63, and for
different values ofq0d.
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higher compliance of the plate, both the macroscopic inter-
facial energygef fs1d and the normalized area of real contact
Psz1d are larger than for the semi-infinite solid case. How-
ever, forH=0.4 this difference is less significant(see Fig. 7).
This can be easily understood if we consider that forH
=0.4 the adhesive parameteru rapidly increases(see Fig. 3)
with the magnificationz: the small scale roughness contribu-
tion is now much more important than forH=0.8. Thus
whenH,0.5 the long wave-length contribution to the mac-
roscopic interfacial energy is less significant, and the plate
behavior is much closer to that of a semi-infinite solid.

Figure 8 shows(a) the normalized effective energy of
adhesion, and(b) the normalized(apparent) area of contact
Pszd as a function of the logarithm of the magnificationz.
The plate results(solid lines) are compared with those of the
semi-infinite elastic solid(thin lines) for H=0.8 andH=0.4.
The curves have been plotted for the dimensionless plate
thicknessq0d=0.63, that is forzc=l0/d.10. Therefore, we
expect that for log10 z.1 no appreciable differences should
be noticed in comparison to the semi-infinite solid case. In-
deed, Fig. 8(a) shows that the thick and thin curves cannot be
distinguished when log10 z.1. On the other hand, at smaller
magnifications the influence of the higher plate compliance
is clearly seen, and the macroscopic interfacial energy
gef fsz=1d is much larger for the plate than for the semi-
infinite solid.

Note also that at short length scales,gef fszd increases with
decreasing magnification. This effect is due to the increase in

the contact area as more and more short-wavelength rough-
ness components are “integrated-out.” However at small
enough magnifications the contribution to the interfacial en-
ergy from the roughness-induced elastic energy leads to a
reduction of the effective adhesion energy.

Figure 8(b) also shows that forz.zc.10 the slope of the
Pszd curves does not appreciably vary when considering the
thin plate or the semi-infinite solid. However, because of the
cumulative nature ofPszd, the contact area of the plate is
larger than that of the semi-infinite solid over the whole
z-range. This is a consequence of the higher plate compli-
ance at small magnification, which allows for an apparent
full contact condition up to much larger values ofz. Observe,
additionally, that forH=0.8.0.5, the normalized area of
contactPszd reaches a constant value as the magnification is
increased, i.e. the plate adheres in full contact to the short
length scale structure of the rough surface. On the other
hand, whenH=0.4,0.5, the normalized area of contactPszd
continuously decreases with increasing magnificationz. This
confirms the qualitative results of Sec. II obtained by means
of scaling law considerations. Moreover, Fig. 8(a) shows
that, in the transition zone where the plate behavior changes
smoothly toward the semi-infinite solid characteristic behav-
ior, the effective interfacial energy is smaller for the plate
than for the semi-infinite solid. However, if we observe that
the free energy of the plate is proportional to −Pszdgef fszd,
and considering that in the same zone the area of(apparent)

FIG. 6. (a) The normalized macroscopic interfacial energy
gef fsz=1d /Dg and (b) the normalized area of real contact,Psz1d
=Asz1d /A0, as a function of the dimensionless surface amplitude
q0h0. Thick lines are for the plate case and thin lines are for the
semi-infinite solid case. Results are shown forH=0.8, z1=100,
q0d=0.63, and for two different values ofq0d.

FIG. 7. (a) The normalized macroscopic interfacial energy
gef fsz=1d /Dg and (b) the normalized area of real contact,Psz1d
=Asz1d /A0, as a function of the dimensionless surface amplitude
q0h0. Thick lines are for the plate case and thin lines are for the
semi-infinite solid case. Results are shown forH=0.4, z1=100,
q0d=0.63, and for two different values ofq0d.
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contact is much larger for the plate than for the semi-infinite
solid, we conclude that the total free energy of the plate is
smaller than for the semi-infinite solid over the whole
z-range.

Figure 9 shows(a) the normalized effective energy of
adhesion and(b) the normalized(apparent) area of contact
Pszd as a function of the logarithm of the magnificationz, for
different values of the dimensionless thickness of plateq0d.
It is clear that by increasing the thickness of the plate the
curves approaches those corresponding to the semi-infinite
solid case, and, as expected, whenq0d=6.3(i.e.,d/l.1), no
appreciable difference can be observed between the two
cases.

V. CONCLUSION

We have studied the adhesion of a thin elastic plate to a
randomly rough rigid substrate with self-affine fractal rough-
ness. It has been shown that, because of its higher compli-
ance, the plate may adhere in apparent full contact to the
long-length scale structure of the rough substrate. This pro-
duces a larger area of real contact and a significantly higher
effective energy of adhesion, in comparison to the semi-
infinite elastic solid case. Thus, the plate adheres more
strongly to the substrate, and this may justify why lizards,
beetles, or spiders, all characterized by exceptionally high

adhesive abilities, have a leaf-like plate structure at the end
of the thin fibers(see Fig. 2), of which the foot-pad surface is
made-up.

In the paper we also show that at length scales equal to or
smaller than the plate thickness, no appreciable differences
can be observed with the semi-infinite solid case. Thus, for
example, in a typical case the plate will be able to rest in full
contact with the fine structure of the rough surface only if the
fractal dimension is close to 2, whereas only partial contact
will occur for surface fractal dimension higher than 2.5.

APPENDIX: THE CONTRIBUTION OF STRETCHING
ENERGY

In this section we present a short derivation of the stretch-
ing elastic energy produced by the bending of the plate. We
assume that full contact occurs between the plate and sub-
strate. Let us first estimate the elastic energy due to the
stretching of the plate. Suppose that the plate is deformed so
that it goes in full contact with a substrate cavity of diameter
l and heighth. The stretching elastic energy isUs,E«s

2DV
where «s,sh/ld2 and DV,l2d is the volume where the
elastic energy is stored. Thus we get

FIG. 8. (a) The normalized effective energy of adhesion
gef fszd /Dg and (b) the normalized(apparent) area of contactPszd
=Aszd /A0 as a function of log10szd. Results are reported for two
valuesH=0.8 andH=0.4 of the Hurst fractal exponent. Thick lines
are for the plate case and thin lines are for the semi-infinite solid
case.

FIG. 9. (a) The normalized effective energy of adhesion
gef fszd /Dg and (b) the normalized(apparent) area of contactPszd
=Aszd /A0 as a function of log10szd. Results are reported forH
=0.8 and different values of the dimensionless thicknessq0d of the
plate. Thick lines are for the plate case and thin lines are for the
semi-infinite solid case.
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Us , El2dSh

l
D4

. sA1d

If we compare this quantity with the elastic energy due to the
bending of the plateUb,Ed3sh/ld2 [see Eq.(1)], we find
that

Ub/Us , sd/hd2. sA2d

Thus, if h.d the contribution of the stretching deformations
of the plate can, in general, not be neglected. In this case the
governing equations are23

E

1 − n2

d3

12
s¹2d2u − dS ]2x

]y2

]2u

]x2 +
]2x

]x2

]2u

]y2 − 2
]2x

]x]y

]2u

]x]y
D = s,

sA3d

s¹2d2x + EF ]2u

]x2

]2u

]y2 − S ]2u

]x]y
D2G = 0, sA4d

where u is the normal displacement field,s is the normal
stress acting on the plate, andx is the stress function defined
as

s11 =
]2x

]y2 , s12 = −
]2x

]x]y
, s22 =

]2x

]x2 . sA5d

The stretching elastic energy can be calculated as

Us =
d

2
E d2xk«i jsxdsi jsxdl, sA6d

wherek¯l stands for the ensemble average, andsi j and«i j
si , j =1,2d are the in-plane stress and strain tensors, respec-
tively, related to each-other by the constitutive equations of
elasticity:

«11 =
1

E
ss11 − ns22d,

«22 =
1

E
ss22 − ns11d, sA7d

«12 =
1

E
s1 + nds12.

By using Eqs.(A4), (A5), and(A7) we can derive an expres-
sion for the elastic energy as a function of the elastic dis-
placement field. Let us define

si jsxd =E d2qsi jsqdeiq·x,

so that by using Eqs.(A7) we can express the elastic energy
as

Us =
d

2E
E d2qhfs11sqd − ns22sqdgs11s− qd + fs22sqd

− ns11sqdgs22s− qd + 2s1 + nds12sqds12s− qdj

Moreover, by means of Eqs.(A5) it is possible to find
si jsqd as a function ofxsqd, that in turn can be expressed in
terms ofhsqd by means of Eq.(A4):

xsqd = −
E

q4 E d2q8hsq8dhsq − q8dfqx8
2sqy − qy8d

2

− qx8qy8sqx − qx8dsqy − qy8dg

The stretching elastic energy is therefore

Us =
Ed

2
s2pd2E d2qd2q8d2q9

3khsq8dhsq9dhsq − q8dhs− q − q9dl

3
1

q4 fsq,q8dfs− q,q9d, sA8d

where

fsq,q8d = qx8sqy − qy8dsqx8qy − qxqy8d.

Now observe that for a Gaussian random variablehsqd,

khsq8dhsq9dhsq − q8dhs− q − q9dl

=
A0

s2pd2Csq8dCsq − q8d

3fdsq8 + q9d + dsq8 − q − q9dg sA9d

so that we can write

Us =
1

4
A0EdE d2qd2q8

CsqdCsq8d
uq + q8u4

sqxqy8 − qx8qyd4

=
1

4
A0EdE d2qd2q8CsqdCsq8d

uq 3 q8u4

uq + q8u4
,

where in the last equation we have definedq=sqx,qy,0d.
Introducing the polar coordinates gives

Us =
1

4
A0EdE dqdq8CsqdCsq8dq5q85

3E dudu8
sin4su − u8d

fq2 + q82 + 2qq8 cossu − u8dg2 .

Now, note that

E dudu8
sin4su − u8d

fq2 + q82 + 2qq8 cossu − u8dg2 = gsq,q8d,

where

gsq,q8d =
3p2

2
3 H 1/q4; q ù q8,

1/q84; q , q8.
J

Therefore the stretching energy is

Us =
1

4
A0EdE dqdq8q5q85gsq,q8dCsqdCsq8d. sA10d

For a self-affine rough surface, Eqs.(14) and(A10) give the
following expression for the stretching energy:
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Us =
Ed

2
A0

3

64
sq0h0d4 H

2 − H

Hz c
4−4H + 2s1 − Hdz c

−2H − s2 − Hd
1 − H

,

sA11d

wherezc=l0/d is the cut-off magnification corresponding to
a wavelengthl=d. For magnificationsz.zc the plate be-
haves as a semi-infinite solid and the stretching effect van-
ishes. Let us compare this energy with the bending energy of
the plate[see Eq.(32)]:

Ub =
1

4s1 − n2d
Ed

2
A0sq0h0d2 H

2 − H

q0
2d2

6
sz c

4−2H − 1d.

sA12d

By taking the ratio, one gets

Us

Ub
=

9

8
s1 − n2dSh0

d
D2Hz c

4−4H + 2s1 − Hdz c
−2H − s2 − Hd

s1 − Hdsz c
4−2H − 1d

<
9

8
s1 − n2dSh0

d
D2 H

1 − H
z c

−2H.

For the case considered in the paper we havezc,10, d/h0
,1 so we getUs/Ub.0.1. If we consider the gecko case, we
haved/h0,0.25,zc=l /d,100, andUs/Ub.0.02, and the
stretching contribution can be neglected. In general, we be-
lieve that the basic physics will not change when the influ-
ence of the stretching energy is included, but in a future
publication we plan to consider the effect of the stretching
energy also for the partial contact case.
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