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E-mail: b.persson@fz-juelich.de

Received 4 January 2013, in final form 5 April 2013

Published 7 May 2013

Online at stacks.iop.org/JPhysCM/25/225004

Abstract

We study the adhesion between smooth polydimethylsiloxane (PDMS) rubber balls and

smooth and rough poly(methyl methacrylate) (PMMA) surfaces, and between smooth silicon

nitride balls and smooth PDMS surfaces. From the measured viscoelastic modulus of the

PDMS rubber we calculate the viscoelastic contribution to the crack-opening propagation

energy γeff(v, T) for a wide range of crack tip velocities v and for several temperatures T . The

Johnson–Kendall–Roberts (JKR) contact mechanics theory is used to analyze the ball pull-off

force data, and γeff(v, T) is obtained for smooth and rough surfaces. We conclude that

γeff(v, T) has contributions of similar magnitude from both the bulk viscoelastic energy

dissipation close to the crack tip, and from the bond-breaking process at the crack tip. The

pull-off force on the rough surfaces is strongly reduced compared to that of the flat surface,

which we attribute mainly to the decrease in the area of contact on the rough surfaces.

(Some figures may appear in colour only in the online journal)

1. Introduction

The origin of adhesion between macroscopic bodies is a

very important but complex topic [1–5]. Even the weakest

force of interest in condensed matter physics, namely the

van der Waals interaction, is very strong on a macroscopic

scale. Thus, the force necessary to separate two flat surfaces

with ∼1 cm2 cross section, bound together with the

van der Waals interaction, corresponds to the weight of a

car [6]. However, such strong adhesive forces are almost never

observed in real-life situations, as is vividly evident, e.g., by

the fact that we are able to walk or drive a car on a road.

The reason that adhesion is usually not observed between

macroscopic solid objects, a phenomenon often referred to as

the adhesion paradox [1], is the ever present surface roughness

(and contamination films) on solid bodies. Thus, because of

surface roughness, solid objects will in general only make

contact at a small fraction of the nominal or apparent contact
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area. The small area of real contact, and the elastic energy
stored in the vicinity of the asperity contact regions (due to
the elastic deformations of the solids), will reduce the pull-off
force to almost zero in most practical cases. For elastic
solids the stored interfacial elastic energy is, at least in part,
‘given back’ during pull-off and helps to break the interfacial
bonds between the solids. In addition, during pull-off, a stress
concentration will occur at the edges of the contact regions
so that the interfacial bonds will not break uniformly, but
rather via interfacial crack propagation, which will occur at
a much smaller pull-off force than would be observed if all
the interfacial bonds were to break simultaneously.

Strong adhesion requires very smooth surfaces and/or
that at least one of the solids is elastically very soft,
e.g., rubber. In this case the area of real contact may be similar
to the nominal contact area, and the elastic deformation
energy stored up at the interface is small enough not to
severely reduce the adhesion. In a classical study Fuller and
Tabor [7] studied the adhesion between rubber balls and
hard rough substrate surfaces with different root-mean-square
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Figure 1. (a) The real and imaginary part of the viscoelastic
modulus, and (b) tan δ for PDMS as a function of frequency at room
temperature T = 20 ◦C. The curves denoted Jülich and Paris were
obtained by us and by the authors of [17], respectively.

(rms) roughness amplitude hrms. For ‘normal’ rubber, with a

low-frequency Young’s elastic modulus of the order of a few

MPa, they found that even an rms roughness hrms ≈ 1 µm

results in a vanishing pull-off force. The authors did not

present any detailed quantitative analysis of the experimental

data, which would require knowledge of the substrate surface

roughness power spectrum C(q), which they did not measure.

In addition, even silicon rubber, as used in their study, is

not a purely elastic material but exhibits some viscoelasticity

which will result in a pull-off force which depends on the

pull-off velocity. Furthermore, the bond-breaking process at

the interface will also depend on the separation velocity (and

the temperature) as it involves stress-aided thermally activated

processes [8–15].
In this paper we present a detailed study of the adhesion

of PDMS rubber to smooth and rough surfaces. We have fully

characterized the rubber (viscoelastic modulus E(ω)) and

the surface topography (surface roughness power spectrum

C(q)) and present a quantitative comparison between theory

and experiments. We find that the effective interfacial

crack propagation energy, γeff(v, T) = γ0(v, T)[1 + f (v, T)],

depends on the velocity due to both viscoelastic bulk energy

dissipation close to the crack tip (factor [1+ f (v, T)]), and due

to the velocity dependence of the bond-breaking processes

at the crack tip (factor γ0(v, T)). We find, in agreement with

Fuller and Tabor [7] and others [16], that even a slight surface

roughness can result in a nearly vanishing pull-off force. We

analyzed the pull-off data from experiments on the rough

surfaces using the contact mechanics theory of Persson.

Figure 2. Red curve: the shift factor obtained by shifting the
frequency segments to obtain the master curve shown in figure 1.
Blue curve: the WLF result aT = −A[(T − Tg)/(B+ T − Tg)−
(T0 − Tg)/(B+ T0 − Tg)], where Tg = −126 ◦C is the glass
transition temperature, T0 = 20 ◦C the reference temperature,
A = 24.0 and B = 55.6 ◦C.

2. Experimental details

In section 2.1 we describe how we obtained the viscoelastic
modulus E(ω) for the rubber used in our adhesion
experiments. Section 2.2 describes 1D-stylus topography
measurements and the surface roughness power spectra C(q)

of the surfaces used in some of the adhesion experiments.
Finally in section 2.3 we describe the two sets of adhesion
experiments we have performed.

2.1. Viscoelastic modulus

To calculate the viscoelastic factor [1 + f (v, T)] in the
expression for the energy per unit area for the (opening) crack
propagation, we need the rubber bulk viscoelastic modulus
E(ω). From the viscoelastic modulus measured at small strain
(0.2%) for 12 frequency points between f = 0.25 and 28.0 Hz,
and for many temperatures between T = −130 and 20 ◦C, we
have obtained a smooth master curve by shifting the frequency
segments of the real part of E(ω). The results for Re E(ω)

and Im E(ω) are shown (without smoothing) in figure 1. In
the same figure we show the results obtained by Nguyen et al

in a narrower frequency range [17]. The corresponding shift
function aT is shown in figure 2 (red line). The blue line in the
same figure is the Williams–Landel–Ferry (WLF) [18] result
aT = −A[(T−Tg)/(B+T−Tg)− (T0−Tg)/(B+T0−Tg)],
where Tg = −126 ◦C is the glass transition temperature, T0 =

20 ◦C the reference temperature, A = 24.0 and B = 55.6 ◦C.

2.2. Surface roughness power spectrum

In section 4.5 we study the adhesion between silicon
rubber balls and smooth (flat) and sandblasted PMMA
substrate surfaces. We have measured the surface topography
of the PDMS surfaces using stylus (Talysurf 120 from
Taylor-Hobson) 1D-line scans. Figure 3 shows the power
spectra [6, 19],

C(q) =
1

(2π)2

∫

d2x 〈h(x)h(0)〉eiq·x,
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Figure 3. The surface roughness power spectrum of four
sandblasted PMMA surfaces and one smooth (not sandblasted)
PMMA surface. The substrates were sandblasted (from bottom to
top): 0, 2, 6, 9 and 13 min. The solid lines are a seventh order
polynomial fit to the experimental data.

of the PMMA substrates used in the adhesion tests. The solid

lines are seventh order polynomial fits to the experimental

data. The ‘smooth’ surface and the four rough surfaces 1,

2, 3 and 4 have rms roughness values 0.379 µm (smooth),

1.49, 2.09, 2.58 and 3.18 µm, and rms-slopes 0.1, 0.22, 0.30,

0.30 and 0.31, respectively. The rough surfaces were prepared

by sandblasting the PMMA substrate for different amounts

of time: 2, 6, 9 and 13 min, resulting in the four surfaces

1, 2, 3 and 4, respectively. Note that the short wavelength

(large wavevector q) roughnesses on all the rough surfaces

are nearly the same, but the roll-off wavevector decreases as

the sandblasting time increases, i.e., the roughness extends

to longer and longer wavelengths as the sand blasting

time increases. This is indeed the expected behavior, and

simple theories [20] suggest that the roll-off wavevector

scales as t−1/z with the sandblasting time t, where z is

the so-called dynamical exponent. This result is consistent

with the experimental observations. Since the rms-slope is

determined mainly by the large wavevector surface roughness

components, and since that region in the surface roughness

power spectrum is very similar for the three most rough

surfaces, it explains why the rms-slope values are so similar

for these surfaces.

2.3. Adhesion experiments

We have studied the adhesional interaction between PDMS

balls and PMMA, and between silicon nitride balls and

PDMS, using two different types of adhesion experiments

involving adhesion at different length scales.

In the first experiment (performed in Jülich) we bring

a PDMS half sphere with radius R = 46.5 mm into contact

with a PMMA substrate, as shown in figure 4. The PMMA

substrate is either smooth or has different amounts of surface

roughness. It is positioned on a very accurate balance

(Excellence XA205DU Analytical Balance produced by

Mettler Toledo), which has a reproducibility of 0.01 mg

(or ≈0.1 µN) at low loads. After zeroing the scale of the

Figure 4. The Jülich experimental setup for measuring adhesion.

Figure 5. A loading–unloading cycle of a PDMS sphere (radius
R = 46.5 mm) against a smooth PMMA surface. The pull-off
velocity vz ≈ 1 mm s−1. The pull-off force ≈ 0.1 N corresponds to
the effective (JKR) interfacial energy γeff = 0.45 J m−2, which is
∼9 times higher than expected for infinitesimally slow pull-off
assuming van der Waals bonding between the rubber and the
PMMA substrate.

instrument we can measure the force on the substrate as

a function of time. The PDMS half sphere is brought into

contact with the substrate and loaded with different preloads

for a certain time period. After this waiting period the ball

is slowly moved upwards with a constant velocity, resulting in

an unloading of the substrate, as can be seen in figure 5, which

shows a typical force–time curve as a result of the procedure

described above. Because of adhesion between the half sphere

and the substrate the measured force becomes negative in the

unloading cycle until the contact is broken and the PDMS

sphere pulled off from the substrate. To move the PDMS

half sphere upwards we have used an electric motor coiling

up a nylon cord, which is glued to the glass plate to which

the upper flat surface of the PDMS probe was attached. The

pulling velocity can be changed directly by the motor or by

attaching the cord to different gear wheels in a transmission.

3
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The lowest velocity reported on below was realized by adding

a soft rubber band to the nylon cord.

Also shown in figure 5 is the electrostatic interaction

between the two solids before and after contact. This is why

the force signal does not continue to zero when the sample is

pulled off or before it is brought into contact. Note that this is

an exaggerated example, and in the experiment this effect was

negligible after cleaning the samples (see also appendix A).

Nevertheless, the contribution to adhesion from charging is an

interesting but not well understood problem which deserves

more attention [21, 22].

The PDMS half sphere was produced by molding Sylgard

184 against a smooth glass sphere. This is a two-component

kit purchased from Dow Corning (Midland, MI), consisting of

a base (vinyl-terminated polydimethylsiloxane) and a curing

agent (methylhydrosiloxane–dimethylsiloxane copolymer)

with a suitable catalyst. From these two components we

prepared a mixture of 10:1 (base/cross-linker) in weight. The

mixture was degassed to remove the trapped air induced by

stirring from the mixing process and then poured into the cast.

The samples were cured in an oven at 80 ◦C for 14 h.

However, even after curing, the samples still have free

polymer chains in the bulk that can move (diffuse) to

the surface of the PDMS sphere and hence influence the

adhesional interaction. To remove a large fraction of these

free chains the samples were swollen in hexane for 24 h at

room temperature (≈20 ◦C). The solvent was then replaced

and the procedure repeated twice. To document the influence

on the PDMS we have measured the weight before and after

this procedure and found a mass reduction of ≈3.6% for

all samples. The (low-frequency) Young’s Modulus can be

deduced if one measures the dimensions of the sample in the

swollen state and after shrinkage. From this we estimate the

elastic modulus E ≈ 2.2 MPa, while in a separate compression

experiment we measured 2.3 MPa.

The second experiment (at the University of Florida)

involves microadhesion experiments with in situ contact

observation. An optical in situ microtribometer [23, 24] was

used for micro-scale adhesion experiments. The tribometer

(see figure 6(a)) was used to perform load–unload experiments

between polished silicon nitride spheres (with radii R ≈

3.2, 2.4 and 1.6 mm) and flat, transparent Sylgard 10:1

PDMS elastomer coated on glass optical windows5. In this

experiment we did not remove the free PDMS chains. The

sphere is fixed to the end of a cantilever force transducer,

whose deflection is monitored by capacitance probes. The

probe is lowered in to and raised out of contact using

a piezoelectric stage with 0.4 nm resolution and 1 nm

repeatability. The spheres were loaded into the elastomer to

approximately 1 mN, held for a relaxation time of 0.1, 1, 10,

or 100 s, and then unloaded at prescribed piezoelectric stage

rates of 0.1, 1, 10, 100 and 1000 µm s−1. The externally

applied load is measured with a resolution of better than

1 µN, and is linearly proportional to the displacement of

5 The PDMS rubber film on the glass substrate in the UF experiment was

0.35 mm thick. As long as the film thickness is larger than the diameter of

the contact area at pull-off (of the order of 0.1 mm), it is effectively infinitely

thick with respect to the contact mechanics involved, see [50].

Figure 6. (a) The University of Florida experimental setup for
measuring adhesion, and (b) optical images of the contact.

the capacitance probe; sphere penetration δ is monitored by

subtracting the cantilever deflection from the piezoelectric

stage position. Images of the contact between the silicon

nitride spheres and the PDMS elastomer, see figure 6(b), are

acquired at two images per second and synched with force and

position data. The images are processed to calculate the actual

contact area, contact half width or radius r and the change

in radius with respect to time dr/dt, see figure 7 for some

examples. The maximum pull-off force and other adhesion

parameters can be measured from the synched contact, force

and displacement data.

3. Energy dissipation at the opening crack

The propagation of cracks in rubber is of fundamental

importance for many applications, e.g., rubber wear [25],

for pressure sensitive adhesives [26], and also for sliding or

rolling friction [27]. The strength of adhesion and cohesion of

elastomers can be characterized by the amount of energy γeff

required to advance the crack tip by one unit area. It has been

shown experimentally that γeff depends both on the crack tip

velocity v and the temperature T and that [28–30]

γeff(v, T) = γ0 [1+ f (v, T)] . (1)

Concerning interfacial (between the rubber and the substrate)

crack propagation we consider the measured value of γeff

at extremely low crack velocities, which is of the order

of ≈0.1 J m−2, while viscous effects in the rubber are

negligible. This represents the energy needed to break the

interfacial rubber–substrate bonds, which are usually of the

van der Waals type, and is denoted as γ0. For simple

hydrocarbon elastomers, the effect of temperature can be

completely accounted for by applying a simple multiplying

factor, denoted by aT , to the crack velocity v, i.e., f (v, T) =

f (aTv). Moreover, values of aT found experimentally are

equal to the Williams–Landel–Ferry (WLF) [18] function

determined from the temperature dependence of the bulk

viscoelastic modulus, clearly proving that the large effects of

crack velocity and temperature on crack propagation in rubber

materials are due to viscoelastic processes in the bulk.

4
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Figure 7. (a) The measured relation between the load and the
vertical displacement δ, and (b) between the contact radius r and the
load, for three different glass balls against PDMS elastomer.

In (1) the function f (v, T) = f (aTv) describes the bulk

viscoelastic energy dissipation in front of the crack tip. This

term is determined by the viscoelastic modulus E(ω) of the

rubber, and can be calculated theoretically. The factor γ0 is

due to the bond breaking (in our applications between the

rubber and the substrate) at the crack tip (in the so-called

crack tip process zone), which may involve highly nonlinear

processes. This term cannot be calculated theoretically, and

must be deduced directly from experimental data. However,

the strongest velocity dependence in (1) is in general derived

from the factor f (v, T), which may enhance γeff by a factor

103 or more at high crack tip velocities.
In [31, 32] we have shown that

γeff(v) = γ0

[

1−
2

π
E0

∫ 2πv/a

0

dω
F(ω)

ω
Im

1

E(ω)

]−1

(2)

where E0 = E(0) and

F(ω) =

[

1−
( ωa

2πv

)2
]1/2

. (3)

The crack tip radius a= a(v) depends on the crack tip velocity

v (and temperature), and can be determined if one assumes

that the stress at the crack tip takes some critical value σc.

This gives

a

a0
=

γeff

γ0
(4)

Figure 8. The logarithm (to base 10) of the crack propagation
energy enhancement factor γeff(v)/γ0 = 1+ f as a function of the
logarithm (to base 10) of the crack tip velocity for PDMS rubber
without extracting free chains.

where a0 is the crack tip radius for a very slowly moving

crack. For high crack tip velocities γeff(v) ≈ γ0E(∞)/E(0)≫

γ0. This is possible only if the denominator in (2) is close

to zero for high crack tip velocities, which means that the

term involving the integral must be close to unity. If (2) is

used directly to calculate γeff(v) numerically this requires that

E(ω) is accurately known for all frequencies, which is usually

not the case. However, it is possible to rewrite (2) in a form

convenient for numerical calculations (see [32, 33]).

In figure 8 we show the interfacial crack propagation

viscoelastic energy enhancement factor γeff(v)/γ0 = [1 + f ]

as a function of the logarithm of the crack tip velocity v

for PDMS rubber. This function f (v, T) is calculated using

(2)–(4) with a0 = 1 nm, and using the viscoelastic modulus

shown in figure 1.

For PDMS rubber, in a large frequency range,

Re E(ω) ∼ ωβ with β ≈ 0.12. This is a much weaker

frequency dependence than observed for most other rubbers,

e.g., styrene–butadiene (SB) rubber, where β ≈ 0.4. This has

important implications for the bulk viscoelastic contribution

[1 + f (v, T)] to the velocity dependence of the crack

propagation energy γeff, which will scale as [1+ f (v, T)] ∼ vα

with α = β/(1 + β). The velocity dependence of γeff(v) has

been measured by Gent for SB rubber [30]. He indeed found

α ≈ 0.27, which is very close to the prediction α = β/(1 +

β) ≈ 0.28 using β ≈ 0.4. A good test of the crack propagation

theory presented above is to find out experimentally if

γeff(v, T) indeed exhibits a weaker velocity dependence for

PDMS than predicted for most other types of rubber. We

will show in section 4.2 that for PDMS at small velocities

γeff(v, T) ∼ vα with α ≈ 0.12, in good agreement with the

theory prediction α = β/(1+ β) ≈ 0.11 using β ≈ 0.12.

4. Adhesion

4.1. Theory for smooth surfaces

We have analyzed the adhesion data presented above using the

JKR theory [34, 35]. The JKR theory is valid for elastically

5
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Figure 9. A rubber ball pulled off a hard flat substrate. The force
necessary to separate the bodies will depend on the viscoelastic
energy dissipation in the vicinity of the tip of the opening crack at
r = r(t).

soft solids with large enough radius of curvature6. In the JKR

theory the removal of a ball from a substrate is considered as

an interfacial crack propagation problem, see figure 9. The

JKR approach is valid if deformations of the rubber on a

length scale of the order of the radius of the contact region r

occur so slowly that the rubber can be considered as a perfect

elastic material. This requires that Im E(ω)/Re E(ω) ≪ 1

for the typical deformation frequencies ω ≈ vz/r, where vz

is the pull-off velocity. However, close to the crack tip the

deformation frequencies ω ≈ vr/s, where vr = −dr/dt is the

crack tip velocity and s the distance from the crack tip. Since

s may be as small as a few nm, the deformation frequencies

at the crack tip may be very high, even for a slowly moving

crack, but the resulting viscoelastic energy dissipation is

fully included in the crack propagation energy γeff(v, T).

We will denote γeff(v, T) = γeff(v, T) as an effective

interfacial energy.

If R is the radius of the sphere, r the radius of the

sphere–substrate contact region and δ the penetration, then we

have from the JKR theory:

δ =
r2

R
−

(

2πγeffr

E∗

)1/2

giving

δ̇ =
2r

R

[

1−

(

πγeffR
2

8r3E∗

)1/2
]

ṙ.

6 We have calculated the Maugis or Tabor number λ ≈ a−1(1γ 2R/E2)1/3,

where a is the interfacial binding distance. The λ-number is essentially the

ratio of the neck height to the intermolecular spacing and the JKR theory is

valid if λ > 5. For van der Waals bonded systems a ≈ 0.4 nm and 1γ ≈

0.05 J m−2, so that in our case (with R ≈ 1 cm and E ≈ 2 MPa) λ ≈ 5000,

and the JKR limit prevails.

Figure 10. The calculated (using the JKR theory) crack tip velocity
vr as a function of the pull-off velocity vz for all experimental data.

Here we have neglected the dependency of γeff on time, which

is a good approximation, at least in the present case. At the

point of snap-off r = rc, where

rc =

(

9πR2γeff

8E∗

)1/3

. (5)

Thus, at snap-off the opening crack moves with the speed

v = ṙc =

(

3RE∗

8πγeff

)1/3

δ̇. (6)

The pull-off force

Fc =
3π

2
γeffR. (7)

From the theory of crack propagation (section 3):

γeff = γ0(v, T)[1+ f (v, T)] (8)

where f (v, T) is the viscoelastic enhancement term and

γ0(v, T) the energy per unit surface area to break the bonds

at the interface. This term will, in general, also depend on the

crack tip velocity v and the temperature T , but as v → 0 we

have γ0 → 1γ = γ1 + γ2 − γ12, where γ1 and γ2 are the

surface energies of solid 1 and 2, respectively, and γ12 is the

interfacial binding energy between solid 1 and 2. Using (6)

and (7) we can also write

ṙc =

(

9R2E∗

16Fc

)1/3

δ̇. (9)

To test the approach described above, we show in

figure 10 the crack tip velocity vr = −dr/dt as a function of

the pull-off velocity vz, as deduced from experimental data

using (9) (JKR theory). For all systems with the ball radius

R = 3.175 mm (blue squares), the ratio vr/vz at the point

where the adhesion force is maximal is about 18 (blue line

in figure 10). Figure 11 shows that the ratio between the

measured crack tip velocity vr and the pull-off velocity vz, at

the point where the adhesion force is maximal, is about 15,

in good agreement with the prediction of the JKR theory (see

figure 10). In figure 11 the crack tip velocity has been deduced

6
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Figure 11. The ratio between the measured crack tip velocity
vr = |dr/dt| and the pull-off velocity vz = dz/dt is about 15, which
is in good agreement with the prediction of the JKR theory (see
figure 10). Based on measurements by removing silicon nitride balls
with radii R = 3.2, 2.4 and 1.6 mm from PDMS.

from optical inspection of how the radius of the contact region

decreases with time during the removal of silicon nitride balls

with radii R = 3.2, 2.4 and 1.6 mm from the PDMS–substrate.

4.2. Experimental results for smooth surfaces and analysis

We now present results for the effective interfacial crack

propagation energy γeff as obtained from the pull-off force of

balls (silicon nitride or PDMS) from flat surfaces (PDMS or

PMMA). We have deduced γeff as a function of the crack tip
velocity vcrack = vr = −dr/dt using (7) and (9).

The square symbols in figure 12 show the effective

interfacial energy γeff (in units of γ0(0)), as a function of the

crack tip velocity vr = −ṙ, as obtained from the experimental

data analyzed using the JKR theory. The used values for the

crack tip bond-breaking contribution γ0(0) are 0.125 J m−2

(for red data points) and 0.046 J m−2 (for blue data points).

The solid green lines are the viscoelastic factor [1 + f (v, T)],

as a function of the crack tip velocity (from figure 8). In

the present case the adhesion experiments were performed at

room temperature (T0 ≈ (20±2) ◦C), so only the lowest green

line is relevant, but the figure also shows that an inaccuracy

(±2 ◦C) in the temperature would have negligible effect on

the analysis7. The red squares are from the measurements

performed in Jülich with an R = 46.5 mm PDMS ball

against smooth PMMA, while the blue squares are from the

University of Florida measurements with an R ≈ 3 mm silicon

nitride ball against PDMS. Note that for vr < 10−4 m s−1

the experimental data exhibits the same velocity dependence

as the calculated crack propagation factor [1 + f (v, T)]. The

velocity dependence is very weak, roughly vα
r with α ≈ 0.12,

which reflects the very weak frequency dependence of the real

part of the viscoelastic modulus (see discussion in section 3).

7 The viscoelastic enhancement factor [1 + f (v, T)] depends on the crack

tip velocity and the temperature as the product vaT . Thus, changing the

temperature one could modify the crack propagation contribution. However,

this would also change the contribution from the interfacial bond-breaking

process (stress-aided, thermally activated process).

Figure 12. The square symbols are the effective interfacial energy
γeff(v) (in units of γ0(0)), as a function of the crack tip velocity
vr = −ṙ, obtained using the JKR theory. The red and blue squares
are from the experimental data obtained in Jülich (R = 46.5 mm
PDMS ball on PMMA) and at the University of Florida
(R = 3.175 mm silicon nitride ball on PDMS), with low-velocity
crack tip bond-breaking contributions γ0(0) = 0.125 J m−2 and
0.046 J m−2, respectively. The solid green lines are the viscoelastic
factor [1+ f (v, T)] as a function of the crack tip velocity from
figure 8. The lower green curve is for the temperature T = 20 ◦C of
the adhesion experiments, but the figure shows that the exact value
of the temperature is not very important for the viscoelastic factor
[1+ f (v, T)] as long as it is close to T ≈ 20 ◦C.

Figure 13. The square symbols are the interfacial bond-breaking
contribution γ0(v) to the interfacial energy, as a function of the
crack tip velocity vr = −ṙ, as obtained by dividing γeff in figure 12
(squares) by the calculated viscoelastic factor [1+ f (v, T)] (bottom
green line in figure 12). The dashed line is a fit to the data.

The square symbols in figure 13 show the interfacial

bond-breaking factor γ0 contribution to the interfacial energy,

as a function of the crack tip velocity vr =−dr/dt, as obtained

by dividing γeff (from figure 12) by the calculated viscoelastic

factor [1+ f (v, T)] (lower green line in figure 12). The dashed

line is a fit to the data, where the slope of the line for vr >

10−4 m s−1 corresponds to γ0 ∼ v
µ
r with µ ≈ 0.21 ± 0.01.

We interpret the velocity dependence exhibited by γ0(v) as

resulting from thermally activated stress-aided processes. In

particular, the removal of a chain molecule adsorbed on a

7
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Figure 14. γ0(v)/γ0(0) = 1+ Asinh−1(v/v0), as a function of the
separation velocity v = v⊥, with A = 0.7 and v0 = 0.0013 m s−1.

substrate (corrugated potential) may exhibit a nearly constant

pull-off energy at low velocity, which increases with velocity

above some critical velocity, see [15]. The most simple model

describing this effect assumes that there is an energy barrier on

the separation path, as indicated by the inset in figure 14 (see

section 8.3 in [1] and also [37]). Imagine first that the system

is in state B and we want to pull the surfaces apart. To do this

we have to apply a force sufficient to overcome the energy

barrier, with the help of the Brownian energy kBT . The total

energy to break the bond in this case is the sum of the adiabatic

work of adhesion γ0(0) = nEB (where n is the number of

adhesion units per unit surface area) and the work to overcome

the energy barrier, which will depend on the separation

speed v = v⊥. This simple model predicts γ0(v)/γ0(0) =

1+Asinh−1(v/v0), which is in qualitative agreement with our

observations (see figure 14). Note, however, that the (vertical)

separation velocity v⊥ is related to the crack tip velocity vr in

a non-trivial way that depends on the crack tip process zone

and how it is modified with increasing crack tip velocity. A

more refined model would need to take into account that, in

general, several barriers (and metastable states) occur on the

way between the initial E1 state and the final state E2 (see,

e.g., section 5 in [15]). See also appendix B.

4.3. Closing crack and role of dust particles

Viscoelastic energy dissipation in the rubber close to the

opening crack tip increases the energy to propagate the

opening crack with the factor [1 + f (v)]. For a closing

crack, the viscoelastic energy dissipation instead reduces the

crack propagation energy, roughly by a factor 1/[1 + f (v)]

(see [31, 36]). Thus for a closing crack one expects γ
closing
eff ≈

1γ/[1 + f (v)]. Since 1γ ≈ 0.05 J m−2 and since for vz ≈

1 µm we have [1 + f (v)] ≈ 3 we get a very small closing

crack propagation energy, γ
closing
eff ≈ 0.015 J m−2 at typical

crack tip velocities. This is in qualitative agreement with

our experiments, where in the Jülich experiments almost no

adhesion can be detected during the contact formation, see

figure 15(a).

Figure 15. (a) A typical loading–unloading cycle when a PDMS
sphere is brought in to and out of contact with a PMMA substrate
(Jülich experiment). After contact formation the sphere is loaded
until a given preload is reached, then kept for 2 min before pulling it
up again at a constant velocity until the two solids are separated. In
(b) we show a magnification of the point of contact formation (for
three different measurements) where the maximum adhesion force
(Fmin) is observed just after a short increase in the force signal
(Fmax). The latter effect can be attributed to dust particles that are
trapped in the contact zone and penetrate into the PDMS sphere
during contact formation (see figure 17). The approach velocity and
the separation velocity in all the experiments was
vz = ±0.5 µm s−1.

Figure 15(b) shows on a magnified scale the force as

a function of time during the contact formation, for three

nominally identical adhesion tests with vz = ±0.5 µm s−1.

Prior to contact, in all three cases there is an attractive force

of the order of ≈0.5 mN, which is due to the electrostatic

attraction between charges trapped on the PDMS ball and

the PMMA substrate. A similar attraction (not shown) occurs

after detachment. The maximum (attractive) adhesion force

during contact formation is F = Fmin ≈ −1.5 mN, which

is a factor of ∼2 smaller than expected theoretically. Thus

in figure 16 we show the relation between the force F and

the penetration δ as calculated using the JKR theory with

γ = 0.014 J m−2 as expected in the present case. This gives

for δ = 0 (the point of contact formation) the force Fmin ≈

−2.8 mN. We believe that the difference between the observed

and calculated adhesion force is due to contamination of the

8
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Figure 16. The relation between the penetration δ and the force F
for the JKR (red) and Hertz (blue) theory. In the calculation
E = 2.3 MPa, R = 47 mm and γ = 0.014 J m−2.

surfaces with micrometer-sized particles, which cannot be

avoided when working in normal atmospheric conditions. In

fact, before the attractive well is observed (at F = Fmin), we

observe an increase in the force, giving a local maximum

Fmax (see figure 15(b)). We interpret this as resulting from an

energetic barrier towards contact formation, induced by one

or several contamination particles.

The influence of contamination particles on the adhesion

is illustrated in figure 17. If a dust particle is trapped on the

rubber sphere close to the lowest point on the sphere (see

figure 17(a)), upon contact with the substrate the rubber must

deform around the dust particle (b) until the rubber finally

makes contact with the substrate (c). The elastic deformation

energy in state (b) constitutes an energy barrier against

contact formation, resulting in the local maximum Fmax in

the interaction force, as seen in figure 15(b). We can estimate

the barrier towards contact formation using the Hertz theory.

Assume that a spherical particle with radius r0 is located on a

flat rubber surface. If we apply a force F to the particle it will

penetrate into the rubber by a distance δ given by [35]:

δ =

(

9F2

16r0E∗2

)1/3

.

In order for the particle to penetrate completely (as in

figure 17(b)) we must have δ = 2r0, which gives

F ≈ 3.77r2
0E∗.

This equation can also be derived using dimensional

arguments: the work Fδ must equal the elastic deformation

energy. The latter is the product of the volume ∼r3
0 where

the deformation occurs, times the deformation energy per unit

volume, which equals∼σǫ ∼ Eǫ2, where σ is the stress and ǫ

the strain. With the strain ǫ ∼ δ/r0 we obtain the same result

as above, except for a numerical factor of the order of unity.

With r0 ≈ 5 µm the equation above gives F ≈ 0.2 mN, which

is similar to the height of the peak we observe before the

adhesion well. Another qualitative observation in the Florida

lab, supporting the picture presented above, was the absence

of adhesion between a rubber ball and a substrate after the ball

was kept for several months in a laboratory environment. After

Figure 17. If a dust particle is trapped on the rubber sphere close to
the lowest point on the sphere (a), upon contact with the substrate
the rubber must deform around the dust particle (b) until the rubber
finally makes contact with the substrate (c). The elastic deformation
energy in state (b) constitutes an energy barrier against contact
formation, resulting in the local maximum Fmax in the interaction
force seen in figure 15(b).

cleaning the surfaces the adhesion returned to its original

value8.
We have studied a PDMS–glass interface using an optical

microscope and detected several particles with a diameter

of the order of ∼10 µm. We first cleaned the surfaces

in a distilled water–soap mixture for ∼15 min, and then

rinsed the surfaces with distilled water to get rid of the

soap. The surfaces were dried in a normal atmosphere. The

rubber–glass interfaces were imaged at room temperature

using an Axiovert 200 (Carl Zeiss Microimaging GmbH,

Jena, Germany). The microscope was equipped with a LD

Plan Neofluar 40×/0.6 Ph2 (Carl Zeiss) objective. The

images were converted into 8-bit grayscale images and the

background image was subtracted (figures 18 and 19) from

the original image. For better visualization the images were

inverted, the brightness and contrast adjusted and the scale bar

added.
Figures 18 and 19 show two optical images with

particularly large trapped particles. Note that the rubber bends

around the particles and makes contact with the PMMA

surface a distance away from the particle of the order of the

8 It is clear that there must be a barrier towards adhesion resulting from

contamination particles, and the barrier we estimate theoretically is consistent

with what we observe in the experiments. However, there could also be a

very small effect resulting from charge neutralization effects in (or very close

to) the PDMS–substrate contact region. However, the surface of the contact

region is less than 1/1000 of the total surface area of the ball and we expect

a very small contribution to the change in the force from this effect, owing to

the expected low surface diffusion for charged groups on the PDMS surface.

9
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Figure 18. Optical image of the PDMS–glass interface with
trapped dust particles. Note that the rubber bends around the
particles and makes contact with the glass surface a distance away
from the particle of the order the particle radius, giving rise to the
circular rings around the particles.

Figure 19. Optical image of the PDMS–glass interface close to the
boundary line of the contact region. Note that the boundary line
(crack tip) bends around a particle at the edge of the contact region.

particle radius, giving rise to the circular rings around the

particles. In figure 19 it is interesting to note that the boundary

line (crack tip) of the rubber–substrate contact region bends

around a particle at the edge of the contact region.

For a spherical ‘contamination’ particle, e.g., a small

glass sphere, from the radius of the particle and the radius

of the circular rubber–substrate separation line (crack tip) one

can calculate or estimate the interfacial binding energy γeff.

Inspection of the PDMS–glass contact region shows

that, on average, several hundred micrometers separate

micrometer-sized trapped particles. In the Jülich experiments

the radius of the contact region is of the order of millimeters,

and, on average, several micrometer-sized particles occur in

the nominal contact region. In the Florida experiments the ball

radius is much smaller, and the radius of the nominal contact

region is of the order of 100 µm, i.e., the contact area is∼100

times smaller than in the Jülich experiments. Thus, in this

case, and in most other adhesion experiments presented in the

literature, usually no micrometer-sized particles occur in the

contact region, as is also seen clearly in the optical images in

figure 6(b).

Most of the particles that are observed after separating the

PDMS–glass contact are adsorbed on the PDMS surface. This

is expected because the dust particles have rough surfaces and

will adsorb more strongly on elastically soft materials, where

a larger contact area can form without storing up a lot elastic

deformation energy (see section 4.4) [38].

We have performed closing crack experiments at two

different velocities vz = 0.5 and 5 µm. On average we find

that the closing crack adhesion Fmin is about ∼35% larger at

the lower velocity. This agrees with the theory above, since the

ratio in the viscoelastic factor ∼1/(1+ f (v)) for vz = 0.5 and

5 µm is ≈1.3, i.e. about ∼30% larger at the lower velocity.

4.4. Theory for rough surfaces

We assume that the pull-off or maximum adhesion force

on all the surfaces (smooth and rough) is given by the

JKR expression, 3πγeffR/2, and is hence proportional to the

effective opening crack propagation energy (per unit surface

area) γeff(v). Here we will discuss how surface roughness

affects γeff(v), which we now denote by γ
rough
eff (v). Let us first

assume that no adhesion hysteresis occurs (i.e., the opening

and closing crack propagation energies are the same), and that

the solids are purely elastic (no viscoelasticity). For this case

we predict that, contrary to our experimental observations (see

section 4.5), the pull-off force should vanish for all the rough

surfaces 1, 2 and 3 used in the present study. The origin of this

effect is that the elastic energy stored at the interface in the

vicinity of the asperity contact regions is given back during

pull-off and helps to break the interfacial bonds between the

rubber and the PMMA substrates. We now discuss this effect

in detail.

In the theory developed in [39, 40] one of us has studied

the dependence of the area of contact A(ζ ) and the interfacial

energy (per unit surface area) γ (ζ ) on the magnification

ζ . When we observe the contact at a magnification ζ it is

assumed that no surface roughness with wavevectors q > ζq0

exists, i.e., the surfaces appear smooth at length scales shorter

than λ = 2π/q = 2π/(q0ζ ). As the magnification increases,

more roughness is observed and the area of (apparent) contact

decreases. The nominal or apparent contact area A0 = A(1) is

the contact area observed at the lowest magnification, where

the surfaces appear smooth. The true (atomistic) contact

area A1 = A(ζ1) is the contact area observed at the highest

magnification ζ1, where all the surface roughness components

are taken into account. γ (ζ ) is the interfacial binding energy

(per unit area) in the contact area A(ζ ) when the interface is

studied at a magnification ζ . It follows that γ (ζ1) = 1γ =

γ1+γ2−γ12, while γ (1)= γ
rough
eff is the effective macroscopic

interfacial energy in the surface area A0 = A(1), which is the

quantity which enters in the JKR theory. Thus, if γ (1) = 0 the

pull-off force will vanish, i.e., no adhesion will manifest itself

at the macroscopic scale. In the theory developed in [39] (see

also appendix C):

γ (1)A0 = 1γ A(ζ1)− Uel (10)

where Uel is the elastic energy (stored at the interface)

due to the deformations of the solids necessary in order to

10
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Figure 20. The relative area of contact, A(ζ1)/A0, for PDMS
against the rough PMMA surface 2, as a function of the squeezing
pressure, for the interfacial binding energies γ = 0.2, 0.12 and
0.057 J m−2. The figure shows that if γ = 1γ = 0.057 J m−2

during loading (closing crack) then the contact area formed at
p = 40 kPa will not change until p ≈ 8 kPa if during unloading
γ = 0.12 J m−2, while if γ = 0.2 J m−2 a large negative pressure
would be necessary before the contact area formed during the
loading act would start to decrease. Such a large negative pressure
prevails in the (JKR) ball–substrate contact only close to the rim
(opening crack) of the contact, see figure 23.

make contact at the interface. In the present application, if

there were no contact hysteresis, and if 1γ ≈ 0.057 J m−2

(as expected for the PDMS–PMMA interface at thermal

equilibrium), then the theory above predicts that the pull-off

force vanishes for all the rough surfaces 1, 2 and 3 used in

the present study. This is illustrated by the green curve in

figure 20, which shows the calculated relative area of contact,

A(ζ1)/A0, for PDMS against the rough PMMA surface 2, as a

function of the squeezing pressure. Note that as the pressure

approaches zero, the contact area vanishes and so will the

pull-off force. However, the interfacial adhesion does increase

the contact area when the load (or squeezing pressure) is

non-vanishing. This is illustrated in figure 21, which shows

the variation of the relative area of contact, A(ζ )/A0, and

the relative effective interfacial energy, γ (ζ )/1γ , with the

logarithm of the magnification ζ = q/q0 for PDMS rubber

squeezed against the rough PMMA surfaces 1, 2 and 3. The

normal pressure p = 40 kPa, which is the typical pressure

acting in the central part of the contact region when the load is

0.1 N (see figure 23). Note that, for magnifications larger than

ζc ≈ 100, in all cases the contact area becomes independent

of the magnification, i.e., the surfaces are in complete contact

within the asperity contact regions which can be observed at

a magnification ζc. In the absence of adhesion the contact

area would instead continue to decrease as the magnification

increases beyond ζc, as a new shorter wavelength roughness

now would be observed.

Note that in all cases the effective interfacial energy

vanishes before reaching a magnification ζ = 1. Thus, as

stated above, if there were no adhesion hysteresis (i.e. the

effective interfacial energy for the opening and closing crack

is equal) then the pull-off force would vanish for all the rough

PMMA substrate surfaces. Let us now include the adhesion

Figure 21. The variation of the relative area of contact, A(ζ )/A0,
and the relative effective interfacial energy, γ (ζ )/1γ , with the
logarithm of the magnification ζ = q/q0 for PDMS rubber squeezed
against the rough PMMA surfaces 1, 2 and 3. The normal pressure
p = 40 kPa and the interfacial energy 1γ = 0.057 J m−2.

hysteresis. We will show that in this case a large negative

pressure (as prevails only close to the edges of the (JKR)

macroscopic contact region during pull-off) is necessary in

order to break the asperity contact regions. That is, the elastic

energy stored in the vicinity of the asperity contact regions,

which determines the asperity contact strain energy release

rate G, is not large enough (i.e. G < γeff) to propagate an

opening crack (and reduce the size of the asperity contact

region), unless the asperity contact is in the macroscopic crack

tip process zone.

Assume that at the end of the loading cycle the asperity

contact regions appear as shown in figure 22(a). In the absence

of adhesion hysteresis (figure 22(b)), during unloading the

asperity contact regions would disappear in a similar way as

they were formed, and asperity contact regions even at the

center of the macroscopic contact area will decrease in size

even at the start of unloading, where the radius r(t) of the

macroscopic separation line (dashed lines in figure 22) is far

from the center of the contact region. However, if the adhesion

hysteresis is large enough so that the energy per unit area for

the opening crack γeff(v) ≫ 1γ , then the asperity contact

regions will only start to shrink when they are very close

to the macroscopic opening crack (in the crack tip process

zone) (figure 22(c)). In this case the pull-off force will be

non-vanishing, and to a good approximation given by the

JKR theory with γ
rough
eff ≈ γeff(v)A1/A0, where γeff(v) is the

effective interfacial energy obtained from the contact between

smooth surfaces (shown by the squares in figure 12). This

is illustrated in figure 22(c), where the size of the asperity

contact regions outside of the crack tip process zone remain

unchanged (in spite of the reduction in the contact pressure).

Very close to the tip of the macroscopic (apparent) opening

crack (dashed circle) the asperity contact regions are broken

by the propagation of microscopic opening cracks at each

asperity contact region. In this case, as stated above, γ
rough
eff ≈

γeff(v)A1/A0.

We now show that in the present case the adhesion

hysteresis is strong enough so that the asperity contact regions

11
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Figure 22. Schematic picture of the macroscopic contact area (a)
during loading and (b) during unloading in the absence of adhesion
hysteresis, and (c) when strong adhesion hysteresis occurs so that
γeff ≫ 1γ . The black regions indicate asperity contact regions.
Because of the adhesive interaction, complete contact occurs within
the black regions. During pull-off in case (b), the asperity contact
regions decrease in size everywhere. During pull-off in case (c), the
size of the asperity contact regions remain unchanged (in spite of
the reduction in the contact pressure) except close to the
macroscopic (apparent) opening crack tip (dashed circle) where the
asperity contact regions are broken by the propagation of
microscopic opening cracks at each asperity contact region.

are broken only close to the macroscopic separation line (tip

of opening crack)9. Figure 20 shows, for PDMS against the

rough PMMA surface 2, the relative area of contact as a

function of the squeezing pressure, for the interfacial binding

energies γ = 0.2, 0.12 and 0.057 J m−2. The opening crack

propagation energy is of the order of 0.2 J m−2, even at

the lowest propagation velocity studied in our experiments

(see figure 12). Figure 20 shows that in this case a strongly

negative pressure is necessary before A1/A0 ≈ 0.2, which

is the relative contact area resulting from the loading act

9 Adhesion hysteresis is practically always observed in reality, e.g., the

viscoelastic contribution enhances the effective interfacial energy during

pull-off (opening crack) and reduces it during approach (closing crack).

But also the interfacial bond formation and bond breaking is almost always

hysteretic, where usually elastic instabilities occur during bond breaking

(snapping processes) which dissipate energy and increase the effective

interfacial energy during the pull-off, in particular if long chain molecules

are involved. More complex processes such as interdiffusion, which would

depend on the time of stationary contact (before the separation process starts),

may also occur and increase the effective interfacial energy relevant for the

separation. In general, only if the approach and separation velocities were

extremely slow would one expect no hysteresis in the interfacial energy, but

this adiabatic limit may be impossible to reach in many cases.

Figure 23. The contact pressure as a function of the radial position
for a PDMS ball at different normal forces. Fc = 3πγ R/2 is the
maximum JKR adhesion force. The red lines are the JKR theory
predictions and the blue lines are the Hertz theory predictions. In the
JKR theory we have used γ = 0.04 J m−2, which is roughly the
observed crack-opening energy for PDMS against the rough PMMA
surface 2 or 3.

Figure 24. A liquid droplet on a substrate. (a) In the absence of
contact angle hysteresis, when the fluid is injected or redrawn from
the droplet, the size of the fluid contact region changes in such a
way that the shape of the droplet (spherical cup) is unchanged.
(b) When contact angle hysteresis occurs, the size of the
liquid–solid contact region does not change until enough fluid has
been pulled away from the droplet such that the contact angle is
reduced to a lower critical value.

(green line in figure 20). A high negative pressure prevails

only close to the macroscopic opening crack tip, so only here

will the asperity contact regions decrease in size and (finally)

break. This is illustrated in figure 23, which shows the contact

pressure as a function of the radial position for a PDMS ball at

different normal forces. Here Fc = 3πγ R/2 is the maximum

JKR adhesion force.

The adhesion hysteresis effect illustrated in figure 22 is

very similar to liquid contact angle hysteresis, see figure 24. In

the latter case there is hysteresis in the fluid–substrate contact

area as a function of the fluid (Laplace) pressure in the droplet.

To summarize, for the surfaces 1–3 studied, our contact

mechanics theory predicts that at equilibrium no adhesion

would occur with the PDMS ball. Nevertheless, we observe a

non-zero pull-off force (see below) after first bringing together

the solids with a squeezing force in the range 0.1–0.2 N. We

interpret this as a kinetic effect: during separation at finite

velocity there is not enough time for the equilibrium state to

develop, as clearly seen in figure 12. As shown below, the

experimental data can be explained if it is assumed that the
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Figure 25. The ratio F/F0 between the pull-off force F on the
rough surfaces 1, 2 and 3, and the pull-off force F0 on the smooth
surface, as a function of the pull-off velocity.

energy per unit area to propagate the interfacial opening crack

is given by γ
rough
eff ≈ γeff(v)A1/A0.

4.5. Experimental results for rough surfaces and analysis

We have measured the pull-off force F for both smooth and

rough PMMA surfaces with the surface roughness power

spectra shown in figure 3. In the analysis we assume that

the sandblasting does not change the surface chemistry but

only the surface topography10. Figure 25 shows the ratio

F/F0 between the pull-off force F on the rough surfaces 1,

2 and 3, and the pull-off force F0 on the smooth surface, as

a function of the pull-off velocity. In all cases the maximum

load before pull-off was ≈0.1 N. When the velocity increases

from 0.012 to 13.28 µm s−1, the pull-off force for the flat

surface increases by about a factor of three (from about 0.051

to 0.154 N). However the change in the ratio F/F0 in this

velocity range is very small, i.e., the pull-off force on the

rough surfaces exhibits the same velocity dependence as on

the smooth surfaces. The average ratios 〈F/F0〉 (over all the

data points) for the surfaces 1, 2 and 3 are 0.66, 0.235 and

0.16, respectively.

We can explain the reduction in the pull-off force

between the smooth and rough surfaces by assuming that

the pull-off force is proportional to the relative contact area

A1/A0 (see section 4.4 and [41]) at maximal load. Thus we

assume γ
rough
eff (v) = γeff(v)A1/A0, where γeff(v) is the energy

to propagate the interfacial opening crack on the smooth

10 The adhesion depends sensitively on the last monolayer (e.g., contamina-

tion layer) of molecules on the solid surfaces and we cannot exclude that the

sandblasting may have modified the surface energy of the substrate. However,

if such a modification were to occur, e.g., due to removal of a thin surface

layer during the sandblasting process, one would expect similar changes

to occur for all three sandblasted surfaces, whereas we observe a strong

drop in the adhesion with increasing sandblasting time (compare surface 1

with surface 2 and 3 in figure 25), which also agrees with what we predict

theoretically. In addition, if the sandblasting were to affect the interfacial

energy one would expect (if anything) it to increase the interfacial energy

by, e.g., inducing bond breaking or oxidation of the top surface layer, or

removal of contamination layer, whereas we observe a strong reduction in

the adhesion.

Figure 26. Mechanism for the decrease in pull-off force upon
repeated contact. The transfer of oligomers between the sample
(PDMS rubber) and probe (glass sphere) results in a pull-off force
which changes after every new contact until a steady state
configuration has been obtained. The study in [42] shows that 1000
contacts (or more) may be necessary in order to obtain the steady
state.

surface. We calculate A1/A0 using the contact mechanics

theory of Persson and include adhesion with the interfacial

binding energy γ = 0.057 J m−2 (closing crack). As shown

in figure 21 (for ζ > ζc ≈ 100), this gives the relative contact

area A1/A0 = 0.55, 0.28 and 0.24 for surfaces 1, 2 and 3, in

relative good agreement with the ratio 〈F/F0〉 for the surfaces

1, 2 and 3 (0.66, 0.235 and 0.16, respectively).

As discussed in section 4.4, the basic assumption behind

our approach is that the asperity contact regions, which are

formed during the loading act, are broken (or reduced in size)

only very close to the rim of the apparent contact region (in the

crack tip process zone). If the radial width 1r of this region is

much smaller than the radius r(t) of the (apparent) contact

region, the JKR theory can be used to analyze the pull-off

experiments.

5. Discussion

The experimental results presented in section 4.2 were

obtained using two different experimental setups, and give

different magnitudes of the effective interfacial energy γeff.

In particular, γ0 = 0.046 and 0.125 J m−2 for the experiments

with a small silicon nitride ball (R ≈ 3.2 mm) against PDMS,

and for a large PDMS ball (R ≈ 47 mm) against PMMA.

We believe that this difference reflects the surface conditions

of the probe and the substrate. Thus, 10:1 Sylgard PDMS,

cross-linked according to the standard procedures used in

our studies, has a large fraction of uncrosslinked chains, of

the order of 3.6% of the mass or volume (as deduced from

extraction of free chains by swelling in hexane), which can

diffuse to the surface forming a thin liquid-like film. During

contact with the countersurface, oligomers can be transferred

to the countersurface, as illustrated in figure 26, which will

modify the interfacial interaction energy and the pull-off

force. This effect has been studied in great detail by Kroner

et al [42]. For a glass ball (radius R = 2 mm) repeatedly

pushed against and removed from a PDMS surface (pull-off

velocity vz = 2 µm s−1), they found in one case that the
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Figure 27. After very long contact time, or after repeating contact
many times, a capillary bridge of oligomers may form between the
sample (PDMS rubber) and the probe (glass ball). In this case, when
the thickness of the capillary bridge is large enough for continuum
mechanics to be valid, the work of adhesion at slow separation
would be twice the surface tension of liquid PDMS, i.e. about
0.04 J m−2.

pull-off force dropped from ≈0.0034 N at first contact to

≈0.0012 N after 1000 contacts (see figures 2(b) in [42]).

Using the theory of section 4.1, this corresponds to γeff =

0.36 J m−2 and 0.13 J m−2, respectively, and, after removing

the viscoelastic factor [1 + f (v)], to γ0 = 0.12 J m−2 and

0.042 J m−2, respectively. The latter value corresponds to

about twice the surface tension of silicone oil (the free chain

component of PDMS rubber), which would be the γ0 expected

if adhesion were to result, e.g., from a fluid capillary bridge,

as indicated in figure 27. These values are also similar to those

obtained in section 4.2.

In [43] it was observed that when a PDMS ball was

removed from a flat PDMS surface the work of adhesion

γeff = 0.056 J m−2, while when the free chains were extracted

γeff = 0.33 J m−2. This was tentatively attributed to chemical

effects and the formation of hydrogen bonds across the

interface, which is known to happen if the PDMS surface is

oxidized (e.g., exposed to oxygen plasma) [44]. However, the

study above and in [42] indicate that the explanation may be

related to the involvement of free chains. In this context we

note that we have also observed stronger adhesion for PDMS

with extracted chains. We conclude that Sylgard PDMS is not

such an ideal elastic rubber as usually assumed, but exhibits a

large tan δ (i.e., large dissipation) already for small perturbing

frequencies (see figure 1), and has very complex surface

properties.

In [16] the pull-off force was studied between a PDMS

rubber ball (the radius R = 4.233 mm) and seven different

surfaces made from epoxy resin and produced from templates

of evaporated aluminum films. These surfaces have rms

roughness values much smaller than those used in the present

study, namely 0.03 to 0.2 µm, as compared to surfaces 1–3

with hrms = 1.49, 2.09, 2.58 µm. In figure 28 we compare the

surface roughness power spectra of surfaces 1–3 with surface

6 used in [16], which has an rms roughness about 0.165 µm.

The surfaces with rms roughness from 0.12 µm to 0.2 µm

in [16] all exhibited a similar reduction in the pull-off force

Figure 28. The surface roughness power spectra of the surfaces 1, 2
and 3 used in the present study and of surface 6 used in [16] as a
function of the wavevector (log10–log10 scale).

(as compared to a flat surface) to surfaces 2 and 3 in the

present study, and in particular the pull-off force on surface

6 was F/F0 ≈ 0.2. However, the contact mechanics seems to

be very different. Thus the study in [16] showed that almost

complete contact occurs within the nominal contact area of

surface 6, and the reduction in the pull-off force was attributed

to the reduction in the effective interfacial energy from the

elastic energy Uel stored at the interface and resulting from the

bending of the bottom surface of rubber which is necessary in

order for contact to occur. In the present study, for surfaces

2 and 3, we instead found (at the load ∼0.1 N) the contact

area to be only a fraction ∼0.2 of the nominal contact area,

which was also the reduction found in the pull-off force. We

have shown above that in the present experiments the elastic

energy Uel has only a small effect on the energy necessary

to break the adhesive bonds at the interface, and that the

observed non-vanishing pull-off force is mainly due to the

strong adhesion hysteresis.

In a sequence of papers, Kröger et al [45–47] have

studied the adhesion between rubber and smooth and rough

surfaces. In the experiments, a rubber ball is kept in contact

with a substrate for a given time period, and then removed

rapidly, typically on a few milliseconds time scale, from the

substrate. The experiments show relative strong adhesion even

to a substrate as rough as corundum paper or asphalt road

surfaces. No detailed analysis of the experimental data is

possible, as the surface topography and rubber viscoelastic

properties were not studied, but the observed pull-off force is

consistent with the JKR type of analysis presented above, with

γ
rough
eff ≈ γeff(v)A1/A0. In particular, Kröger et al observed

that the pull-off force appears to approach zero continuously

as the preload approaches zero.

6. Summary and conclusion

We have studied the adhesion between PDMS rubber and

smooth and rough PMMA surfaces, and smooth silicon

nitride surfaces. In agreement with earlier studies we have

found that there are large variations in the strength of the

adhesion depending both on the surface contamination or
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preparation procedure and on the number of contact cycles

between the rubber and the substrate. The latter effect is

most likely due to transfer of free rubber polymer chains to

the countersurface. For smooth surfaces we have shown that

the viscoelastic energy dissipation in the rubber at the crack

tip gives an important contribution [1 + f (v)] to the crack

propagation energy. Furthermore, as expected, the interfacial

bond-breaking contribution γ0(v) also depends on the crack

tip velocity v. We have shown that surface roughness may

strongly reduce or even eliminate the adhesion between

PDMS rubber balls and the countersurface. In the present

study this is mainly due to the reduction in the area of real

contact, and to a smaller extent due to the elastic energy stored

at the contact interface, which is (partly) given back during

removal of the contact.
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Appendix A. Contribution from charging to the
work of adhesion

The negative force seen, e.g. in figure 5, is due to charges

trapped on the PDMS and the PMMA surfaces. The mobility

(in the bulk or on the surface) of charges on the PDMS

and on the PMMA is likely to be very low (these materials

are large-gap insulators) and there is no reason why charge

neutralization should occur during the finite contact time. We

note that in the Jülich experiment the rubber ball is very

large (diameter almost 10 cm) and it is likely that the surface

charges are more or less uniformly distributed on the ball,

so that very long diffusion distances would be involved for

charge neutralization to occur. The charging effect seen in

figure 5 is, however, exceptional large (due to the preparation

of the system), and in the actual experiments the charging

effect is ≈100 times smaller (as in figure 15(b)), but even

in these latter cases there is probably no time for charge

neutralization to occur, and the attractive electrostatic force

after separation is nearly as large as before contact (not

shown in figure 15). However, experiments have shown that

charging (typically net charge densities ∼1 nC cm−2, which

is roughly ∼10 times more than what we observe) always

occurs when two polymer solids (even if identical materials)

are separated after mechanical (adhesive or frictional) contact,

see e.g., [22] (and references therein) and [48]. We expect the

charging effect to depend on the external conditions, e.g., air

humidity or electrically charged ions in the atmosphere, but

we have not studied these (interesting) effects systematically.

We estimate that in our case the electrostatic contribution

to the work of adhesion during separation is completely

negligible (see figure 15(a)), and has negligible influence

on our measured results. (Note: we do not include in the

work of adhesion the electrostatic contribution resulting from

separation of the solids by a large distance, as this contribution

may be non-negligible due to the long-range nature of the

electrostatic contribution.) We note that in the paper by Fuller

and Tabor [7], for PDMS rubber balls in contact with PMMA,

they also observed charging effects, which they reduced by

exposing the system to an α-source (210Po).

Appendix B. On the velocity dependence of the work
of adhesion

Maugis and Barquins claim that for polyurethane the effective

work of adhesion during separation scales with the crack tip

velocity as v0.6, which they interpreted as due entirely to the

viscoelastic energy dissipation in the rubber in the vicinity

of the crack tip. In [31] it was argued theoretically that, for

high velocity, if Re E(ω) ∼ ωβ then [1+ f (v, T)] ∼ vα , where

α = β/(1 + β). In general, Re E(ω) will not be a perfect

power of the frequency and [1 + f (v)] will not be a perfect

power of the velocity, but rather a more complex function (see

figure 8 for the case of PDMS). Thus the exponent α is not a

universal number, but takes different values depending on the

viscoelastic modulus; e.g., for SB rubber the measurements

of Gent [30] give a region where the power law holds with

α = 0.27. The exponent α we calculate for polyurethane

using the measured viscoelastic modulus (where β ≈ 0.23 in

some intermediate frequency range; see, e.g., [49]) is about

0.19, i.e. rather different from the 0.6 found for the effective

interfacial energy for polyurethane by Maugis and Barquins.

However, they do not take into account in the analysis that the

bond-breaking contribution γ0 also depends on the crack tip

velocity (and temperature). We believe that the strong velocity

dependence vα (α = 0.6) they observe for γeff results from

a combination (α = α1 + α2) of a velocity dependence of

[1 + f (v)] (roughly α1 ≈ 0.2) and a velocity dependence of

γ0(v) (roughly α2 ≈ 0.4). We note that thermal activation

of the interfacial bond breaking is particular important for

the weak bonds as involved in many adhesion studies, while

for strong covalent bonds it is much less important. This

explains why Gent in his study of the peeling of two SB

rubber sheets, cross-linked by covalent (sulfur) bounds at the

interface, found α = 0.27 in a large velocity range, in close

agreement with the theory prediction α = β/(1+ β) = 0.26.

Appendix C. Radiative and damped detachment
events

We note that even for solids that are perfectly elastic,

equation (10) is only approximately valid, because during

pull-off some fraction of the stored elastic energy Uel will

be lost as radiation of sound waves, rather than used to

break interfacial bonds, see figure C.1. For a viscoelastic solid

some fraction of Uel will also be lost during the viscoelastic

deformations associated with the local detachment. Thus, of

the order of αUel of the stored elastic energy will be lost

where α ≈ (π/2) tan δ(ω). In the present case tan δ ≈ 0.2

(see figure 1), and we conclude that some fraction of the

stored elastic energy will be lost due to the viscoelastic energy

dissipation, which will contribute to the pull-off force.
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Figure C.1. (a) An opening crack during pull-off. (b) A local
detachment event in front of the crack tip. An asperity contact
region detaching rapidly with energy radiating inside the block
rather than being used to break other asperity contact regions. For a
viscoelastic solid, bulk energy dissipation may also occur during the
detachment process, in particular if the frequency ω ≈ (|E|/ρ)1/2q
(where |E| = |E(ω)| is the absolute value of the elastic modulus at a
frequency ω, ρ is the rubber mass density and q ≈ 1/D, where D is
the diameter of the detached region) occurs in a region where
tan δ = Im E(ω)/Re E(ω) is large.
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