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Abstract. I have developed a theory of adhesion between an elastic solid and a hard randomly rough
substrate. The theory takes into account that partial contact may occur between the solids on all length
scales. I present numerical results for the case where the substrate surface is self-affine fractal. When the
fractal dimension is close to 2, complete contact typically occurs in the macro-asperity contact areas, while
when the fractal dimension is larger than 2.5, the area of (apparent) contact decreases continuously when
the magnification is increased. An important result is that even when the surface roughness is so high that
no adhesion can be detected in a pull-off experiment, the area of real contact (when adhesion is included)
may still be several times larger than when the adhesion is neglected. Since it is the area of real contact
which determines the sliding friction force, the adhesion interaction may strongly affect the friction force
even when no adhesion can be detected in a pull-off experiment.

PACS. 81.40.Pq Friction, lubrication, and wear – 62.20.-x Mechanical properties of solids

1 Introduction

Even a highly polished surface has surface roughness on
many different length scales. When two bodies with nomi-
nally flat surfaces are brought into contact, the area of real
contact will usually only be a small fraction of the nominal
contact area. We can visualize the contact regions as small
areas where asperities from one solid are squeezed against
asperities of the other solid; depending on the conditions,
the asperities may deform elastically or plastically.

How large is the area of real contact between a solid
block and the substrate? This fundamental question has
extremely important practical implications. For example,
it determines the contact resistivity and the heat transfer
between the solids. It is also of direct importance for slid-
ing friction [1,2], e.g., the rubber friction between a tire
and a road surface, and it has a major influence on the
adhesive force between two solid blocks in direct contact.
I have developed a theory of contact mechanics [3], valid
for randomly rough (e.g., self-affine fractal) surfaces, but
neglecting adhesion. Adhesion is particularly important
for elastically soft solids, e.g., rubber or gelatine, where it
may pull the two solids in direct contact over the whole
nominal contact area.

The influence of surface roughness on the adhesion be-
tween rubber (or any other elastic solid) and a hard sub-
strate has been studied in a classic paper by Fuller and Ta-
bor [4] (see also [5–8]). They found that already a relative
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small surface roughness can completely remove the adhe-
sion. In order to understand the experimental data they
developed a very simple model based on the assumption
of surface roughness on a single length scale. In this model
the rough surface is modeled by asperities all of the same
radius of curvature and with heights following a Gaus-
sian distribution. The overall contact force was obtained
by applying the contact theory of Johnson, Kendall and
Roberts [9] to each individual asperity. The theory pre-
dicts that the pull-off force, expressed as a fraction of the
maximum value, depends upon a single parameter, which
may be regarded as representing the statistically averaged
competition between the compressive forces exerted by the
higher asperities trying to prize the surfaces apart and the
adhesive forces between the lower asperities trying to hold
the surfaces together. We believe that this picture of ad-
hesion developed by Tabor and Fuller would be correct
if the surfaces had roughness on a single length scale as
assumed in their study. However, when roughness occurs
on many different length scales, a qualitatively new pic-
ture emerges (see below), where, e.g., the adhesion force
may even vanish (or at least be strongly reduced), if the
rough surface can be described as a self-affine fractal with
fractal dimension Df > 2.5 (see Sects. 2 and 12). Even for
surfaces with roughness on a single length scale, the for-
malism used by Fuller and Tabor is only valid at “high”
surface roughness, where the area of real contact (and the
adhesion force) is very small. The theory presented be-
low, on the other hand, is particularly accurate for “small”
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Fig. 1. A rubber block (dotted area) in adhesive contact with a
hard rough substrate (dashed area). The substrate has rough-
ness on many different length scales and the rubber makes
partial contact with the substrate on all length scales. When
a contact area is studied at low magnification it appears as
if complete contact occurs, but when the magnification is in-
creased it is observed that in reality only partial contact occurs.

surface roughness, where the area of real contact equals
the nominal contact area.

In reference [10] we studied adhesion under the as-
sumption that there is complete contact in the nominal
contact area. We assumed that the substrate had surface
roughness on many different length scales and presented
numerical results for the case of self-affine fractal surfaces.
In reference [11] we studied adhesion when partial contact
occurs, but including “roughness” on a single length scale.
In this paper we study adhesion for the most general case,
where partial contact occurs at the interface on many dif-
ferent length scales, see Figure 1.

We assume randomly rough surfaces, which correspond
to asperities of many different sizes and heights. The sur-
face height h(x) is treated as a stochastic variable, char-
acterized by the surface roughness power spectra C(q).
This implies asperities of different heights, although for
small rms surface roughness, the theory does not depend
directly on the surface height probability distribution Ph.
For large rms surface roughness, the surface energy does
depend on Ph, and in this case we have assumed a Gaus-
sian height distribution, but this assumption is not crucial
(see App. 2 in Ref. [10]).

The present theory is based on the contact mechanics
theory developed in references [3,10]. This theory recog-
nizes that it is very important not to a priori exclude any
roughness length scale from the analysis. Thus, if A(λ) is
the (apparent) area of contact on the length scale λ (more
accurately, we define A(λ) to be the real contact area (pro-
jected on the xy-plane) if the surface were smooth on all
length scales shorter than λ, see Fig. 2), then we study
the function P (ζ) = A(λ)/A(L) which is the relative frac-
tion of the rubber surface area where contact occurs on
the length scale λ = L/ζ (where ζ ≥ 1), with P (1) = 1.
Here A(L) = A0 denotes the macroscopic (nominal) con-

Fig. 2. A rubber ball squeezed against a hard, rough, sub-
strate. Left: The system at two different magnifications. Right:
The area of contact A(λ) on the length scale λ is defined as
the area of real contact, projected on the xy-plane, when the
surface roughness on shorter length scales than λ has been
removed (i.e., the surface has been “smoothened” on length
scales shorter than λ).

tact area (L is the diameter of the macroscopic contact
area so that A0 ≈ L2).

As an example, Figure 3 shows the dependence of P (ζ)
on the magnification ζ. Results are shown both with and
without the adhesion interaction (for details see Sect. 12).
Note that without the adhesion, P (ζ) decreases monoton-
ically with increasing magnification, and, in fact, without
a short-distance cut-off, the area of real contact (corre-
sponding to P (∞)) vanishes. When adhesion is included,
the (apparent) area of contact equals the area of real con-
tact already at a rather small magnification ζ ≈ 10. (This
is only the case when the fractal dimension is close to two;
in Fig. 3 we have assumed Df = 2.2. In Sect. 12 we show
that for a large fractal dimension, e.g., 2.6, the area of
(apparent) contact decreases continuously with increasing
magnification, and, in fact, probably vanishes at infinite
magnification (assuming no short-distance cut-off), in ac-
cordance with the qualitative discussion in Sect. 2.) Note
also that P (ζ), when the adhesion is included, is always
larger than when the adhesion is neglected.

This paper is organized as follows. Section 2 presents
a qualitative discussion of the importance of many length
scales in adhesion. Section 3 briefly reviews contact me-
chanics without adhesion. In Section 4 we give expressions
for the adhesion and elastic energies, and the effective in-
terfacial energy γeff , assuming that complete contact oc-
curs at the interface. Section 5 studies the ball-substrate
pull-off force, and points out that the standard JKR ex-
pression is also valid for rough surfaces if the longest
surface roughness wavelength component is much smaller
than the diameter of the nominal contact area. Sections 6
and 7 extend the contact mechanics theory presented in
Section 3 to the case of adhesive interaction. In Section 8
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Fig. 3. The dependence of the normalized (apparent) area of
contact on the magnification ζ, where ζ = 1 corresponds to
the long-distance cut-off length λ0 in the fractal distribution.
Results are shown with and without the adhesion interaction.
The applied pressure is σ0 = 0.05E/(1 − ν2). The fractal ex-
ponent H = 0.8, q0h0 = 0.24 and ζ1 = 100. For the adhesion
curve we used q0δ = 0.1. See Section 12 for details.

we solve the equations derived in Sections 6 and 7 for the
special case of a constant adhesional stress σa and show
that in the special case of σa = 0 the results of Section 3
are reproduced. In Section 10 we derive an expression for
the effective interfacial energy γeff , which depends on the
function P (ζ): when P (ζ) ≡ 1 (complete contact on all
length scales) the expression for γeff reduces to the result
derived in Section 4 for complete contact. Section 11 con-
siders the special case of self-affine fractal surfaces, and in
Section 12 we present numerical results for this case. Sec-
tion 13 compares the theoretical results to experimental
data and also suggests a new experiment to test the theo-
retical results in greater detail. Section 14 summarizes the
most important results.

2 Qualitative discussion

Let us estimate the energy necessary in order to deform a
rubber block so that the rubber fills out a substrate cavity
of height h and width λ. The elastic energy stored in the
deformation field in the rubber is given by

Uel ≈ 1
2

∫
d3x σε ,

where the stress σ ≈ Eε, where E is the elastic modulus.
The deformation field is mainly localized to a volume ∼ λ3
(see Fig. 4) where the strain ε ≈ h/λ. Thus we get Uel ≈
λ3E(h/λ)2 = Eλh2.

Fig. 4. Rubber (dotted area) filling out a substrate cavity. The
deformation (elastic) energy in the rubber is mainly localized
to a volume element of size λ3 (bounded by the dashed line),
where the strain is of order ∼ h/λ.

Let us now consider the role of the rubber-substrate
adhesion interaction. As shown above, when the rubber
deforms and fills out a surface cavity of the substrate, an
elastic energy Uel ≈ Eλh2 will be stored in the rubber.
Now, if this elastic energy is smaller than the gain in ad-
hesion energy Uad ≈ −∆γλ2, where ∆γ = γ1 + γ2 − γ12 is
the change of surface free energy (per unit area) upon con-
tact due to the rubber-substrate interaction (which usu-
ally is mainly of the van der Waals type), then (even in
the absence of an external load FN) the rubber will deform
spontaneously to fill out the substrate cavities. The condi-
tion Uel = −Uad gives h/λ ≈ (∆γ/Eλ)1/2. For example,
for very rough surfaces with h/λ ≈ 1, and with parame-
ters typical for rubber E = 1 MPa and ∆γ = 3 meV/Å

2
,

the adhesion interaction will be able to deform the rubber
and completely fill out the cavities if λ < 0.1 µm. For very
smooth surfaces h/λ ∼ 0.01 or smaller, so that the rubber
will be able to follow the surface roughness profile up to
the length scale λ ∼ 1 mm or longer.

The argument given above shows that for elastic solids
with surface roughness on a single length scale λ, the com-
petition between adhesion and elastic deformation is char-
acterized by the parameter θ = Eh2/λ∆γ, where h is the
amplitude of the surface roughness. The parameter θ is the
ratio between the elastic energy and the surface energy
stored at the interface, assuming that complete contact
occurs. When θ � 1 only partial contact occurs, where
the elastic solids make contact only close to the top of
the highest asperities, while complete contact occurs when
θ � 1.

Surfaces or real solids have roughness on a wide distri-
bution of length scales. Assume, for example, a self-affine
fractal surface. In this case the statistical properties of the
surface are invariant under the transformation

x → x ζ, z → z ζH ,

where x = (x, y) is the 2D position vector in the surface
plane, and where 0 < H < 1. This implies that if ha is
the amplitude of the surface roughness on the length scale
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Fig. 5. The dependence of the effective interfacial energy on
the magnification ζ, where ζ = 1 corresponds to the long-
distance cut-off length λ0 in the fractal distribution. The ap-
plied pressure is σ0 = 0.05E/(1 − ν2). The fractal exponent
H = 0.8, q0h0 = 0.24, q0δ = 0.1 and ζ1 = 100. See Section 12
for details.

λa, then the amplitude h of the surface roughness on the
length scale λ will be of order

h ≈ ha (λ/λa)H .

Thus we get
θa = θ(λa/λ)2H−1 ,

where θa = Eh2a/λa∆γ. Hence, when we study the system
on shorter and shorter length scale λa < λ, θa will de-
crease or increase depending on if H > 1/2 and H < 1/2,
respectively. In the former case, if θ < 1 the adhesion will
be important on any length scale λa < λ. In particular,
if λ is the long-distance cut-off length λ0 in the self-affine
fractal distribution, then complete contact will occur at
the interface. In the latter case, even if θ < 1 so that the
adhesion may seem important on the length scale λ, at
short enough length scale θa > 1. Thus, without a short-
distance cut-off, the adhesion and the area of real contact
will vanish. In reality, a finite short-distance cut-off will al-
ways occur, but this case requires a more detailed study.

The present problem, involving many length scales,
will be studied below by a renormalization group type of
approach, where during the process of eliminating short-
wavelength roughness components, the effective interfacial
energy γeff(ζ) and the normalized (apparent) area of con-
tact P (ζ) depend on the length scale λ = L/ζ of obser-
vation. For example, for the case considered in Figure 3
(with adhesion), the effective interfacial energy is shown in
Figure 5 as a function of the magnification ζ. Note that at
short length scale (large ζ) γeff(ζ) increases with decreas-
ing magnification. This effect results from the increase in
the surface area because of the surface roughness. How-
ever, at long length scale γeff(ζ) decreases below ∆γ. This
effect results from the contribution to the interfacial free
energy from the elastic deformation energy induced in the
rubber by the substrate surface roughness (see Sects. 4
and 12). Note also that γeff at the shortest length scale

(which in the present case corresponds to the magnifica-
tion ζ = 100) equals the “bare” value ∆γ as it should. In
the language of the renormalization group (RG) theory,
we can consider the equations which determine γeff(ζ) and
P (ζ) as the RG-flow equations.

3 Contact mechanics without adhesion

Let us briefly review the theory presented in reference [3].
From contact mechanics (see, e.g., Ref. [12]) it is known
that in the frictionless contact of elastic solids with rough
surfaces, the contact stresses depend only upon the shape
of the gap between them before loading. Thus, without
loss of generality, the actual system may then be replaced
by a flat elastic surface (elastic modulus E and Poisson
ratio ν, related to the original quantities via (1−ν2)/E =
(1 − ν21)/E1 + (1 − ν22)/E2) in contact with a rigid body
having a surface roughness profile which results in the
same undeformed gap between the surfaces.

Consider the system at the length scale λ = L/ζ, where
L is of order of the diameter of the nominal contact area.
We define qL = 2π/L and write q = qLζ. Let P (σ, ζ) de-
note the stress distribution in the contact areas under the
magnification ζ. Here σ = σzz is the surface stress compo-
nent in the z-direction. The function P (σ, ζ) satisfies the
differential equation (see Ref. [3]):

∂P

∂ζ
= f(ζ)

∂2P

∂σ2
, (1)

where f(ζ) = G′(ζ)σ2
0 , where G′(ζ) denotes the ζ-deriv-

ative of the function

G(ζ) =
π

4

[
E

(1 − ν2)σ0

]2 ∫ ζqL

qL

dq q3C(q). (2)

The surface roughness power spectra

C(q) =
1

(2π)2

∫
d2x 〈h(x)h(0)〉e−iq·x,

where z = h(x) is the height of the surface above a flat
reference plane (chosen so that 〈h〉 = 0), and 〈...〉 stands
for ensemble average. For many surfaces C(q) has the form
shown in Figure 6.

Let us write
P (σ, 1) = P0(σ).

If we assume a constant pressure in the nominal contact
area, then P0(σ) = δ(σ − σ0).

Equation (1) is a diffusion type of equation, where time
is replaced by the magnification ζ, and the spatial coordi-
nate with the stress σ (and where the “diffusion constant”
depends on ζ). Hence, when we study P (σ, ζ) on shorter
and shorter length scales (corresponding to increasing ζ),
the P (σ, ζ) function will become broader and broader in
σ-space. (The physical origin of this effect is clear: the
block-substrate asperity contact areas will give rise to a
wide distribution of local contact stresses. As the system
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Fig. 6. Qualitative form of the surface roughness power spec-
tra observed for many real surfaces. q1 is the short-distance
cut-off wave vector which cannot be larger than 2π/a, where
a is the lattice constant. q0 is the crossover wave vector, from
a power law ∼ q−2(H+1) for q > q0 to a constant for q < q0.
For engineering surfaces one typically has q0 ∼ 1/(10 µm),
and for road surfaces q0 ∼ 1/(1 cm). The lateral size L of the
nominal contact area determines the long-distance (small-wave
vector) cut-off qL ≈ 2π/L. For surfaces prepared by fracture
one typically has q0 = qL.

is studied at higher and higher magnification, a wider dis-
tribution of asperity sizes are observed and the stress dis-
tribution will become wider and wider.) We can take into
account that detachment actually will occur when the lo-
cal stress reaches σ = 0 (we assume no adhesion) via the
boundary condition:

P (0, ζ) = 0.

We assume that only elastic deformation occurs (i.e.,
the yield stress σY → ∞). In this case (see Ref. [3] and
Sect. 7):

P (ζ) =
∫ ∞

0

dσP (σ, ζ) .

It is straightforward to solve (1) with the boundary con-
ditions P (0, ζ) = 0 and P (σY, ζ) = 0 by expanding
P (σ, ζ) =

∑
nAn(ζ) sin(nπσ/σY). In the elastic limit

σY → ∞ we get

P (ζ) =
2
π

∫ ∞

0

dx
sinx
x

exp
[−x2G(ζ)

]
. (3)

An alternative approach is to put σY = ∞ from the be-
ginning, and Laplace-transform the σ-dependence in equa-
tion (1). In the present case this approach is more com-
plicated, but later when we include adhesion (see Sect. 6)
only this approach is possible.

We consider now the limit σ0 � E, which is satisfied
in most applications. In this case, for most ζ-values of
interest, G(ζ) � 1, so that only x � 1 will contribute to
the integral in (3), and we can approximate sinx ≈ x and

P (ζ) ≈ 2
π

∫ ∞

0

dx exp
[−x2G(ζ)

]
= [πG(ζ)]−1/2

. (4)

Fig. 7. The adhesion interaction pulls the rubber into com-
plete contact with the rough substrate surface.

Thus, within this approximation, using (2) and (4) we get
P (ζ) ∝ σ0 so that the area of real contact is proportional
to the load.

4 Interfacial elastic and adhesion energies for
rough surfaces

Assume that a flat rubber surface is in contact with the
rough surface of a hard solid. Assume that because of the
rubber-substrate adhesion interaction, the rubber deforms
elastically and makes contact with the substrate every-
where, see Figure 7.

Let us calculate the difference in free energy between
the rubber block in contact with the substrate and the
non-contact case. Let z = h(x) denote the height of the
rough surface above a flat reference plane (chosen so that
〈h〉 = 0). Assume first that the rubber is in direct contact
with the substrate over the whole nominal contact area.
The surface adhesion energy is assumed proportional to
the contact area so that

Uad = −∆γ
∫

d2x
(

1 + [∇h(x)]2
)1/2

, (5a)

where ∆γ = γ1+γ2−γ12. In reference [10] we have derived
a general expression for Uad which is valid for arbitrary
magnitude of |∇h|:

Uad = −∆γA0

∫ ∞

0

dx
(
1 + xξ2

)1/2
e−x , (5b)

where
ξ2 =

∫
d2q q2C(q) .

When ξ � 1, (5b) reduces to

Uad ≈ −∆γA0

[
1 +

1
2

∫
d2q q2C(q)

]
. (5c)

This approximation corresponding to expanding the inte-
grand in (5a) to first order in (∇h)2.

Next, let us consider the elastic energy stored in the
deformation field in the vicinity of the interface. If we
assume that complete contact occurs between the solids,
then, as shown in reference [10],

Uel ≈ A0E

4(1 − ν2)

∫
d2q qC(q) , (6)
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where E is the elastic modulus and ν the Poisson ratio.
The change in the free energy when the rubber block

moves in contact with the substrate is given by the sum
of (5) and (6):

Uel + Uad = −γeffA0 ,

where

γeff
∆γ

=
∫ ∞

0

dx
(
1+xξ2

)1/2
e−x− 2π

δ

∫ q1

q0

dq q2C(q) (7)

or, when ξ � 1,

γeff
∆γ

= 1 + π
∫ q1

q0

dq q3C(q) − 2π
δ

∫ q1

q0

dq q2C(q) . (8)

In the equations above we have introduced the adhesion
length

δ = 4(1 − ν2)∆γ/E . (9)

The theory above is valid for surfaces with arbitrary
random roughness, but will now be applied to self-affine
fractal surfaces. It has been found that many “natural”
surfaces, e.g., surfaces of many materials generated by
fracture, can be approximately described as self-affine sur-
faces over a rather wide roughness size region. A self-affine
fractal surface has the property that if we make a scale
change that is appropriately different along the two di-
rections, parallel and perpendicular, then the surface does
not change its morphology [13]. Recent studies have shown
that even asphalt road tracks (of interest for rubber fric-
tion) are (approximately) self-affine fractal, with an up-
per cut-off length λ0 = 2π/q0 of order ∼ 1 cm [14]. We
take [13,15] C(q) = 0 for q < q0, while for q > q0:

C(q) =
H

2π

(
h0
q0

)2 (
q

q0

)−2(H+1)

, (10)

whereH = 3−Df (where the fractal dimension 2<Df<3),
and where q0 is the lower cut-off wave vector, and h0 is
determined by the rms roughness amplitude, 〈h2〉 = h20/2.
We note that C(q) can be measured directly, using many
different methods, e.g., using stylus instruments or optical
instruments [16].

Substituting (10) in (8) gives

γeff
∆γ

= 1 + (q0h0)2
(

1
2
g(H) − 1

q0δ
f(H)

)

or
γeff
∆γ

= 1 +
1
2

(q0h0)2g(H)
(

1 − α(H)
q0δ

)
, (11)

where α(H) = 2f(H)/g(H) is the roughness parameter,
and where

f(H) =
H

1 − 2H
(
ζ1−2H
1 − 1

)
,

g(H) =
H

2(1 −H)

(
ζ
2(1−H)
1 − 1

)
,
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Fig. 8. The logarithm (with 10 as basis) of the roughness
parameter α as a function of the roughness exponent H and
for different ranges of roughness, ζ1 = q1/q0.

where ζ1 = q1/q0. In Figure 8 we show α(H) as a function
of H.

Note that if the condition α < q0δ is satisfied, the
adhesion force (for small enough h0) will increase with in-
creasing amplitude h0 of the surface roughness. We may
define a critical elasticity Ec such that if E < Ec, ∆γeff in-
creases with increasing h0 (for small h0), while it decreases
if E > Ec. Ec is determined by the condition α(H) = q0δ
which gives

Ec = 4(1 − ν2)∆γq0/α(H) . (12)

This expression for Ec depends on the nature of the sur-
face roughness via the cut-off wave vector q0 and the frac-
tal exponentH = 3−Df . These quantities can be obtained
from measurements of the surface roughness power spec-
tra C(q). Such measurements have not been performed
for any of the system for which the dependence of the ad-
hesion on the roughness amplitude h0 has been studied.
However, measurements [16] of C(q) for similar surfaces
as those used in the adhesion experiments have shown
that typically H ≈ 0.8 and λ0 = 2π/q0 ≈ 100 µm. For
H ≈ 0.8, Figure 8 gives for typical ζ1, α(H) ∼ 0.01 and
with the measured (for rubber in contact with most hard
solids) ∆γ ≈ 3 meV/Å2 we get Ec ≈ 1 MPa. This is
in very good agreement with experimental observations.
Thus, Briggs and Briscoe [5] observed a strong roughness-
induced increase in the pull-off force for rubber with the
elastic modulus E = 0.06 MPa, but a negligible increase
when E = 0.5 MPa. Similarly, Fuller and Roberts [6] ob-
served an increase in the pull-off force for rubbers with
E = 0.4, 0.14 and 0.07 MPa, but a continuous decrease
for rubbers with E = 1.5 and 3.2 MPa. It would be ex-
tremely interesting to perform a detailed test of the theory
for surfaces for which the surface roughness power spectra
C(q) have been measured (see Sect. 13).

Note that for elastically very soft solids adhesion will
always be important in practical applications. For exam-
ple, for gelatine we have E ≈ 104 Pa and with ∆γ ≈
3 meV/Å2 we get δ ≈ 10 µm. Since typically q0 = 2π/λ0 ∼
(10 µm)−1 and α(H) � 1, we expect∆γeff > ∆γ for small
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surface roughness. Thus, for an (elastically) very soft solid
the adhesion force may increase upon roughening the sub-
strate surface. As pointed out above, this effect has been
observed experimentally for rubber in contact with a hard,
rough substrate [5,6], and the present theory explains un-
der exactly what conditions that will occur.

The result (11) is based on an expansion of the surface
area to second order in h0. For “large” surface roughness
this approximation breaks down and it is clear that for
large h0, the area of contact will be proportional to h0.
Since the elastic energy is proportional to h20, it follows
that for large enough rms amplitude of the surface rough-
ness, the elastic term will cancel the adhesion term and
no adhesion will be observed. Thus, even if α(H) < q0δ
so that the adhesion force initially increases upon increas-
ing h0 from zero, at large enough h0 the adhesion force
must decrease. This is observed in the numerical results
presented in reference [10] and also below in Section 12.

For most (clean) solids surfaces, ∆γ ≈ Ea, where a
is an atomic distance (of order ∼ 1 Å) and E the elastic
modulus. (This relation holds only if the elastic modulus
E is due to the stretching of atomic bonds, and is not
valid for, e.g., rubber where E has an entropic origin.)
Thus, δ ∼ a ∼ 1 Å so that typically q0δ ∼ 10−5, and the
condition α(H) � q0δ will be satisfied in most cases of
interest. That is, the (repulsive) energy stored in the elas-
tic deformation field in the solids at the interface largely
overcomes the adhesion energy, and adhesion will be neg-
ligible. This explains the adhesion paradox, namely why
adhesion usually is not observed when macroscopic solids
are separated.

In Section 12 we will present numerical results illus-
trating adhesion when H = 0.4 and 0.8 and for ζ1 = 100
and 1000. For these cases we have

α(0.4) = 0.073, α(0.8) = 0.235 for ζ1 = 100 ,

α(0.4) = 0.009, α(0.8) = 0.088 for ζ1 = 1000 .

5 Pull-off force

Consider a rubber ball (radius R0) in adhesive contact
with a perfectly smooth and hard substrate. The elastic
deformation of the rubber can be determined by minimiz-
ing the total energy which is the sum of the (positive)
elastic energy stored in the deformation field in the rub-
ber ball, and the (negative) binding energy between the
ball and the substrate at the contact interface. The free
energy minimization gives the pull-off force

Fc = (3π/2)R0∆γ . (13)

This result was first derived by Sperling [17] and (inde-
pendently) by Johnson, Kendall and Roberts [9]. Kendall
has reported similar results for other geometries of inter-
est [18].

Consider now the same problems as above, but assume
that the substrate surface has roughness described by the

function z = h(x). We now study how the adhesion force
is reduced from the ideal value (13) as the amplitude of
the surface roughness is increased. Let us first assume that
the adhesive interaction is so strong that the elastic solid
is in contact with the substrate everywhere, and that the
width L of the nominal contact area is much larger than
the long-distance cut-off (or roll-off) length λ0 of the sur-
face roughness power spectra. In this case we can still use
the result (13), but with ∆γ replaced by ∆γeff as given
by (7). This approach can also be used when partial con-
tact occurs at the interface, which will always be the case
at large enough surface roughness, and below we consider
this case in detail.

We note that accounting for the surface roughness by
replacing ∆γ with γeff is formally exact, at least as long
as λ0 � L. Intuitively, one can understand this by notic-
ing that even a “flat” substrate is in reality corrugated
(atomic corrugation, steps and so on), but this effect is
already included in the definition of ∆γ. The basic phys-
ical assumption is a wide separation of length scales: the
lateral size L of the macroscopic contact area is assumed
to be much larger than the amplitude and the wavelength
of the surface roughness, so that when solving for the elas-
tic deformation of the rubber ball on the length scale L,
one does not need to account directly for the small-sized
surface roughness (but the latter enters indirectly via the
effective surface energy γeff), while when calculating the
deformations of the rubber ball on the length scale λ0 or
shorter, one may neglect the elastic deformations of the
rubber ball on the length scale L.

Note that the elastic forces (induced by the surface
roughness) and the surface forces at the interface al-
ways balance (independent of the amplitude of the surface
roughness) in the sense that the total force which acts on
a small rubber volume element at the interface vanishes.
The (macroscopic) effective surface energy, γeff(1), how-
ever, will only vanish when the surface roughness ampli-
tude is big enough. What happens then is that the elas-
tic energy stored at the interface is just large enough to
break the adhesive bond between the two surfaces; dur-
ing the pull-off this energy is given back and therefore no
adhesion is observed during the pull-off.

In the JKR theory, for an elastic sphere in contact
with a perfectly flat substrate, the adhesion and elastic
forces also balance in the sense described above. However,
at zero applied external force, the elastic energy stored
in the ball is smaller than the surface energy due to the
rubber-substrate interaction (by a factor 2/5), and a finite
amount of energy must therefore be used to remove the
ball from the substrate, resulting in a non-zero pull-off
force.

6 Stress probability distribution

The discussion in Section 4 assumed complete contact at
the interface. We will now generalize the theory to the
case of partial contact. The theory below is based on the
contact mechanics formalism described in Section 3. Thus,
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we focus on the stress probability distribution function
P (σ, ζ) which satisfies

∂P

∂ζ
= f(ζ)

∂2P

∂σ2
. (14)

We assume that detachment occurs when the local stress
on the length scale L/ζ reaches −σa(ζ). Thus, the follow-
ing boundary conditions are valid in the present case:

P (−σa(ζ), ζ) = 0 ,

P (∞, ζ) = 0 ,

P (σ, 1) = δ(σ − σ0) .

Let us write
s = σ + σa(ζ) .

If we denote R(s, ζ) = P (s−σa(ζ), ζ), then (14) takes the
form

∂R

∂ζ
+
∂R

∂s
σ′a(ζ) = f(ζ)

∂2R

∂s2
, (15)

where R(s, ζ) satisfies the boundary conditions

R(0, ζ) = 0 , (16a)

R(∞, ζ) = 0 , (16b)

R(s, 1) = δ(s− σa(1) − σ0) . (17)

Let us now solve equation (15). Let us first Laplace-
transform the s-dependence:

R̃(z, ζ) =
∫ ∞

0

ds R(s, ζ)e−sz .

From (15), (16a) and (16b) we get

∂R̃

∂ζ
=

[
f(ζ)z2 − σ′a(ζ)z

]
R̃− f(ζ)g(ζ) , (18)

where g(ζ) = ∂R(s, ζ)/∂s|s=0. Let us introduce

a(ζ) =
∫ ζ

1

dζ ′f(ζ ′) .

Equation (18) is easy to integrate:

R̃(z, ζ) = A(z) exp
(
a(ζ)z2 − σa(ζ)z

)

−
∫ ζ

1

dζ ′ f(ζ ′)g(ζ ′)

×exp
(
[a(ζ) − a(ζ ′)]z2 − [σa(ζ) − σa(ζ ′)]z

)
. (19)

The “initial condition” (17) gives

R̃(z, 1) = exp (−[σ0 + σa(1)]z) .

Using this equation (19) gives

A(z) = e−σ0z .

Substituting this result back in (19) gives

R̃(z, ζ) = exp
(−[σ0 + σa(ζ)]z + a(ζ)z2

)

−
∫ ζ

1

dζ ′ f(ζ ′)g(ζ ′)

×exp
(
[a(ζ) − a(ζ ′)]z2 − [σa(ζ) − σa(ζ ′)]z

)
.

Let us now return to s-space using

R(s, ζ) =
1

2πi

∫ i∞

−i∞
dz R̃(z, ζ)esz .

Using that

1
2πi

∫ i∞

−i∞
dz eaz2−bz esz = (4πa)−1/2 exp

(
− (s− b)2

4a

)

gives

R(s, ζ) = [4πa(ζ)]−1/2 exp
(

[s− σa(ζ) − σ0]2

4a(ζ)

)

−
∫ ζ

1

dζ ′ f(ζ ′)g(ζ ′) (4π[a(ζ) − a(ζ ′)])−1/2

× exp
(
− (s− [σa(ζ) − σa(ζ ′)])2

4[a(ζ) − a(ζ ′)]
)
.

The condition R(0, ζ) = 0 gives

∫ ζ

1

dζ ′ f(ζ ′)g(ζ ′)
(

a(ζ)
a(ζ) − a(ζ ′)

)1/2

× exp
(
− [σa(ζ) − σa(ζ ′)]2

4[a(ζ) − a(ζ ′)]
)

=

exp
(
− [σa(ζ) + σ0]2

4a(ζ)

)
. (20)

This is a linear integral equation for g(ζ) which is easy to
solve by matrix inversion.

7 Distribution function P(ζ)

Let P (ζ)A0 be the area of real contact when the system is
studied under the magnification ζ. The stress distribution
is given by

P (σ, ζ) = 〈δ[σ − σ1(x, ζ)]〉

=
1
A0

∫
d2x δ[σ − σ1(x, ζ)] ,

where σ1(x, ζ) is the stress in the contact area, for the
surface roughness profile which is obtained by smoothen-
ing out roughness on length scales shorter than L/ζ, and
where the integration is over the resulting area of real
contact. Thus we get∫ ∞

−σa

dσ P (σ, ζ) =
A(ζ)
A0

,
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where A(ζ) is the area of real contact, projected in the
xy-plane, which depends on the magnification ζ. Using
the definition P (ζ) = A(ζ)/A0 gives

P (ζ) =
∫ ∞

−σa

dσ P (σ, ζ) =
∫ ∞

0

ds R(s, ζ) .

Integrating (14) over s and using R(0, ζ) = 0 gives

∂

∂ζ

∫ ∞

0

ds R(s, ζ) =
∫ ∞

0

ds f(ζ)
∂2R

∂s2
= −f(ζ)g(ζ) .

Integrating this equation over ζ gives∫ ∞

0

ds R(s, ζ) = 1 −
∫ ζ

1

dζ ′ f(ζ ′)g(ζ ′) .

Thus

P (ζ) = 1 −
∫ ζ

1

dζ ′ f(ζ ′)g(ζ ′) . (21)

8 Analytical solution for σa ≡ const

In order to make contact with the theory developed in
reference [3] (see Sect. 3), let us assume that σa(ζ) is in-
dependent of ζ (in Ref. [3] we studied the case σa ≡ 0). In
this case (20) takes the form

∫ ζ

1

dζ ′ f(ζ ′)g(ζ ′)
(

a(ζ)
a(ζ)−a(ζ ′)

)1/2

=exp
(
−[σa+σ0]2

4a(ζ)

)
.

(22)

If we introduce as a new integration variable,

a(ζ) =
∫ ζ

1

dζ ′ f(ζ ′), da = f(ζ)dζ ,

and consider g(ζ) as a function of a (denoted by g(a) for
simplicity) then (22) takes the form

∫ a

0

da′ g(a′)
(

a

a− a′
)1/2

= exp
(
− [σa + σ0]2

4a

)
. (23)

This integral equation has the solution

g(a) = (4πa)−1/2 σ0 + σa
a

exp
(
− [σ0 + σa]2

4a

)
. (24)

It is easy to prove that (24) is a solution to (23) by substi-
tuting (24) in (23) and change integration variable from
a′ to x where

x2 =
1
a′

− 1
a
.

Substituting (24) in (21), changing integration variable
first from ζ ′ to a′ = a(ζ ′), and then writing x2 = (σ0 +
σa)2/a′ gives

P (ζ) =
1√
π

∫ 1/
√

G

0

dx e−x2/4 = erf (1/2
√
G) , (25)

where G(ζ) = a(ζ)/(σ0 +σa)2. It is easy to show that (25)
also can be written in the form

P (ζ) =
2
π

∫ ∞

0

dx
sinx
x
e−x2G . (26)

In order to prove that (25) and (26) are identical, let us de-
note q = 1/

√
G and replace x = qy in (26). If we consider

the integral as a function of q and write

I(q) =
2
π

∫ ∞

0

dy
sin(qy)
y

e−y2
,

then

I ′(q) =
2
π

∫ ∞

0

dy sin(qy) e−y2
=

1√
π
e−q2/4 ,

Integrating this equation gives

I(q) =
1√
π

∫ q

0

dx e−x2/4 ,

which agrees with (25) if we replace q = 1/
√
G. Equa-

tion (26) (with σa = 0) was derived in reference [3] using
a different method and we have shown that the present
formalism gives the same result when σa is a constant. We
note that for small effective load σ0 + σa we have G � 1
for large enough ζ, and in this case only x � 1 will con-
tribute in the integral (26) and we can replace sin x ≈ x
to get

P (ζ) ≈ [πG(ζ)]−1/2 ∼ σ0 + σa .

Thus, in this limit the area of real contact is proportional
to the sum of the applied pressure σ0 and the “adhesion”
pressure σa. This result has often been used [19], e.g., in
discussing friction, but we point out that it is only valid
when σa(ζ) is independent of ζ. This will never be the case
when surface roughness occurs on many different length
scales (see below).

9 Detachment stress σa(ζ)

Let us consider the system on the characteristic length
scale λ = L/ζ. The quantity σa(ζ) is the stress necessary
to induce a detached area of width λ. This stress can be ob-
tained from the following standard arguments related to a
penny-shaped crack of diameter λ. To create an interfacial
crack of width λ requires the surface energy ∼ γeff(ζ)λ2.
On the other hand, the crack formation lowers the elastic
energy in a volume element of order λ3 from the value
(per unit volume) ∼ σ2

a/E before detachment to ≈ 0 after
detachment. The detachment stress σa is determined by
the fact that the free energy change

U ≈ γeffλ2 − σ2
aλ

3/E

is an extremum, which gives

σa ≈
[

2γeff(ζ)E
3λ

]1/2

.
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An exact calculation gives [20]

σa =
[
πγeff(ζ)E
(1 − ν2)λ

]1/2

=
[
γeff(ζ)Eq
2(1 − ν2)

]1/2

, (27)

where q = 2π/λ = ζqL.
Note that when we consider the system on the length

scale λ, surface roughness of length scales shorter than λ is
contained in γeff(λ) and should therefore not be included
in the discussion. Thus, the surfaces are effectively smooth
on length scales shorter than λ. When we consider the
system on the length scale λ detached areas will have a
diameter of order λ or larger (detached areas with smaller
diameter may also occur, but this has already been taken
into account in the effective surface energy γeff(λ)). The
detached areas with diameter larger than λ, say λ1, are
taken into account separately when the argument above
is applied to the length scale λ1.

10 Effective surface energy γeff(ζ)

We now derive an expression for γeff(ζ) which is the ef-
fective surface energy change upon contact. Suppose first
that the elastic body makes perfect contact with the hard
rough substrate. In that case we can use the result of Sec-
tion 4 with q0 replaced with qa so that the effective surface
energy on the length scale λa = L/ζa is given by

γeff(qa) = ∆γ

[ ∫ ∞

0

dx
(
1 + ξ2x

)1/2
e−x

−2π
δ

∫ q1

qa

dq q2C(q)

]
. (28)

In (28), q1 is the short-distance cut-off wave vector which
is of order of (or smaller than) 2π/a, where a is a lattice
constant. Let us now take into account that only partial
contact occurs on each length scale. Thus we get

γeff(qa)P (qa) = ∆γ

[
P (q1)

∫ ∞

0

dx
(
1 + ξ2x

)1/2
e−x

−2π
δ

∫ q1

qa

dq q2P (q)C(q)

]

or
γeff(qa)
∆γ

=
P (q1)
P (qa)

∫ ∞

0

dx
(
1 + ξ2x

)1/2
e−x

−2π
δ

∫ q1

qa

dq q2
P (q)
P (qa)

C(q) . (29)

11 Adhesion for self-affine fractal surfaces

The theory developed above assumes surface roughness
on many length scales characterized by the power spectra
C(q). In practical applications, the measured C(q) can be

used directly as input in the calculations. In what follows
we will assume that the surfaces are self-affine fractal.
In this section we give the basic equations for this lim-
iting case. Let us first summarize the equations derived
above: The relative contact area (at the magnification ζ)
is given by

P (ζ) = 1 −
∫ ζ

1

dζ ′ S(ζ ′) , (30)

where S(ζ) = f(ζ)g(ζ), where S(ζ) is obtained from the
integral equation

∫ ζ

1

dζ ′ S(ζ ′)
(

a(ζ)
a(ζ) − a(ζ ′)

)1/2

× exp
(
− [σa(ζ) − σa(ζ ′)]2

4[a(ζ) − a(ζ ′)]
)

=

exp
(
− [σa(ζ) + σ0]2

4a(ζ)

)
, (31)

where

a(ζ) =
∫ ζ

1

dζ ′ f(ζ ′) , (32)

f(ζ) =
π

4
qLq

3C(q)
(

E

1 − ν2
)2

. (33)

Equation (31) is a linear integral equation for S(ζ) which
is easy to solve by matrix inversion. The detachment stress
σa(ζ) on the length scale L/ζ is given by

σa ≈
[
γeff(ζ)Eq
2(1 − ν2)

]1/2

. (34)

The effective surface energy γeff(ζ) is given by equa-
tion (29):

γeff(qa)
∆γ

=
P (q1)
P (qa)

∫ ∞

0

dx
(
1 + ξ2x

)1/2
e−x

−2π
δ

∫ q1

qa

dq q2
P (q)
P (qa)

C(q) . (35)

The system of equations above are easy to solve by itera-
tion.

We assume in what follows that C(q) corresponds to
a self-affine fractal surface. Substituting (10) in (32) and
denoting q = q0ζ we get

a(ζ) =
(q0h0)2H
16(1 −H)

(
E

1 − ν2
)2 (

ζ2(1−H) − 1
)
. (36)

Let us define
ā(ζ) = ζ2(1−H) − 1

and

σ̄a = σa
4
q0h0

(
1 −H
H

)1/2 1 − ν2
E
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and similar for σ̄0. Thus, (31) takes the form

∫ ζ

1

dζ ′ S(ζ ′)
(

ā(ζ)
ā(ζ) − ā(ζ ′)

)1/2

×exp
(
− [σ̄a(ζ) − σ̄a(ζ ′)]2

4[ā(ζ) − ā(ζ ′)]
)

=

exp
(
− [σ̄a(ζ) + σ̄0]2

4ā(ζ)

)
. (37)

Using (34) we get

σ̄2
a =

2(1 −H)
H

ζq0δ

(q0h0)2
γeff(ζ)
∆γ

. (38)

The effective interfacial energy takes the form

γeff(ζa)
∆γ

=
P (ζ1)
P (ζa)

∫ ∞

0

dx
(
1 + ξ2x

)1/2
e−x

−H (q0h0)2

q0δ

∫ ζ1

ζa

dζ ζ−2H P (ζ)
P (ζa)

, (39)

where

ξ2 = (q0h0)2
H

2(1 −H)

(
ζ
2(1−H)
1 − ζ2(1−H)

a

)
.

Note that∫ ∞

0

dx
(
1+ξ2x

)1/2
e−x =1+

√
π

2
ξ
[
1−erf

(
ξ−1

)]
exp

(
ξ−2

)
.

12 Numerical results

Let us now present numerical results obtained from (30),
(37-39) by iteration. We assume that the rough surface
is self-affine fractal with the Hurst exponent H corre-
sponding to the fractal dimension Df = 3 − H. We con-
sider first the case H = 0.8 or Df = 2.2, as is typical
for many surfaces of practical interest, e.g., surfaces pre-
pared by fracture or sand-blasting, and we first assume
ζ1 = q1/q0 = 100. In what follows we assume, unless oth-
erwise stated, that the external load vanishes.

Figure 9 shows (a) the effective interfacial energy
γeff(1) and (b) the normalized area of real contact,
P (ζ1) = A(ζ1)/A0, as a function of of q0h0. Results are
shown for q0δ = 0.1, 0.2, 0.4 and 0.8. We will refer to
γeff(1) at the magnification ζ = 1 as the macroscopic
interfacial free energy which can be deduced from, e.g.,
the pull-off force for a ball according to equation (13).
Note that for q0δ = 0.4 and 0.8 the macroscopic interfa-
cial energy first increases with increasing amplitude h0 of
the surface roughness, and then decreases. The increase in
γeff arises from the increase in the surface area. Since the
solid-solid contact is complete for small h0 (see Fig. 9(b))
we can use the criteria derived in Section 4 that the ad-
hesion force increases with increasing h0 (for small h0)
when q0δ > α(H): in the present case α(0.8) = 0.235
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Fig. 9. (a) The macroscopic interfacial energy as a function
of q0h0. (b) The normalized area of real contact, P (ζ1) =
A(ζ1)/A0, as a function of of q0h0. For q0δ = 0.1, 0.2, 0.4
and 0.8 as indicated. For H = 0.8 and q1/q0 = ζ1 = 100.

(see Sect. 4) so that the adhesion force should initially in-
crease with increasing h0 for q0δ = 0.4 and 0.8, but not
for q0δ = 0.1 and 0.2, in agreement with Figure 9(a). As
shown in Figure 9(b), for small h0 the two solids are in
complete contact, and, as expected, the complete contact
remains to higher h0 as δ ∼ ∆γ/E increases. Note also
that the contact area is non-zero even when γeff(1) is vir-
tually zero: the fact that γeff(1) (nearly) vanishes does not
imply that the contact area vanishes (even in the absence
of an external load), but implies that the (positive) elastic
energy stored at the interface just balances the (negative)
adhesion energy from the area of real contact. The stored
elastic energy at the interface is given back when remov-
ing the block, and when γeff(1) ≈ 0 it is just large enough
to break the block-substrate bonding.

Figure 10 shows (a) the effective interfacial energy
γeff(ζ), and (b) the normalized area of (apparent) con-
tact, P (ζ) = A(ζ)/A0, as a function of the magnifica-
tion ζ. Note that at short length scale (large ζ) γeff(ζ) in-
creases with decreasing magnification. This effect results
from the increase in the contact area as more and more of
the short-wavelength roughness components are taken into
account (or “integrated out”). However, at long enough
length scale, close to the long-distance cut-off length λ0
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Fig. 10. (a) The effective interfacial energy as a function of
the magnification ζ. (b) The normalized (apparent) area of
contact, P (ζ) = A(ζ)/A0, as a function of the magnification ζ.
The curves correspond to different values of q0h0 as indicated.
For q0δ = 0.4, H = 0.8 and ζ1 = 100.

(which corresponds to the magnification ζ = 1), γeff(ζ)
becomes smaller than∆γ. This effect results from the con-
tribution to the interfacial free energy from the roughness-
induced elastic deformation energy stored in the rubber
at the interface (see Sect. 4). Since the elastic energy
per unit contact area scales as ∼ λ5−2Df , for Df < 2.5
the longest-wavelength surface roughness components will
give a larger contribution to the stored elastic energy than
the short-wavelength components, and this is the reason
why γeff decreases close to the long-distance cut-off λ0.
Note also that γeff(ζ) at the shortest length scale (which in
the present case corresponds to the magnification ζ = 100)
equals the “bare” value ∆γ as it should.

Figure 10(b) shows that, with increasing magnifica-
tion, the (normalized) area of (apparent) contact, P (ζ),
reaches a constant value already for ζ ≈ 10. This implies
that when a contact area at the magnification ∼ 10
is studied at higher magnification (where smaller-scale
roughness structures or bumps are seen), the rubber will
be in perfect contact with the substrate (see Fig. 13(a)
below). This is no longer the case when the fractal
dimension of the surface is higher. Thus we will show
below that for Df = 2.4 (instead of Df = 2.2 used in

"sumis2" u 1:4

"sumis2" u 1:3

0

0.4

0.8

1.2

1.6

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8

(a)

(b)

0.1

q  δ = 0. 40

q  δ = 0. 40

0.1

ef
f

γ 
   

(1
)/

∆γ

1P(ζ  )

q  h  00

Fig. 11. (a) The macroscopic adhesion energy as a function
of q0h0. (b) The normalized area of real contact, P (ζ1) =
A(ζ1)/A0, as a function of of q0h0. The solid and dashed curves
correspond to H = 0.4 and 0.8, respectively. For q0δ = 0.1 and
0.4 as indicated, and q1/q0 = ζ1 = 100.

Fig. 10), P (ζ) decreases continuously with increasing
magnification (see Fig. 13(b) below).

Figure 11 shows (a) the macroscopic interfacial en-
ergy γeff(1) and (b) the normalized area of real contact,
P (ζ1) = A(ζ1)/A0, as a function of q0h0. We show results
for both H = 0.4 (solid lines) and 0.8 (dashed lines), for
q0δ = 0.1 and 0.4. Note that the enhancement in the ad-
hesion for small h0 is much larger for H = 0.4 than for 0.8;
this result is expected since (see Sect. 4) α(0.4) = 0.073
and α(0.8) = 0.235 so that α(0.4) � α(0.8). Physically,
it comes about because the roughness-induced increase in
the surface area is much larger when H = 0.4 than for
H = 0.8 and this will enhance the adhesive contribution
to the macroscopic interfacial energy γeff (see below). For
H = 0.4 we observe an increase in γeff for small h0 for
both q0δ = 0.1 and 0.4 which is consistent with the value
α(0.4) = 0.073 given above.

Figure 12 shows (a) the effective interfacial energy
γeff(ζ) and (b) the normalized area of real contact, P (ζ) =
A(ζ)/A0, as a function of the magnification ζ. The curves
correspond to different values of q0h0 as indicated, and
with q0δ = 0.4 and H = 0.4. Compared to Figure 10,
note the much more rapid increase in γeff(ζ) when the
magnification ζ is reduced from the short-distance cut-off
ζ1 = 100. Figure 12(b) shows that in the present case
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Fig. 12. (a) The effective interfacial energy as a function of
the magnification ζ. (b) The normalized area of real contact,
P (ζ) = A(ζ)/A0, as a function of the magnification ζ. The
curves correspond to different values of q0h0 as indicated. For
q0δ = 0.4 and H = 0.4.

where the fractal dimension Df = 2.6, the area of (appar-
ent) contact decreases continuously with increasing mag-
nification. This is in sharp contrast to the case where
Df = 2.2, where P (ζ) is constant for ζ > 10. The origin
of this difference is explained qualitatively in Figure 13.

Figure 13 shows (schematically) the adhesive contact
between an elastic body (dotted area) and a hard rough
substrate (dashed area). In (a) the roughness exponent
H is close to 1 (the fractal dimension Df close to 2) in
which case complete contact occurs in the macro-asperity
contact areas. In (b) the roughness exponent H is smaller
than 1/2 (corresponding to a fractal dimension Df > 2.5),
and at all magnifications only partial contact occurs in the
macro-asperity contact areas. The difference between the
two cases was described qualitatively in Section 2. Here we
give an additional argument. We will show that for large
fractal dimension the amplitude h of the roughness, at the
(fixed) length scale λ, is much larger than when the fractal
dimension is close to 3, as illustrated in Figure 13. This
is easy to prove as follows. For two surfaces with equal h0
and λ0 (i.e., equal rms roughness and equal long-distance
cut-off length) but different Hurst exponents H and H ′ we
get for the roughness amplitudes h and h′ on the length

Fig. 13. The adhesive contact between an elastic body (dotted
area) and a hard rough substrate (dashed area). (a) When the
roughness exponent H is larger than 1/2 (corresponding to a
fractal dimension 2 < Df < 2.5) complete contact occurs in the
macro-asperity contact areas. (b) When the roughness expo-
nent H is smaller than 1/2 (corresponding to a fractal dimen-
sion 2.5 < Df < 3), at all magnifications only partial contact
occurs in the macro-asperity contact areas. (Schematic.)

scale λ:

h0/λ0 = (h/λ)(λ/λ0)1−H = (h′/λ)(λ/λ0)1−H′

or
h/h′ = (λ/λ0)D′

f−Df .

Thus, if D′
f > Df we get h′ > h. The large value of h/λ

at high resolution when Df is “large” (say larger than
2.5) will in general result in a monotonic decrease in the
(apparent) contact area as the magnification is increased.
Without a short distance cut-off, the area of real contact
and hence the adhesion interaction will likely vanish. (This
is only true as long as the adhesion interaction between
the two solids is assumed to have an infinitesimal extent
so that interaction only occurs when the solids are in di-
rect contact. This is a good approximation for covalent
or metallic interactions, but not for the more long-ranged
van der Waals interaction, see Ref. [2].)

Figure 14 (a) shows the macroscopic interfacial en-
ergy and (b) the normalized area of real contact,
P (ζ1) = A(ζ1)/A0, as a function of of q0h0. The curves
denoted by a and b correspond to the external pressure
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Fig. 14. (a) The macroscopic interfacial energy as a func-
tion of q0h0. (b) The normalized area of real contact, P (ζ1) =
A(ζ1)/A0, as a function of of q0h0. The curves denoted by a
and b correspond to the external pressure σ0 = 0.05E/(1−ν2)
and σ0 = 0, respectively. In (b) the dashed line is for no adhe-
sion (i.e., ∆γ = 0), and for the same external pressure as for
curve a. For H = 0.8, q0δ = 0.1 and q1/q0 = ζ1 = 100.

σ = 0.05E/(1 − ν2) and σ = 0, respectively. In (b) the
dashed line is for no adhesion (i.e., ∆γ = 0), and for the
same external pressure as for curve a. Note that with in-
creasing h0, the area of real contact (when adhesion is
included) only very slowly approaches the contact area
which would result when the adhesion is neglected (dashed
line). Since it is the area of real contact which is important
in sliding friction, it is clear that the adhesion interaction
may strongly affect the friction force even when no ad-
hesion can be detected in a pull-off experiment; in the
present case, γeff(1) and hence the pull-off force vanish
when q0h0 = 0.3 but even when q0h0 = 0.5, the area of
real contact is more than twice as large when the adhesion
is included as when it is neglected.

The variation of P (ζ) and γeff(ζ) with the magnifi-
cation ζ, for the same system as in Figure 14, is shown
in Figures 3 and 5. In Figure 3 we show P (ζ) both
with and without adhesion and for the squeezing pressure
σ0 = 0.05E/(1 − ν2). Note that without the adhesion,
P (ζ) decreases monotonically with increasing magnifica-
tion, and, in fact, without a short-distance cut-off, the area
of real contact (corresponding to P (∞)) vanishes. When
adhesion is included, the (apparent) area of contact equals
the area of real contact already at a rather small magnifi-
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Fig. 15. (a) The macroscopic interfacial energy as a func-
tion of q0h0. (b) The normalized area of real contact, P (ζ1) =
A(ζ1)/A0, as a function of of q0h0. Results are shown for
q1/q0 = ζ1 = 100 and 1000. For H = 0.8 and q0δ = 0.1.

cation ζ ≈ 10. The result for γeff is similar to the results
presented in Figure 10.

Figure 15 shows (a) the macroscopic adhesion en-
ergy and (b) the normalized area of real contact,
P (ζ1) = A(ζ1)/A0, as a function of of q0h0. Results are
shown for q1/q0 = ζ1 = 100 and 1000. Note that for
ζ1 = 1000, γeff(1) initially increases with increasing q0h0.
This is the expected result since α(0.8) = 0.088 for
ζ1 = 1000 (see Sect. 4) so that α(0.8) < q0δ and the
observed result follows from the theory in Section 4.

13 Comparison with experiment and
discussion

The theory of adhesion presented above requires as in-
put the 2D surface roughness power spectra C(q). This
quantity can now be routinely measured using, e.g., the
atomic-force microscopy. We note that when the surface
roughness is isotropic, C(q) can be obtained directly from
the 1D power spectra. Suppose that the height h(x) has
been measured along a line (x-axis). We define the 1D
height-height correlation function by

C1D(x) = 〈h(x)h(0)〉 ,
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Fig. 16. The macroscopic interfacial energy (obtained from
the pull-off force) for a smooth rubber surface (ball) in contact
with Perspex surface as a function of the roughness (center line
average) of the Perspex. Results are shown for a “soft” rubber
(E = 0.063 MPa) and a “hard” rubber (E = 0.487 MPa).
From [5].

where we have assumed that 〈h(x)〉 = 0. If the surface
roughness is isotropic, then 〈h(x)h(0)〉 = C1D(r) , where
r = |x|. Thus we get

C(q) =
1

(2π)2

∫
d2x 〈h(x)h(0)〉e−iq·x

=
1

2π

∫ ∞

0

dr rC1D(r)J0(qr) ,

where J0(x) is the zeroth-order Bessel function.
Unfortunately, the surface roughness power spectra

have not been measured for any surface for which adhesion
has been studied in detail. Instead, only the roughness am-
plitude (center line average) and the radius of curvature
of the largest surface asperities were determined. Never-
theless, the experimental data of Fuller, Tabor, Briggs,
Briscoe and Roberts are in good qualitative agreement
with our theoretical results. In Figure 16 we show the
macroscopic interfacial energy for “hard” and “soft” rub-
ber in contact with Perspex, as a function of the substrate
(Perspex) roughness amplitude as obtained by Briggs and
Briscoe [5]. It is not possible to compare these results
quantitatively with the theory developed above since the
power spectra C(q) were not measured for the Perspex
substrate. Even if the surfaces would be self-affine fractal
as assumed in Section 12, not only the surface roughness
amplitude will change from one surface to another, but so
will the long-distance cut-off length λ0 and hence also the
ratio ζ1 = q1/q0. In the experiments reported on in ref-
erence [5] the Perspex surfaces were roughened by blast-
ing with fine particles. The roughness could be varied by
choice of the particles and the air pressure.

I suggest that a detailed study of adhesion is performed
on surfaces for which C(q) has been measured. One way of

Fig. 17. The great green bush cricket. The attachment pads
were the subject of the study focusing on indentation, adhesion
and friction, reported on in reference [21].

generating rough surfaces is to start with a smooth surface
and sputter or sand blasting the surface. This will generate
surfaces which most likely are (approximately) self-affine
with a rms roughness amplitude and cut-off length λ0
which change with the sputter or sand blasting conditions.
Alternatively, self-affine fractal surfaces can be prepared
by depositing atoms on an initially smooth substrate, see
e.g., reference [22].

One practical problem is that most rubber materials
have a wide distribution of relaxation times, extending to
extremely long times. This effect is well known in the con-
text of rubber friction, where measurements of the com-
plex elastic modulus show an extremely wide distribution
of relaxation times, resulting in large sliding friction even
at very low sliding velocities, v < 10−8 m/s. The same
effect has been observed in other experiments, see, e.g.,
references [23,24].

We have seen in Section 12 that already a relative
small roughness can completely remove (or “kill”) the ad-
hesion between two elastic bodies. One way of “restor-
ing” a strong adhesion is to introduce a very thin layer
of a wetting liquid at the interface, which is able to fill
out the surface roughness “cavities” resulting in a strong
liquid-mediated adhesion between the solid walls. This
fact is made use of in many biological systems.

Some living objects, e.g., tree frogs, some bats, crick-
ets and many flies, have attachment pads on their legs
which are responsible for attachment to the substrate dur-
ing climbing on smooth substrates, e.g., a fly climbing on
a window glass or a cricket on a smooth leaf of a plant.

Recently, a detailed study has been performed on the
attachment pads of the great green bush cricket [21],
see Figure 17. The attachment system is designed to
hold the insect on a rough surface, e.g., the bark on
a tree, using small claws at the end of each leg (see
Fig. 17). To adhere to a smooth surface, e.g., the leaves
of many plant species, the insect uses attachment pads.
The pads are nearly hemispherical with a radius of or-
der ∼ 2 mm and are elastically very soft with an effective
elastic modulus determined from indentation experiments
to be of order 0.02 MPa, i.e., similar to very soft rub-
ber. (Thus, E � Ec, and the pads are “sticky”.) The
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Fig. 18. (a) For very rough surfaces, the area of real contact
is very small, and the adhesion is negligible. (b) In this case a
thin fluid film may enhance the effective adhesion by bridging
the gap between the surfaces. During “rapid” pull-off, a large
negative pressure may occur in the fluid because there is not
enough time for it to flow into the space between the surfaces
during separation; this effect is particularly important when
the fluid has a large viscosity, and when the fluid film is very
thin. (c) The fluid film forms a capillary bridge between the
solids giving a strong effective adhesion which is independent
of the separation speed. The insect pad-substrate adhesion will
in general depend on both effects (b) and (c). Similar effects
may occur when a rubber block is in contact with a substrate,
where the liquid now may be derived from contamination, or
from out-diffusion (sweating) of liquid components from the
rubber matrix.

pads deform purely elastically (no plastic or permanent
deformation) even during deformations involving strains
of order ∼ 100% or more, and when the applied force is
removed the deformed pads relax back to their original
(undeformed) state.

The attachment system of the cricket is supported by
a secretion produced by cells in the outer layer of the skin
and transported onto the pad surface through pore canals.
The secretion liquid is an organic liquid with hydrophilic
properties. However, the liquid does wet the pad surface,
and fills out the interfacial cavities between the pads and
the substrate (see Fig. 18). Similarly, secretion or mucus
are used generally to enhance adhesion e.g., in flies and
tree frogs. The secretion fluid, observed in the footprints of
many insects wets many hydrophilic as well as hydropho-
bic surfaces, such as wax or glass. It has been suggested
that the fluid contains surfactants which would make ad-
hesion less sensitive to the nature of the substrate.

In this context we note that the transfer of a high-
viscosity, tacky, substance to the surface of the tires and
to the road surface is exploited in race car tires. Thus, the
rubber used for race car tires contains synthetic resins,

which are high-viscosity tacky substances, similar to the
sticky substance that oozes from fir and pine trees. This
substance is transfered to the tire surface and to the road
surface, and will fill out the small-sized cavities of the
road surface (which the rubber itself would not be able to
penetrate), and will hence increase the effective adhesion
(and friction coefficient) between the surfaces. It is well
known that the stickiness of the Formula 1 race tracks
increases with time from the start of the race as a result
of the continuous transfer of the sticky substance from
tires to the race track.

14 Summary and conclusion

We have studied the influence of surface roughness on the
adhesion of elastic solids. Most real surfaces have rough-
ness on many different length scales, and this fact has
been taken into account in our study. The theory allows
for partial block-substrate contact on all length scales. We
have considered in detail the case when the surface rough-
ness can be described as self-affine fractal, and shown
that when the fractal dimension Df > 2.5, the adhesion
force may be strongly reduced. For surfaces with a fractal
dimension close to 2, full contact occurs in the (appar-
ent) contact areas except close to the long-distance cut-off
length λ0, where the contact may be only partial. For frac-
tal dimension Df > 2.5 partial contact occurs on all length
scales and the area of (apparent) contact decreases contin-
uously with increasing magnification. We have studied the
block-substrate pull-off force as a function of roughness. A
particular important result is that even when the surface
roughness is so high that no adhesion can be detected in
a pull-off experiment, the area of real contact (when ad-
hesion is included) may still be several times larger than
when the adhesion is neglected. Since it is the area of
real contact which determines the sliding friction force, it
is clear that the adhesion interaction may strongly affect
the friction force even when no adhesion can be detected
in a pull-off experiment. The theory is in good qualita-
tive agreement with experimental data. To test the theory
quantitatively, we suggest that new experiments should
be performed on surfaces for which the surface roughness
power spectra have been measured.
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14. M. Klüppel, G. Heinrich, Rubber Chem. Technol. 73, 578

(2000).
15. M.V. Berry, Z.V. Lewis, Proc. R. Soc. London, Ser. A 370,

459 (1980).
16. T.R. Thomas, Rough Surfaces, second edition (Imperial

College Press, London, 1999)
17. G. Sperling, PhD Thesis, Karlsruhe Technical University

(1964).
18. K. Kendall, J. Phys. D 4, 1186 (1971); 6, 1782 (1973);

8, 115 (1975). See also the beautiful review article of K.
Kendall, Contemp. Phys. 21, 277 (1980).

19. B.V. Derjaguin, Wear 128, 19 (1988); D. Tabor, in Sur-
face Physics of Materials, Vol. II, edited by J.M. Blakely
(Academic Press, New York, 1975) pp. 475-529.

20. See, e.g., L.B. Freund, Dynamics Fracture Mechanics
(Cambridge University Press, New York, 1990).

21. M. Scherge, S. Gorb, Bilological Micro and Nano Tribology:
Nature’s Solutions (Springer, Berlin, 2001).

22. A.L. Barabasi, H.E. Stanley, Fractal Concepts in Surface
Growth (Cambridge University Press, Cambridge, 1995).

23. M. Barquins, D. Maugis, J. Adhes. 13, 53 (1981).
24. M. Deruelle et al., J. Adhes. Sci. Technol. 12, 225 (1998).


