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Pcont
PAuid

Area of real contact

Nominal contact area

Hertzian contact area

Apparent contact area at magnification ¢

Surface roughness power spectrum

Bottom surface roughness power spectrum
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Thermal length
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Zero moment of the surface roughness power spectrum
Second moment of the surface roughness power spectrum
Fourth moment of the surface roughness power spectrum
Number of contacting asperities per unit area
Number of asperities per unit area

Squeezing pressure

Normal squeezing pressure

High hydrostatic pressure

Low hydrostatic pressure

Percolation treshold

Average contact pressure

Average fluid pressure
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Surface height probability distribution
Joint probability distribution

Stress distribution in the contact at magnification ¢
Surface roughness wavevector
Smallest possible wavevector

Long distance roll-off wavevector
Short distance cut-off wavevector
Fluid volume flow rate

Radius of the Hertz contact region
Arithmetic roughness average
Root-mean-square (RMS) roughness
Average maximum height of the profile
Shape factor

Temperature

Interfacial separation

Mean interfacial separation
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Surface height
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Hydrostatic pressure difference
Phase difference

Stress
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Fluid viscosity

Thermal conductivity

Lateral resolution

Coefficient of friction

Poisson’s ratio

Mass density

Applied squeezing pressure or stress
Frictional shear stress

Hertz pressure distribution

Fluid pressure flow factor
Perturbing or excitation frequency



1 Introduction

Contact mechanics and friction are topics of huge importance with many ap-
plications in Nature and technology. They are closely interconnected, so that un-
derstanding friction requires a deep insight into the contact formation between two
solids. During university studies, students learn very early that the sliding friction
force Ft is proportional to the normal force F and independent of the relative sli-
ding velocity, Fy = puFN. The constant of proportionality u, the coefficient of friction,
depends on several parameters, such as the material combination, temperature and
surface roughness. Thus one may think that friction is a simple and well understood
subject. It is, in fact, one of the oldest topics in physics, and a vast amount of
work has been invested in order to gain insight into contact mechanics and friction.
Despite all the theoretical and experimental effort, neither topic is well understood.

The importance of contact mechanics and friction cannot be overestimated, as
they affect our every day life in countless situations. The reader of this manuscript,
for example, would be unable to turn to the next page or walk to the coffee machine
in the absence of friction. The complex nature of friction results from its extreme
surface sensitivity; a single monolayer of interface atoms or molecules can change the
friction by an order of magnitude (or more). In addition, friction usually depends
on many decades in length scales, which can be illustrated by two examples. On the
nanometer scale, the coefficient of friction between two clean diamond surfaces in
ultrahigh vacuum is typically of order 1 or more, because of the strong interaction
between the surface dangling bonds. If these bonds are saturated with a hydrogen
monolayer, the coefficient of friction decreases rapidly to ~ 0.05. This shows that
even a nanometer thick boundary layer can influence the friction greatly. On the
other hand, energy losses due to tidal forces cause the rotation of the earth to
slow by the order of 1.6 - 1077 seconds per year. This is the reason why during the
Cambrian age, approximately 500 Million years ago, the day had only about 21
hours. How to account for all the relevant length scales remains an important and
open problem in physics.

Surface interactions are not only of crucial importance in Nature, they also dictate
and control the functions of practically every device developed by man to enhance
the quality of life. The study of “the science and technology of interacting surfaces in
relative motion and the practices related thereto” [44] is called tribology, based upon
the Greek word tribo (T ptfw) meaning “I rub”. An early example of the evolution of
our knowledge about friction is shown in a painting found in a grotto at El-Bershed
(Egypt) dated about 1880 B.C. (see Fig. 1.1) where a large stone statue is moved
on a sledge towed by numerous workers/slaves. In order to lower the friction forces
at the contacting interface, an officer standing at the front of the pedestal pours a



Abbildung 1.1: A painting found at El-Bershed, dated about 1880 B.C., showing an
officer pouring a lubricant in front of a statue in order to reduce the
sliding friction.

lubricant onto the ground directly in front of the sledge. However, sometimes it is
necessary to maximize friction rather than minimize it. For example, around 200.000
B.C., the Neanderthal people used high friction to generate fire by rubbing wood on
wood, and by striking flint stones together.

As a modern scientific discipline, tribology itself is a relative young and interdis-
ciplinary subject involving lubrication, friction and wear, and its role has become
increasingly important as many technological devices undergo miniaturization of
their moving parts. [6, 9, 41]. It has been estimated that the energy losses and wear
in technical systems resulting from failure to reduce friction amount to 4 — 6% of
the gross national product in industrialized countries. This amounts to billions of
Euros every year, a huge economical loss. Improving the efficiency is not just an
economical issue, it can contribute in an important way to the fight against global
warming and the resulting climate change. In spite of its importance, many aspects
of contact mechanics and friction are still not well understood, and an understanding
of friction on an atomic level is just starting to emerge.

Recently Persson developed a novel theory to describe the contact formation bet-
ween two solids and to calculate the friction between these two bodies if one com-
promises a rubber-like material. This theory has been developed in the context of
a tyre running on a road surface (rubber friction) and is based on a novel theory
for contact mechanics. Much effort has been devoted to test this approach by com-
parisons to numerical (e.g. molecular dynamics) simulations, but there has been no
comprehensive experimental test of this theory. This has motivated the work presen-
ted in this thesis, where a set of experiments has been performed to test the theory.
The work presented in the following chapters addresses the validation, improvement
and extension of the approach.

The work is structured in the following way. In Sec. 2, different approaches towards
contact mechanics for elastic solids with randomly rough surfaces are reviewed briefly



to introduce the framework of this thesis, and experiments are described in Sections
3—06 to test the predictions of the theory of Persson and to compare with predictions
of the state-of-the-art theories of contact mechanics. The approach is then tested
in more detail by studying applications of the theory to the technical problems
described below, of which are of great engineering interest. In Sec. 7 the approach
of Persson to calculate the friction of an elastic solid in relative motion on a rough
substrate is studied.

Interfacial separation is the distance between solids in contact in the non-contact
areas. It is important, for example, in leakage of seals, heat transfer and tyre
noise. Here the mean interfacial separation between two solids with randomly
rough surfaces is studied, as well as its dependance on the squeezing pressure
applied.

Leak rate of seals is a topic of economic and ecological interest. By understanding
the contact mechanics, it is possible to model the flow of a fluid from the high
pressure side to the low pressure side in a static seal. Applying the contact
mechanics theory of Persson and percolation theory, one can calculate the
leakage resulting from fluid flow in percolating non-contact channels. This
approach is described and tested using model experiments.

Squeezing out of fluids between two solids that have rough surfaces and are in
contact. Bringing two solids together in the presence of a fluid results in fluid
squeeze-out during contact formation. This is relevant, for example, for tyres
on a wet road or for dynamic rubber seals. Adopting the leak rate theory it is
possible to calculate the time-dependent squeeze out, which is compared with
experimental data obtained using a simple device.

Heat transfer between rough surfaces is another application of the theory of con-
tact mechanics. The origin of the heat transfer via the real area of contact,
and via the non-contact regions for two solids with rough surfaces in contact
will be explained. A simple experiment to test the accuracy of this theory is
presented.

Rubber friction A theory of Persson on rubber friction, based on the contact me-
chanics theory, is described briefly, and its predictions are compared with the
results of carefully performed model experiments.

The thesis is concluded with a short summary of the work and the results obtained.






2 Contact Mechanics

The nature of the contact formation between two solids is still not well
understood due to the fact that most real surfaces exhibit surface rough-
ness on many decades in length scales. This section deals with the history
and the progress of contact mechanics. A simple way of how to describe
surface roughness is introduced. Different approaches to contact mecha-
nics are described, namely the traditional and state-of-the-art multiaspe-
rity contact theories as well as a novel approach by Persson. The most
advanced classical theory by Bush, Gibson and Thomas, as well as the
theory of Persson, are briefly reviewed.

Contact mechanics is the study of the deformation of two solids that come into
contact. It is fundamental to the field of mechanical engineering by providing infor-
mation necessary for the safe and energy efficient design of technical systems. Much
research has been carried out in the last decades to find accurate contact mechanics
models but a full comprehension of the nature of the contact between two solids
with randomly rough surfaces has not yet been achieved. The reason for this is that
surfaces of solids usually exhibit surface roughness over many decades in length sca-
les. In general, when two elastic solids with surface roughness are squeezed together,
they do not make contact everywhere in the apparent contact area, but only at a
distribution of asperity contact spots, real atomic contact exists. The three most im-
portant physical quantities in contact mechanics are the area of real contact, the
interfacial separation in the non-contact regions, and the stress distribution in
the contact regions [42, 43, 72, 85, 93].

Contact mechanics has a long history. The first analytical study was presented
by Hertz in 1882 where the frictionless contact between elastic solids with smooth
surface profiles was studied [38]. Hertz assumed that close to the contact area, these
(undeformed) solids have parabolic shape. For this model, the theory predicts a non-
linear increase of the contact area A with the squeezing force Fy, namely A ~ Ffl/ s,

The simplest model of a rough surface consists of a regular array of spherical
bumps with equal radius of curvature R and equal height A as illustrated in Fig.
2.1 (a). If such a surface is squeezed against an elastic solid with a flat surface,
the Hertz contact theory can approximately be applied to each asperity. This is
the simplest multiasperity contact model where the surface roughness is modelled as
bumps. Applying the Hertz contact theory to each contact spot, this simple approach
results in an increase of the real area of contact with the normal load as Fli/ 3,
However, this is not in accordance with experiments, which show indirectly that the
real area of contact is proportional to Fy as long as the contact area A is small
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Abbildung 2.1: Three different models of a “rough” surface. In case (a) all the aspe-
rities are equally high and have identical radius of curvature. Intro-
ducing asperities with a random height distribution as in (b) gives
the Greenwood-Williamson approach on contact mechanics. In (c)
a real, randomly rough surface is shown where the asperities are of
different heights and curvature radii.

compared with the nominal contact area Ag.

In a pioneering study, Archard developed a more realistic hierarchical model,
where surface roughness is described as small spherical bumps on top of larger
spherical bumps and so on [1]. It can be shown that this idea leads to an area
of real contact which is proportional to the applied load. A more useful model, from
the point of view of application, was presented by Greenwood and Williamson (GW)
[31, 32]. They modeled the roughness as an ensemble of identical spherical asperities
with equal radius R and with randomly distributed heights to take account of the
surface statistics, see Fig. 2.1 (b).

The most advanced multiasperity contact theory has been presented by Bush,
Gibson and Thomas (BGT) [12] in 1975. Following Longuet-Higgins [49] and Na-
yak’s [66] statistical theory of isotropic randomly rough surfaces, they modeled the
asperities as paraboloids with two different radii of curvature. While the GW theory
assumes roughness on a single length scale, resulting in a slightly non-linear depen-
dance of the real area of contact on the load, the BGT theory takes into account
roughness on different length scales. This leads to a linear relation between the real
area of contact A with the load as long as A is much smaller then the nominal
contact area Ag. Thus, BGT were able to show that A is strictly proportional to
the load only when roughness occurs on different length scales. However this linear
relation between squeezing pressure and real area of contact holds true only for very
low pressures. Multiasperity theories are in general believed to give correct results
only for very small loads and contact areas. This is due to two simplifications done:
The first and most severe approximation is that long-range elastic deformation is
neglected. However, if an asperity is pushed downwards, it will effect the contact
between other asperities, as shown schematically in Fig. 2.2. Accounting for the
deformation of the big asperity, the contact in (b) is bigger than in (a) where the
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Abbildung 2.2: It is shown how long-range elastic deformation influences the contact
formation. In (a) the deformation of the large asperity is neglected
leading to a smaller area of contact as in (b) where the influence of
the deformation field on the other asperities is considered properly.

long-range elastic deformation is neglected. The second problem is the rather idea-
lized roughness model, where roughness is described by asperities or bumps with
identical radius of curvatures. The hierarchical, fractal-like nature of real surfaces,
as shown in Fig. 2.1 (¢) and 2.3, is not considered properly.

Recently a novel and fundamentally different approach towards contact mecha-
nics has been presented by Persson [74, 75]. In contrast to the multiasperity contact
theories, where the area of real contact has to be much smaller than the nominal
contact area, this approach starts from the opposite limit of very large contact. Here
the squeezing force is so high that nearly complete contact occurs, and in this limit
the theory predictions are exact. For small forces the projected (on the zy-plane)
contact area A is proportional to the load Fy, while A approaches Ay in a continuous
manner as Fy increases towards infinity. In this theory a diffusion-like equation is
used to calculate the stress distribution at the interface. This equation is derived
by studying the interface at different magnification (. First the surface is conside-
red to be smooth with no noticeable roughness. Looking at the interface with low
magnification (or low resolution), no surface height variations can be observed. The
surface appears perfectly smooth. The magnification is then successively increased
so that more and more (or shorter and shorter) roughness components are consi-
dered. Including all length scales gives the full stress distribution observed at the
highest magnification. The area of real contact can then be deduced from the stress
distribution.

The experts are still arguing about which approach gives better results [8, 14, 15,
21, 40, 58, 114]. It can be shown that, for the reasons already mentioned above,
the multiasperity contact theories only hold when the contact area is very small
and when roughness occurs on a single (or a narrow range of) length scale. There-
fore they are not of particular interest for most engineering applications. However
a rigorous and comprehensive experimental test of the theory of Persson has not
been performed yet. In the first part of this section on contact mechanics, surface
roughness is introduced and a convenient manner of how to describe it is presented.
Then the two different approaches towards contact mechanics, with BGT as the
most advanced multiasperity contact theory, are briefly described.



2.1 Surface Roughness

Surface roughness is specified as and quantified by the vertical deviations z = h(x,y)
of a real surface from its ideal form. The larger these deviations are, the rougher
the surface is considered to be. If the deviations are small, the surface is classified
to be smooth. Roughness is usually characterized using simple parameters, e.g. the
arithmetic average R,, the root-mean-squared R, or the average surface roughness
R,. However, most surfaces tend to be nearly self-affine fractal, and since these
parameters are dominated by surface roughness observable at rather low magnifi-
cation, the roughness can not be properly described by these parameters alone. A
self-affine fractal surface has the property that if a part of the surface is magnified,
with different magnifications in the perpendicular direction to the surface as compa-
red with the parallel (in plane) direction, it “looks the same” and also the statistical
properties are invariant under this scale transformation (see Fig. 2.3).

=100

Abbildung 2.3: Magnifying a contact region with the magnification ¢ one observes
smaller length scale roughness and the surface “looks the same” as
before [85].

The best method to describe surface roughness on many different length scales wi-
thout loosing important information is the surface roughness power spectrum (or
power spectral density) C(q) [20, 75]. For a randomly rough surface, that is when
h(x) is a Gaussian random variable, the statistical properties of the surface are
completely described by the power spectrum. C(q) is the Fourier transform of the
height-height correlation function, but it can also be defined through the square
modulus of the Fourier transform of h(x). This is indeed the conventional approach
adopted from the context of signal theory. Here, the power spectrum describes how
the power of a signal or time series is distributed with frequency, i.e. it describes how
the signal varies with frequency rather than with time. The power can be the actual
physical power but more often it is the squared value of the signal. For the case of
the surface roughness power spectrum, the topography information z = h(z,y) is
transformed using Fourier transformation from real space x = (x,y) to frequency
or wavevector space q = (¢, qy), (where ¢ = 2m/X is the roughness wavelength),
whereas the power represents the squared value of the roughness amplitude.



Cla) = i [ o (10RO o> 2.1)

Here z = h(x) is the height of the surface at the point x = (z,y) above a flat refe-
rence plane chosen so that (h(x)) = 0. The angular bracket (...) stands for ensemble
averaging. The roughness parameters presented before, e.g. R, are usually domi-
nated by the longest wavelength surface roughness components, while higher order
moments of the power spectrum such as the average slope or the average surface
curvature are dominated by the shorter wavelength components. However these pa-
rameters contain no information about the hierarchic structure of the surface. Many
surfaces of technological interest are to a good approximation self-affine fractal so
that the power spectrum of these surfaces can be written as

Clg) x (CIO>2(HH) (2.2)

q

where H is the so called Hurst exponent which can be related to the fractal dimension
using Dy = 3 — H. Real surfaces are not self-affine fractal over all length scales. The
largest possible wavevector is g1 ~ 2m/a where a is the smallest relevant length
scale, e.g. an atomic distance, whereas the smallest possible wavevector ¢y, ~ 27/L
is defined by the linear size L of the system considered. Surfaces of importance in
technology are typically, to a good approximation, self-affine fractal in some finite
wavevector regime, say for gy < ¢ < q1, as it is shown schematically in Fig. 2.4. The
fractal dimension of surfaces prepared by sandblasting, grinding or laying of a road
surface are typically Dy =~ 2.2 to 2.5.

log C

aqL Go logq 94

Abbildung 2.4: The surface roughness power spectrum of a surface which is self-
affine fractal for ¢o < ¢ < ¢1. The long distance roll-off wavevector
qo and the short distance cut-off wavevector ¢; depend on the system
under consideration. The slope of the log C — log ¢ plot for ¢ > qg
determines the fractal dimension of the surface. The lateral size L
of the available surface region determines the smallest wavevector
qr. = 27/ L.

Measuring surface roughness is often performed nowadays, and depending on the
wavelength range different methods can be used, e.g. stylus (or linescan) methods,



optical methods, atomic force microscopy or scanning tunneling microscopy. The
full power spectrum is obtained by superposition of the information obtained at
different lengthscales to a full surface roughness power spectrum as shown in Fig.
2.5. The different partial power spectra join smoothly at the overlapping wavelength
intervals.

It is easy to calculate the fractal dimension since the slope of the relation between
log C and log ¢ for the region gy < ¢ < ¢ is defined as [slope = 2(4 — Dy)]. The
fractal dimension of the surface in Fig. 2.5 is Dy =~ 2.3.
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-40
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Abbildung 2.5: The surface roughness power spectrum of a ground steel surface ob-
tained by combining different measuring techniques (stylus instru-
ments, atomic force microscope and scanning tunneling microscope).

2.2 Multiasperity Contact Theories

2.2.1 Hertz Contact Theory

All multiasperity contact theories approximate the surface asperities as spherical or
elliptical “bumps” to which they apply the Hertz contact theory [38]. It is therefore
necessary to describe this approach briefly. The Hertz theory considers the contact
between two spherical, elastic bodies (radius R; and Ry) with perfectly smooth
surfaces. These spheres are squeezed into contact with the external force F. The
deformation field in the two bodies can be calculated by minimizing the elastic
deformation energy. The radius rg of the circular contact region is given by

oo (R N (3R 23)
0 R1 + Ry 4F '

with

= + (2.4)

10



Here E1 and Es are the elastic moduli while v; and v» are the corresponding Pois-
son ratios of the two solids [43]. The penetration s, or the distance the two solids
approach each other, is given by

1/3 2V 2/3
s (Lt R 3P —v7) (2.5)
RiRs 4F

For the case of a sphere with radius R in contact with a flat surface one can deduce
from Eq. (2.3) and (2.5) the area of contact:

A=nri=7Rs (2.6)
The squeezing force can be calculated using
4F
F— 3/2 pl1/2 9
30— 07 s*“R (2.7)

The pressure distribution o(r) in the contact depends on the distance r from the
center of the circular contact area:
O\ 2
1— [ — 2.8
(%) ] 23)

The Hertz contact theory can also be generalized to include adhesion between the
two solid bodies. This has been done by Johnson, Kendall and Roberts in 1971 [43].

F

o(r)=—
(r) -

2.2.2 Greenwood and Williamson Theory

Within the framework of multiasperity contact models, the area of contact and the
load, as a function of the distance between the two approaching bodies, depends on
the joint height probability distribution P(h). Greenwood and Williamson assumed
roughness to occur on a single length scale and they simplified the asperities as
spherical bumps with equal radius of curvature R (see Fig. 2.1 (b)). The height of
the asperities varies and it is described using a Gaussian height distribution:

P, = ! —h2 2.9
"= amme P\ "2 (29)

where h* is the root-mean-square amplitude of the summit height fluctuation. GW
assumed frictionless contact between the elastic solids. In this case the contact stres-
ses depend only upon the shape of the (undeformed) gap between the two solids befo-
re loading. Thus, without loss of generality, the system with z = h;(x) and z = ha(x)
describing the surface height profiles, F; and Es the Young’s elastic moduli of the
two solids, and v; and v the corresponding Poisson’s ratios, can be replaced by
the contact between a rigid solid with the roughness profile h(x) = hi(x) + ha(x)
in contact with an elastic solid with a flat surface and with the Young’s modulus
E and Poisson ratio v chosen so that Eq. (2.4) is obeyed. GW neglected the ela-
stic interactions between the asperity contact regions. If the separation between the

11



(average plane of) two surfaces is denoted by d, an asperity with height h > d will
make contact with the plane, and the penetration s is the difference of h and d.
Using the Hertz contact theory with s = h — d, the normalized area of real contact
is [32]

AA

Ao
Here Ay denotes the nominal contact area whereas ng is the number of asperities per
unit area. The number N of contacting asperities per unit area is calculated using

= TFTLOR/ dh (h—d)P,, (2.10)
d

N o0
A no/ dh P, (2.11)
A d

whereas the nominal squeezing stress can be calculated using

IaN 4F o 3
== dh (h—d)*?RY?P, 2.12
0= B = g [ b (= R, (212)
It is also possible to account for adhesive contact between randomly rough surfa-
ces using the Greenwood and Williamson theory. However, as this is only a brief
introduction the reader is referred to [23] and [32] for a precise illustration of this
issue.

2.2.3 Bush, Gibson and Thomas Model

Bush, Gibson and Thomas modeled the asperities as paraboloids with two diffe-
rent radii of curvature. The asperities are summits with heights h, and curvatures
r1 and 7. Observe that when r{ is defined to be the maximum curvature and ro
the minimum curvature of the summit, the following inequality holds r1 > ro > 0.
Note that r; > ro is necessary because two different summits with different orien-
tation, but with the same maximum curvature r; and minimum curvature ro, are
equivalent. BGT, like GW, also neglected the elastic coupling between the asperi-
ties, but they included roughness occurring on different length scales. Recalling the
Longuet-Higgins [49] and Nayak [66] analysis of surface statistics, it is possible to
show that for an isotropic surface the joint probability distribution P(h,ri,r9) is
given by [16, 17]

2
V27 1/2 h  3(ri+r2)
P(h = C ~C —
(hyr1,72) (4m)2momy\/momy *Hroexp ! m(l)/2 Ty amy (ri=r2)
X117 €X —i[?)(r + 19)% — 8r17) (2.13)
172 €Xp 1614 1 2 172 .

where the quantities mg, mo, and my4 are the zero, second and fourth moments
of the surface roughness power spectrum. In Eq. (2.13) the breadth parameter (as
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defined by Nayak) is a = mgmy/m3 and C; = «a/(2a — 3). Observe that for an
isotropic surface the power spectrum C(q) depends only on the modulus ¢ = |q| of
the wave-vector, therefore one can also calculate the moments m,, as

21 (e}
i = /0 dé (cos )" /0 dq ¢C(q) (2.14)

In order to determine the area of contact and the load between the rough rigid
surface and an initially flat elastic half-space, BGT also makes use of the Hertz’s
theory to calculate, for a given penetration s = h—u, the contact area and load upon
contact between the elastic half-space and each single rigid asperity. Hertz’s theory
states that, beside the elastic properties of the contacting bodies, the contact area
and the load depend only on the penetration s and the principal radii of curvature
of the contacting asperities. Thus, one can calculate the fraction of area in contact
Ac/Ap and the mean pressure in the nominal contact area o = F//Ag as

A +oo
Af :/ dh // dT’1 d?’g AH(h, 7’1,T2)P(h,7’1,7‘2) (2.15)
0 u s
F Foo
n :/ dh // dh dre Fy(h,r1,72)P(h,r1,72) (2.16)
0 u
D

where the domain D = {(r1,72) € R2 | r1 > 12 > 0}, Au(h,r1,72) and Fy(h,r1,79)
are Hertzian contact area and load on each asperity in contact.

Bush, Gibson and Thomas developed in 1975 [12] the most complete theory of
contact mechanics within the framework of multiasperity contact models. They made
use of Eq. (2.15) and (2.16) but in a different form. Instead of focusing on the radii
of curvature of the asperities, 71 and 79, (which, following the Hertz theory, were
treated as paraboloidal asperities), they developed calculations by referring to the
semi-axes of the ellipse of contact, a; and as. We refer the reader to the original
paper by Bush Gibson and Thomas [12] and to Ref. [17] for a detailed description
of the model.

The major result of the BGT theory is that in the limiting case of large separations,
the area of true contact A. is proportional to the applied load F', and equal to just
half of the bearing area. However because of the rather simple model of surface
roughness and the neglect of long-range elastic coupling, multiasperity theories are
expected to be correct only for very small applied squeezing pressures and therefore
small areas of real contact [79, 87].
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2.3 Contact Mechanics Theory of Persson

The theory approach to contact mechanics of Persson removes the assumption, which
is implicit in all the multiasperity contact theories, that the area of real contact
is small compared with the nominal contact area. On the contrary, this approach
moves from the limiting case of full contact conditions (where the theory gives the
exact solution) between a rigid rough surface and an initially flat elastic half-space,
and accounts for partial contact by requiring that, in case of adhesionless contact,
the stress probability distribution vanishes when the local normal surface stress o
vanishes. The basic idea is to not exclude a priori any roughness length scale from the
analysis. If A(() is the apparent area of contact at the length scale A = L/, then the
function P(¢) = A(()/Ay is studied. The theory needs as input the surface roughness
power spectrum C'(q) and the elastic properties E and v of the two contacting bodies.
P(0,() is the stress distribution in the contact areas under the magnification (. It
satisfies the differential equation (see [73, 74])

oP 9*P
— = — 2.17
where f(¢) = G'(¢)o and o9 = Fx/Ap being the average or nominal pressure in the
nominal contact area. Where the function

¢0=17 (fo)g

with E* = E/(1 — v?). Eq. (2.17) is a diffusion-like equation where time is replaced
by magnification (, the spatial coordinate with the stress ¢ and where the “diffusion
constant” f(¢) depends on (. The physical meaning of Eq. (2.17) is the following.
Studying a system at the lowest magnification ( = 1 no surface roughness can be
observed and the block makes (apparent) contact with the substrate everywhere in
the nominal contact area, see Fig. 2.7 (a) left. For this case, if friction at the interface
can be neglected, the stress at the interface equals everywhere the applied stress oy,
and the stress distribution (Fig. 2.7 (a) right) is a delta function P(c,1) = §(c —o0yp).
Increasing the magnification, surface roughness with wavelength down to A = L/( is
introduced to the system leading to emerging non-contact regions. Since the stress
must continuously go to zero at the edges of the boundary between the contact
and the non-contact regions (like in the Hertz theory), it follows that the stress
distribution P(o, () exhibits a tail extending the whole way down to zero stress as
indicated in Fig. 2.7 (b). There will also be a tail towards larger stresses o > oy
because the average stress must be equal to gg. With increasing magnification this
distribution broadens more and more like in a diffusion problem, as indicated in (c).

¢qr
/ dq ¢*C(q) (2.18)

qrL

The expression for the stress distribution P(o, () at the interface when the contact
is studied at the magnification ¢ = L/\, where X is the shortest surface roughness
wavelength which can be detected at the resolution ¢, can be written as (see [74])
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Abbildung 2.6: (a) The dependence of the normalized contact area (at the hig-
hest magnification) A/Ay on the squeezing pressure oy (in units of
E/(1 —v?)). (b) The dependance of A/Ag on the logarithm of the
magnification.

P(o,¢) = jo /A 2z 5(0 — o(x,0)) (2.19)

with o(x, () being the stress at the interface when only the surface roughness com-
ponents with wavevector g < (qy, is considered. The integral in Eq. (2.19) is perfor-
med over the area of contact A. Integrating over the whole surface area Ay, the stress
probability function would have a delta function [(Ag — A)/Ap]|d(c). However this
is excluded in this approach. From the stress distribution it is possible to directly
obtain the area of real contact projected on the zy-plane. It follows from Eq. (2.19)
that

P(C) = Afig) _ / do P(c,¢) (2.20)

Eq. (2.19) satisfies (2.17) assuming complete contact. With some appropriate boun-
dary conditions and assuming that Eq. (2.17) holds locally also when only partial
contact occurs, the area of (apparent) contact can be derived from Eq. (2.17)

“_ L Y e e — enf (1va) (221)

where G(() is given by Eq. (2.18).

The dependence of the normalized contact area (at the highest magnification)
A/Ap on the squeezing pressure og is shown in Fig. 2.6 (a), whereas (b) shows
the dependence on the magnification. For low squeezing pressures the approach by
Persson predicts a linear increase of the contact area with the load, see Fig. 2.6 (a).
In (b) ¢ =1 refers to the resolution Ag = 27/qp for a constant nominal pressure oy.
Increasing the magnification introduces shorter and shorter roughness wavelength
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Abbildung 2.7: The stress distribution in the contact region between a rigid block
and an elastic substrate at increasing magnification (. At the lowest
magnification ¢ = 1 the substrate looks smooth and the block makes
apparent contact with the substrate in the whole nominal contact
area leading to a delta function in the stress distribution. As the
magnification increases the area of contact decreases while the stress
distribution becomes broader and broader.

components, so that the area decreases monotonically, and if no short distance cut-off
(atomic dimension) would exist, the true contact area would vanish.

The theory of Persson is quiet flexible, so that adhesional interaction and plastic
deformation can be included. Thus, if the local pressure at the asperity contact
regions at high magnifications becomes high enough the material yields plastically.
In this case the size of the real contact area is determined mainly by the yield stress
of the solids.

The predictions of the two theories presented above have already been studied
numerically in order to test which method gives better results [8, 40, 87, 113]. In
the following sections several experimental tests are presented to test the theory of
Persson. In addition, these experiments also show how the theory can be applied
to engineering problems. The approaches are briefly introduced, and the theory
predictions are compared with experimental data that has been produced in order
to test the approach on contact mechanics by Persson.
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3 Interfacial Separation between Solids

In this section the interfacial separation and its importance to mechanical
engineering is explained. It is then shown how the mean interfacial se-
paration between two contacting solids can be calculated using the theory
of Persson. An experimental method to test the theory predictions is in-
troduced and the results from the experiment are then compared with the
predictions of the multiasperity approach by Bush, Gibson and Thomas
as well as of the approach by Persson.

When two elastic solids with rough surfaces are squeezed together, because of sur-
face roughness, the solids in general do not form contact everywhere in the apparent
contact area but only at a distribution of asperity contact spots. The separation u(x)
between the surfaces varies in a nearly random way with the coordinates x = (z,y),
as indicated in Fig. 2.3 and 3.1. It is not possible to describe the interfacial separa-
tion using simple parameters, because it can only be described as a distribution of
interfacial separations. The interfacial separation is of interest, e.g., in the context of
the air-pumping contribution to tyre noise, resulting from the compression and out-
ward flow of air between a tyre tread block and the road surface during driving [46].
This is similar to how sound is generated during applause. It is also of importance
for the leakage of seals or the heat transfer and the electric conductivity between
two solids with randomly rough surfaces.

The work presented below focuses on the mean interfacial separation, as an experi-
mental study measuring the complete distribution would be complicated. The mean
value, or average surface separation u = (u(x)), is defined as the distance between
the average plane of the lower surface of the block and the average plane of the upper
surface of the substrate, see Fig. 3.1. Increasing the applied squeezing pressure on
the upper block consequentially leads to a decrease of u [50, 51]. However in most
situations it is not possible to squeeze the two solids into full contact corresponding
tou =0.

3.1 The Mean Interfacial Separation

Frictionless contact is assumed between an elastic solid (with the Young’s modulus
E, the Poisson’s ratio v) with a flat surface squeezed against a rigid, randomly rough
surface with the surface height profile z = h(x). In Sec. 2.2.1 it has already been
described that if hi(x) and he(x) describing the surface profiles, Fy and FEo are
the Young’s elastic moduli of the two solids, and vy and s are the corresponding
Poisson’s ratios, then the elastic contact problem is equivalent to the contact between
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Abbildung 3.1: An elastic block squeezed against a rigid rough substrate. The sepa-
ration between the average plane of the substrate and the average
plane of the lower surface of the block is denoted by wu. The elastic
energy is stored in the block in the vicinity of the asperity contact
regions.

a rigid solid (the substrate) with the roughness profile h(x) = hi(x) + ha(x), in
contact with an elastic solid (the block) with a flat surface and with Young’s modulus
E and Poisson’s ratio v chosen so that Eq. (2.4) is satisfied.

The mean interfacial separation between the two bodies is denoted by u with
u > 0. The work done by the external pressure p in order to squeeze the two solids
into contact is stored as elastic energy in the upper block in the vicinity of the
asperity contact regions. Assuming a purely elastic block, so that no energy gets
dissipated during the squeeze process, it can be shown that

o0
/ du App(u) —Ug =0 (3.1)
u
where Ap is the nominal contact area. Rearranging Eq. (3.1) for p(u) gives

_ L duy
AO du

For elastic solids the two equations (3.1) and (3.2) are in fact exact [78, 113]. But
they also hold true for viscoelastic materials if the compression happens so slowly
that negligible energy dissipation (caused by the internal friction of the solid) occurs
during the compression. It is well known that, for low squeezing pressures, the area
of real contact A varies linearly with the squeezing force Fy = p(u)Ap, and that
the (normalized) interfacial stress distribution, as well as the size distribution of
contact spots, are independent of the applied pressure [63, 76]. The reason for this
is that with increasing p(u) the existing contact areas grow while also new contact
areas form in such a way, that in the thermodynamic limit (infinite-sized system),
the quantities referred to above remain unchanged. From this follows immediately

p(u) = (3.2)
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that for small loads the elastic energy stored in the asperity contact regions also
increases linearly with the load, so that Ug(u) = upAop(u) is true. Here ug is a
characteristic length (of order the root-mean-square-roughness) depending on the
nature of the surface roughness and which is independent of the squeezing pressure
p(u). The detailed description of how wy can be calculated is given in [113]. Using
Eq. (3.2) one gets

p(u) = ug 3—5 (3.3)
plu) ~ e/ (3.4)

This exponential relation between the average distance and the applied pressure is
predicted by the contact mechanics theory of Persson, but differs drastically from
the predictions of the multiasperity theories, which for the same system predict

p(u) ~u™? et (3.5)

Later experimental results will be compared with the theoretical predictions of Eq.
(3.4) and Eq. (3.5). To derive the relation p(u) in a more general case, an analy-
tical expression for the asperity induced elastic energy must be used, given by the
approach by Persson [75, 76]:

E T q1
Uam Ao 1—5 / dg ¢* P(q,p) C(q) (3.6)

—v2 2 Jg
Here, in the simplest approximation, P(g,p) is the relative contact area A(()/Ao
when the contact is studied at the magnification ¢ = ¢/qo as a function of the
applied pressure p. C(q) is the surface roughness power spectrum (see Sec. 2.1).

Substituting Eq. (3.6) in (3.2) gives for small squeezing pressures

E

e/ (3.7)

p(u) =B

For self-affine fractal surfaces, the characteristic length wy and the parameter
depend on the Hurst exponent H, the long distance roll-off wavevector qg as well
as on the short distance cut-off wavevector ¢;. Most surfaces which are self-affine
fractal have a Hurst exponent H > 0.5 (or a fractal dimension Dy < 2.5). For these
surfaces ug and § are nearly independent from the highest surface wavevector (¢;)
included in the analysis. Using 1/(1 —v?) & 4/3 (since for rubber v ~ 0.5) and with
the squeezing pressure p = o = F'/Aq one can also write Eq. (3.7) as

log (%) = log <435) - u% (3.8)
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Abbildung 3.2: A rubber block in contact with a rigid, randomly rough substrate.
Left: No applied load. Right: The rubber block is squeezed against
the substrate with the normal force F'. The upper surface of the block
moves downwards by s, whereas the mean plane of the deformed
lower surface penetrates inside the surface roughness by the distance
w.

3.2 Experimental Method

Consider a rubber block (elastic modulus E) with a flat surface (area Agp) and
thickness d. If the block is squeezed against a rigid, randomly rough counter surface,
the upper surface of the block will move downwards by the distance s as indicated
in Fig. 3.2. This movement is the sum of basically two different effects. The lower
surface of the rubber block penetrates a distance w into the valleys or cavities of
the counter surface and elastic energy is stored up as described above. There also
occurs an uniform compression of the rubber block which can be calculated using
do/E. Thus, the downward movement is described by

s=w+do/FE (3.9)

If u denotes the average separation between the block and the substrate (so that
u = 0 corresponds to perfect contact) then, assuming that the initial position of the
lower surface of the block corresponds to the separation where the block just forms
contact with the highest substrate asperity with the height hy,. above the average
substrate surface plane, one can write

W= hpax — U (3.10)
Combining Eq. (3.9) and (3.10) gives

U= hpax —s+do/E (3.11)
Substituting Eq. (3.11) in (3.6) leads to

g (F) =108 (5 ) = o (o =540 (3.12)

with B =log(4/5/3) — hmax/uo one can also write

g

log <%> :B—l—ulo (s—d E) (3.13)
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Abbildung 3.3: A rubber block between two flat and rigid solid plates. (a) Undefor-
med state. (b) Squeezed block assuming no slip at the rubber-plate
interfaces, i.e. because of high enough static friction. (c¢) Squeezed
block assuming perfect slip at the rubber-plate interfaces.

Depending on the interfacial slip conditions between the rubber and the upper and
lower rigid solids, it is necessary to replace the elastic modulus F in the formulas
above with the effective elastic modulus £’ > E. In Fig. 3.3 the two extreme cases
are shown. Applying a normal load on the plates results in a deformation of the
elastic block from the undeformed state (see Fig. 3.3 (a)) to a deformed state. If
the friction at the interfaces is low enough, e.g. lubricated surfaces, perfect slip can
occur and for this case, the elastic modulus remains unchanged, see (c). However
when there is no slip, the rubber block deforms as indicated in Fig. 3.3, and for
this case the effective modulus is higher compared with perfect slip conditions. The
confinement of the surfaces of the elastic block leads to a buckling in the lateral
direction. The increase of the effective modulus can be estimated using the Lindley
equation [34]

F'~E (1+145% (3.14)

where S is the shape factor. For a cylinder, the shape factor can be calculated as
S = R/2d. With the effective elastic modulus E’, Eq. (3.13) takes the form

log (%) =B+ 1 (3 —d %) (3.15)

U
where B’ = log(48E/3E") — hmax/uo.
Another case that also can happen is schematically shown in Fig. 3.4 (b). Here
one of the rigid plates exhibits surface roughness, resulting in perfect slip at the
upper interface and no slip conditions at the rough interface.

3.3 Experimental Procedure and Conditions

In the experimental studies presented below, a rubber block with a nominal flat
surface is squeezed against different types of road samples with randomly rough
surfaces. The procedure is schematically shown in Fig. 3.2 and 3.4. The block gets
squeezed into the surface roughness cavities by changing the displacement s of the
upper surface of the rubber block in small steps. For each step, the restoring force F' is
measured. For this experiment an instrument was used, shown in Fig. 3.5, produced
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(b)

Abbildung 3.4: A rubber block squeezed between a rigid solid plate and a rigid
randomly rough substrate: (a) dry surfaces and (b) lubricated upper
surface.

by SAUTER GmbH (Albstadt, Germany). The displacement can be changed with
a resolution of 0.01 mm while the force sensor can measure forces up to 500 N with
an accuracy of 0.1 N.

Abbildung 3.5: Picture of the instrument produced by
SAUTER GmbH (Albstadt, Germany)
used in the experiment. A rubber block
is squeezed against different surface
samples. The displacement s of the up-
per surface of the rubber block is chan-
ged in steps while the restoring force F'
is measured by a force cell.

The rubber block used in this study is made out of PDMS (polydimethylsiloxane), a
widely used silicone elastomer with purely elastic behavior. Hence the condition for
purely elastic deformation as required in Sec. 3.1 is satisfied. The PDMS samples are
prepared using a two-component kit (Sylgard 184) from Dow Corning (Midland, MI).
The kit consists of a base (vinyl-terminated polydimethylsiloxane) and a curing agent
(methylhydrosiloxane-dimethylsiloxane copolymer) with a suitable catalyst. From
these two components a mixture of 10:1 (base/cross linker) in weight is prepared.
Variating the ratio between base and curing agent changes the Young’s modulus of
the rubber block. The mixture needs to be degassed in order to remove the trapped
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air induced from the stirring process. It is then poured into cylindrical casts to
produce PDMS blocks with diameter D = 30 mm and height h = 10 mm. The
bottom of these casts is made from glass to obtain a smooth PDMS surface with
negligible surface roughness. Finally, the samples are cured in an oven at 80° C for
over 12 hours to activate the crosslinking process.

0.3 0.18
smooth, lubricated olE’ smooth, dry
olE slope =1
0.2 0.12 up
™ down
slope =1
experiment
0.1 0.06
% 01 02 0.3 % 0.04 0.08 0.12 0.16
strain s/d strain s/d

(a) (b)

Abbildung 3.6: The stress ¢ in units of the elastic modulus E as a function of the
strain s/d, where s is the displacement of the upper surface and d
the thickness of the block. In (a) the elastic modulus for the PDMS
block confined between smooth and lubricated (wet) surfaces is £ =
2.3 MPa. For (b) the PDMS block is confined between smooth and
dry surfaces. The effective elastic Modulus E' = 4.2 MPa. The two
experimental curves in (b) correspond to increasing and decreasing
the strain showing that the block deforms purely elastic.

In the first experiment the elastic modulus £ has been measured by squeezing the
PDMS block between two flat surfaces. Therefore three different tests were made
with (a) both interfaces lubricated (wet), (b) both interfaces not lubricated (dry) and
with (c) only one of the two interfaces lubricated. The lubricant used was polyfluo-
roalkylsiloxane (PFAS), a fluorinated silicone oil with high viscosity (n = 1000 cSt).
Because of its high viscosity, the fluid is an excellent lubricant also in extreme pres-
sure applications and should therefore not be easily squeezed out of the contact area.
It also does not react (or interdiffuse) with the PDMS elastomer. For dry interfaces,
the PDMS sample deforms laterally at the force free area, as shown in Fig. 3.3 (b).
The reason for this is, that the rubber is nearly incompressible and the block is
not able to slip at the interfaces. Lubricating the upper and lower surface results in
perfect slip and the rubber block deforms as shown in Fig. 3.3 (c).

Fig. 3.6 (a) shows the results for the relation between the stress and the strain for
case (c) (lubricated interfaces) so that the shear stress at the boundaries vanishes.
The stress has been normalized with £ = 2.3 MPa so that a nearly straight line
with slope 1 is observed. This shows that the relation o = Es/d holds. The elastic
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modulus of £ = 2.3 MPa is consistent with the elastic modulus reported in the
literature for similar silicon rubbers [7, 100]. Repeating the experiment, as well as
the other experiments described below, the data never differs by more than ~ 2.5 %.

yd
o/E’ smooth, dry-wet ’

0.2}

slope =1

N
o1l experiment
% ' 0.1 ' 0.2
strain s/d

Abbildung 3.7: The same as in Fig. 3.6 for a rubber block confined between a
lubricated (wet) and a dry surface. The effective elastic modulus
is £/ = 2.9 MPa.

Repeating the experiment with the same settings as before but this time with no
lubricant (dry) at the contacting areas, no or negligible slip occurs at the interfaces
with the confining walls. Thus the PDMS block bulges laterally at the force free
areas, see Fig. 3.3 (b). Still a linear (or nearly linear) relation between stress and
strain is expected but the effective elastic modulus E’ should be larger then that
for case (a). Thus the effective elastic modulus deduced from the experimental data
E' =~ 4.2 MPa is about 80 % larger than for lubricated interfaces. To test the system
for hysteresis effects, some of the experiments were performed bidirectional. One
result is shown in Fig. 3.6 (b), where the strain was carefully increased stepwise
and then slowly decreased again. The hysteresis observed is so small that it can be
neglected. This is in fact expected because of the low glass transition temperature of
PDMS. The increase in the effective elastic modulus in the compression test, from
2.3 MPa to 4.2 MPa, going from slip to non-slip boundary conditions is consistent
with the predictions of the Lindley equation (3.14). In this case £ = 2.3 MPa with
the shape factor for a cylinder S = R/(2d) = 15 mm/(2 - 10 mm) = 0.75 gives an
effective elastic modulus of E' = 4.1 MPa. This agrees very well with the measured
value of 4.2 MPa.

In Fig. 3.7 the results are shown for case (c¢), where one of the interfaces is lubrica-
ted while the other one is dry. Here the rubber displaces laterally in an asymmetric
way (as indicated in Fig. 3.4 (b)) and the measured elastic modulus E’ = 2.9 MPa
is slightly smaller than the average of the effective modulus obtained assuming no
slip and complete slip on both surfaces: (2.3 +4.2)/2 MPa ~ 3.3 MPa).

In this first comparison of experimental data to the theoretical predictions of
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Abbildung 3.8: The surface roughness power spectrum C' of the asphalt road surface
1 as a function of the wavevector ¢ on a log-log scale. The straight
green line has the slope —4, corresponding to the Hurst exponent
H =1 and fractal dimension of D; = 2.

the mean interfacial separation, three different surfaces were used. All surfaces are
road surfaces with rather large surface roughness that have been cut from a road.
The topography was measured with optical methods using a chromatic sensor with
two different optics produced by Fries Research & Technology GmbH (Bergisch
Gladbach, Germany). The statistical analysis of the samples has been carried out
to calculate the surface roughness power spectrum. The first surface sample is used
to validate the approach by Persson while the results obtained with the other two
samples are used to compare the predictions of the theory of Persson with the
multiasperity contact theories. Below, the most important data about the surface
roughness of the three surfaces is summarized:

Surface 1 is an asphalt road surface. The calculated power spectrum is plotted
in Fig. 3.8. It has a root-mean-square roughness of hypns ~ 0.29 mm and for
wavevectors ¢ > go ~ 2500 m~! it can, on a log-log scale, be well approximated
with a straight line with the slope corresponding to a self-affine fractal surface
with Dy = 2.0. For ¢ < qo the power spectrum C/(q) is approximately constant
so that gg can be referred to as the roll-off wavevector. Unlike the other two
surfaces there was no picture of this sample available.

Surface 2 is an asphalt road surface shown in Fig. 3.9 (a). A fractal dimension of
D¢ = 2.15 can be deduced from the power spectrum shown in Fig. 3.10 (a).
In order to compare the two theories, the quantities mg = (h?) = 0.091 mm?,
mg = 0.5 (Vh?) = 2.67, my = 2.1-10* mm~2 and a = 263 have been calculated.
The highest point of the surface is located at a distance hyax = 1.37 mm from
the mean plane. The height probability density function is shown in Fig. 3.10

(b).
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Surface 3 is a concrete road surface. The power spectrum is shown in Fig. 3.11 (b)
and for wavevectors ¢ > gg ~ 630 m~! a fractal dimension of D¢ = 2.3 has been
calculated. The moments of the power spectrum are mg = (h?) = 0.071 mm?,
my = 0.5 (Vh2) = 0.27, my = 62 mm 2 and o = 60. The highest point is
located a distance hyax = 1.1 mm from the mean plane. The power spectrum
as well as the height probability density function can be seen in Fig. 3.11 (a)
and (b) respectively.

(a) Surface 2 (b) Surface 3

Abbildung 3.9: Pictures of two surfaces used for the experimental investigation. (a)
An asphalt road surface, denoted as surface 2. (b) A concrete road
surface denoted as surface 3.

The height probability function of the surfaces 2 and 3 deviate from the ideal Gaus-
sian distribution, which is the implicit assumption of the BGT and the theory of
Persson. However, the ensemble averaged height distribution, which has not been
calculated, may be much closer to Gaussian. In any case the deviation of the mea-
sured height probability distribution from a Gaussian distribution is not large and
it is believed that BGT and the approach on contact mechanics by Persson can still
be applied.

3.4 Experimental Results

This section deals with the experimental data that has been measured using the
experimental approach reported on above. In Sec. 3.4.1 the results from the experi-
ment on surface 1 is compared with the results of the contact mechanics theory of
Persson. The following section also compares the predictions of the most advanced
multiasperity theory, namely the BGT theory, with the experimental information
from surface 2 and 3, as well as to the predictions of the approach by Persson.

Fig. 3.12 shows the PDMS block squeezed against surface 3. Since PDMS is trans-
parent one can study how the number and the size of the contact areas increases
when the compressive force is slowly increased from zero pressure (a) to maximum
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Abbildung 3.10: The surface roughness power spectrum C(q) (a), and the height pro-
bability density function (b), for surface 2. The straight line in (a)
has the slope —3.7, corresponding to a fractal dimension Dy = 2.15,
while in (b) the dashed line represents a Gaussian approximation.
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Abbildung 3.11: The surface roughness power spectrum C/(q) (a), and the height pro-
bability density function (b), for surface 3. The straight line in (a)
has the slope —3.4, corresponding to a fractal dimension D¢ = 2.3,
while in (b) the dashed line represents a Gaussian approximation.
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pressure (d). First only the largest asperities come into contact and deform the rub-
ber. At the highest pressures the contact looks to the naked eye as nearly complete,
and it can be understood that the elastic coupling between nearby asperities will
have a strong influence on the contact formation.

(¢) Medium pressure (d) Maximum pressure

Abbildung 3.12: Pictures of the rubber sample forming contact and penetrating into
the surface roughness valleys with increasing normal pressure. The
dark area is where the rubber is in contact with the substrate.

3.4.1 Comparison to the Theory of Persson

The PDMS rubber block has been squeezed into contact with surface 1 as shown
schematically in Fig. 3.2. The displacement of the upper surface of the block has
been changed in steps of 0.05 mm while the repulsing force is measured. The red
and blue lines in Fig. 3.13 show the results of two measurements for the natural
logarithm of the squeezing pressure (divided by the effective elastic modulus) as a
function of s —do/E’, where s is the displacement of the upper surface of the rubber
block relative to the substrate, and where d is the thickness of the rubber block. The
green line is the theory prediction (Eq. (3.13)) where E/ = 4.8 MPa and B’ = —6.85
have been used. The value of B” has been calculated using Eq. (3.15) so that the only
uncertain parameter was the effective Young’s modulus E’. However it agrees rather
well with the measurements for flat and not lubricated surfaces (E' = 4.2MPa), see
Fig. 3.6 (b).

The experiment has been repeated with lubricated surfaces in order to test the
influence of the effective elastic modulus and the predictions of the Lindley equation
(3.14). Here the effective elastic modulus used in the analysis is ' = 3.4 MPa and
B’ = —6.50. The results are shown in Fig. 3.14 plotted in the same way as in Fig.
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3.13. The value for B’ is slightly smaller than for dry contacts. The difference § B’ =
—6.50 — (—6.85) = 0.35 reflects the difference in the effective elastic modulus since
according to Eq. (3.15) 6B’ = log[E'(dry)/E’(lubricated)] = log(4.8/3.4) ~ 0.35.
The value is larger than E’ measured for flat lubricated surfaces (here £ = 2.3 MPa),
but this can be explained as follows.

-2
rough, dry

3l experiment 1
% experiment 2
S -4t
o

-5t

-6

0.6 ' 1 ' 1.4
s - do/E’ (mm)

Abbildung 3.13: The natural logarithm of the squeezing pressure, divided by the

effective elastic modulus, as a function of the penetration s—do/E’.

For the analysis the effective elastic modulus E' = 4.8 MPa and

B’ = —6.85 were used. The two experimental curves were obtained

using two different silicon rubber blocks, produced in the same way.
The results are for dry contact.

Visual inspection of the contact between the rubber cylinder and the two confining
walls showed that, as expected from above, the rubber block slips against the top
(flat) steel surface while no slip, or only very limited slip, occurs against the rough
substrate surface, see Fig. 3.4 (b). This is consistent with the fact that the observed
elastic modulus is larger than E = 2.3 MPa, as obtained above when complete slip
occurs at both (lubricated) interfaces. In fact, the observed effective Young’s modulus
(3.4 MPa) is quite close to the value 2.9 MPa measured for smooth surfaces when
slip occurs at one surface and no-slip at the other surface. The fact that no (or
very small) slip occurs at the interface between the rubber and the rough substrate
surface may be due to at least two facts:
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(1) The pressure in the asperity contact regions is much higher than the average
pressure, and the asperity contact regions are much smaller than the nominal
contact area, resulting in a much faster squeeze out of the lubricant from
the asperity contact regions as compared with the case of flat surfaces. This
consequently leads to higher friction in the contact regions.

(2) The substrate surface roughness on different length scales contributes to the
friction during slip due to viscoelastic deformations of the rubber on different
length scales. However, since for silicon rubber viscoelastic dissipation only
occurs at very high frequencies, it is likely that this effect is small for the
presented system.

The measured E’-values for rough surfaces (4.8 and 3.4 MPa) are roughly 15 %
larger than for smooth surfaces (4.2 and 2.9 MPa), as obtained assuming no slip on
the confining surfaces in one case, and no slip on only one of the confining surfaces in
the other case. The origin of this (small) difference in effective elastic modulus is not
known. For s — do/E’ < 0.6 mm the experimental curves in Fig. 3.13 and 3.14 drop
off faster then predicted by the theory of Persson when the interfacial separation
becomes larger. This is a finite size effect. The theoretical approach was developed
for an infinite system which has arbitrary many and arbitrary high asperities, so
that contact between the two solids will occur already at arbitrary large surface
separations and the relation p ~ exp(—u/ug) holds for arbitrary large u. However
a finite system has asperities with height below some finite length hpa.x, and for
u > hpax NO contact occurs between the solids so that p = 0.

' ' ' ' A
2t rough, lubricated /
v
w3
S
D
o
4t pd
theory
\
5l experiment
0.6 ' 1 ' 14
s - do/E’ (mm)

Abbildung 3.14: The same as in Fig. 3.13 for lubricated (wet) contact. Here £’ =
3.4 MPa and B’ = —6.50 are used to calculate the predictions of
the approach by Persson for the given system.

The presented combined experimental - theoretical study of the contact between a

rigid solid with a randomly rough surface and an elastic block with a flat surface
shows nearly perfect agreement between theory predictions and experimental data.
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It is concluded that for non-adhesive interaction and small applied pressure the
relation p ~ exp(—u/ug) holds true (similar qualitative results were obtained in
[25]). The only parameter that needs to be adjusted due to a lack of information is
the effective elastic modulus E’ of the PDMS cylinder in contact with a rough and a
smooth hard counter surface. However, taking into account the uncertainty about the
slip boundary conditions at the contacting interfaces, the values for E’ are consistent
with the theoretical values of the Lindley equation. The experimental results indicate
that for surfaces with fractal-like roughness profiles the contact mechanics theory of
Persson may be exact for the fractal dimension Dy = 2.0 [79]. A comparison to the
multiasperity contact theories is presented in the following section.

3.4.2 Comparison to BGT and the Theory of Persson

experiment

log(c/E’)

experiment

Persson
N

=

log(a/E’)
A

Per?son

0.2 0.6 1 1.4 0.2 0.6 1 1.4
s - do/E’ (mm) s - do/E’ (mm)
(a) Surface 2 (b) Surface 3

Abbildung 3.15: The natural logarithm of the quantity o/E’ as a function of
s —do/E' for surface 2 and 3, under dry conditions (no-slip). The
effective elastic modulus is E' = 4.2 MPa.

The same experimental procedure as for surface 1 was used for the test with
surfaces 2 and 3 too. The experimental data is shown in Fig. 3.15 (a) and (b) (red
lines). Here an effective elastic modulus of 4.2 MPa has been assumed as deduced
from the experiments for smooth and dry surfaces and also predicted by the Lindley
equation. In each figure the results of two experiments have been presented to give
an indication of the precision of the experiment. Other experiments performed gave
results located in between the two red lines shown in the figures. The predictions
of the BGT theory is shown as blue line while the green line is the predictions
of the theory of Persson. Both plots show that the predictions of the approach
by Persson are in relative good agreement with the experiments, while the BGT
theory does not show good agreement. This is true even for large separations where
multiasperity theories are believed to be correct. However, a detailed study shows
that multiasperity theories require in addition, that the surfaces roughness occurs
on only one length scale. It can be concluded that the BGT theory (and in general
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multiasperity contact models) cannot be utilized to correctly describe the mean
interfacial separation as a function of the applied load. This approach not only fails
quantitatively but also qualitatively.

experiment
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Persson experiment

log(o/E’)
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/
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s - do/E’ (mm) s - do/E’ (mm)
(a) Surface 2 (b) Surface 3

Abbildung 3.16: The natural logarithm of the quantity o/F’ as a function of
s —do/E' for surface 2 and 3, under dry conditions (no-slip). The
effective elastic modulus is E' = 4.8 MPa.

For large separations the same deviation between theory and experiment as in Sec.
3.4.1 can be observed. Again, this is a finite size-effect: for a finite size system ¢ must
rapidly decrease to zero as u approaches hyax. The figures confirm the correctness of
the predicted exponential law between the separation v and the applied pressure o for
the tested surfaces with fractal dimensions of Dy = 2.15 and 2.3. A slightly different
slope can be observed in Fig. 3.15 (a) and (b) for small interfacial separations. This
completely disappears if E’ in the analysis is changed from 4.2 MPa to 4.8 MPa as in
Sec. 3.4.1. This is illustrated in Fig. 3.16 where nearly perfect agreement between the
experimental data and the predictions of the contact mechanics theory of Persson
occurs.

3.5 Summary on the Interfacial Separation

Experimental results for the average interfacial separation as a function of the no-
minal contact pressure have been presented. The results are in very good agreement
with the predictions of the contact mechanics theory of Persson while the predictions
of the BGT model differ even qualitatively from the experimental data. The experi-
ments involved squeezing a PDMS rubber block against three different rough surfaces
with different surface properties. The multiasperity contact theories, of which the
most accurate is the BGT model, are believed to give reasonable results for very
small normal pressures and therefore large separations. However comparing BGT
predictions to the experimental results, agreement cannot even be found in this li-
miting case. The curves are described nicely by an exponential function of the type
o~ e % as it is predicted by the Persson model.
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Summarizing this first combined experimental comparison of the BGT theory
and the approach on contact mechanics by Persson it can be concluded that the
multiasperity theories predict a wrong dependance of the mean interfacial separation
on the squeezing pressure. The experimental results could be explained very well by
the theory of Persson.

33






4 Leak Rate of Static Seals

Seals are devices of huge importance in numerous engineering systems.
Their essential functions are to prevent fluid leakage, to retain a pressure
difference and to protect the working fluid and moving machine elements
from contamination. Despite their importance there still does not exist
an appropriate physical model to correctly describe the leakage of a fluid
at the seal substrate interface. The dimensioning of a sealing system is
until now mainly based on expertise and empirical procedures that has
developed only little over the last decades. This is due to a lack of insight
about how to describe what is happening when the seal forms contact
with the hard substrate. In this chapter a new approach to this problem
1s presented based on percolation theory and the contact mechanics theory
of Persson. It is then compared with experimental data obtained using a
stmple device.

4.1 Introduction to Seals

Every year approximately 1.1 million tons of mineral oil based lubricants are used
in Germany. About 50% of the annual demand can be recovered by recycling and/or
further utilisation of waste oil, while the other half, approximately 500.000 tons, is
lost to the environment. There are several reasons for this. It can be either system
induced, e.g burning of oil in a combustion engine, because of accidents or due
to leakage [65]. Thus understanding the leakage of seals is not only of academic
interest, but it is also of great importance in order to minimize the loss of lubricant
to the environment (to prevent environmental pollution), and for economic reasons
[22]. In addition to improve the understanding of seals, the following work has been
done to test the contact mechanics theory of Persson. Two very important elements
of contact mechanics are tested within this approach, namely the predictions for
the real area of contact, and the interfacial separation in the non-contacting
regions.

Fig. 4.1 shows the schematics of a static seal. A rubber seal is pressed with a
constant pressure Py against a hard counter surface, e.g. steel, separating the fluid
under the hydrostatic pressure P, on the left hand side, from the fluid under the
hydrostatic pressure P, to the right-hand side. Because of surface roughness an
interfacial fluid flow will occur at the interface between the rubber and the hard
substrate driven by the pressure difference AP = P, — B,. Despite the apparent
simplicity of the shown sealing system, it is not easy to describe the interfacial fluid
flow and until now there does not exist any good model to calculate this leak rate.
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low pressure

Pb

interfacial fluid flow

Abbildung 4.1: Schematic picture of a rubber seal separating two fluids under the
hydrostatic pressure P, and P}, from each other. Because of the pres-
sure difference and of surface roughness at the rubber-seal interface,
fluid will flow from the high to the low pressure side.

This lack of understanding arises from the problem that one needs to understand
what happens in the apparent contact area.

In the following sections a physical model is described to predict the interfacial fluid
flow. The predictions of this model is then tested by comparing it to experimental
data obtained in a simple model experiment [52, 53, 54, 55].

4.2 Theory Approach by Persson

Looking at the seal from a top view, it is assumed that the nominal contact region
between the rubber and the hard counter surface is rectangular with the lateral size
L, and L. The high pressure fluid region is for < 0 and the low pressure region for
x > L;. The contact area is separated/divided into squares with the lateral length
of Ly = L and the area Ay = L? as indicated in Fig. 4.2.

Lx

—

Lx

Ly

Abbildung 4.2: The rubber-counter surface apparent contact area is rectangular L, x
L,. It is divided into N = L, /L, square areas with side L = L, and
area Ay = L°.

Studying the contact between the two solids within one of the squares, the magnifi-
cation ( is defined as ( = L/\, where )X is the resolution. At the lowest magnification
one cannot observe any surface roughness and the contact between the solids seems
to be complete, A(( = 1) = Ap. This is indicated in Fig. 4.3 (a), where the real area
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of contact projected on the zy-plane is shown in black color. Increasing the magnifi-
cation introduces surface roughness and the contact will not appear to be complete
any longer, so that one now observes regions where the rubber is not in contact with
the substrate (white color). Increasing the magnification ¢ further (i.e decreasing
A) introduces smaller and smaller surface roughness components. This leads to a
monotonic decrease of the real area of contact as shown in Fig. 4.3 (b) - (f). For the
highest magnification (atomic resolution), the real area of contact ends up to be only
about 33 % of the nominal contact area. During this process of magnifying into the
contacting region, one will at a certain point observe the formation of a percolating
path of non-contact area from the high to the low pressure side. This channel forms
at the critical magnification ¢ = (i, and the most narrow constriction along this
percolating path is denoted as the critical constriction. Increasing the magnification
further leads to the formation of additional channels that have smaller constrictions
then the critical constriction. These channels allow the fluid to leak through the
rubber-substrate interface.

(a) Z=1, AlA0=1 (a) Z=3, AJA0=0.778 (b) Z=6, A/A0=0.498

(¢) 2=9, A/A0=0.434 (d) Z=12, AlA0=0.405 (e) 7=648, A/A0=0.323

Siey
WA AR

XL Me.

Abbildung 4.3: The contact region at different magnifications (¢ = 1, 3, 6, 9, 12
and 648) is shown in (a) - (f) respectively. When the magnification
increases from 9 to 12 the non-contact region percolates. The plotted
data shows the results of Molecular Dynamics simulations of the
contact between elastic solids with randomly rough surfaces, from
[92].

In the following sections two different theories are presented in order to calculate the
fluid flow from the high pressure side to the low pressure side through the channels.
They are referred to as:

e Single Junction Theory
e Effective Medium Theory
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Within the single junction theory only the very first channel is considered that
appears when the magnification is increased. This is also the biggest channel through
which most of the fluid will flow. The effective medium theory takes into account also
the smaller channels that appear when the magnification is increased even further.

4.2.1 Single Junction Theory

As shown in Fig. 4.3, introducing more and more surface roughness to the analysis of
the contact formation between an elastic body and a rigid surface finally leads to the
formation of a percolating channel of non-contact region at the critical magnification
Cerit- Along this percolation channel a most narrow constriction can be observed that
is referred to as the critical constriction. Within this approach, the whole pressure
drop is assumed to occur at this single junction [83, 85, 92].

It is assumed that the nominal contact region between the rubber seal and the
counter surface is rectangular with the contact area L, x L, (with L, < L,). For
further considerations, the contact patch is “divided” into regions with side L, =
L, = L and area Ay = L?. This assumes that N = L,/L, is an integer, but this
restriction does not affect the final result.

¢=1 ¢=s t=10 t=t

critical
constriction

-

Abbildung 4.4: Schematic picture of the contact region at different magnifications.
The non-contact area (white) percolates at A((eit) ~ 0.4Ap and the
critical constriction appears.

The critical magnification (. is determined by assuming that the apparent relative
contact area A(()/Ap for ¢ = (it is given by percolation theory. Thus, the relative
contact area A((eit)/Ao ~ 1 — pe, where p. is the so-called percolation threshold
[105]. For infinite-sized 2D systems and assuming site percolation p. ~ 0.70 for a
hexagonal lattice, 0.59 for a square lattice and 0.50 for a triangular lattice [105]. For
bond percolation the corresponding numbers are 0.65, 0.50 and 0.36, respectively. For
continuous percolation in 2D the Bruggeman effective-medium theory predicts p. =
0.50. Here it is assumed that for an infinite system the non-contact area percolates
when p. ~ 0.60 so that A(¢)/Ag ~ 0.40. It is known that for finite-sized systems the
percolation, on the average, occurs for slightly smaller values of p. and fluctuations in
the threshold are also noticeable between different realizations of the same physical
system [96]. For the following analysis it will be assumed that percolation occurs for
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pe &~ 0.50. This is also what is used in the effective medium approach presented later.
Using the contact mechanics theory of Persson [74, 75, 76, 87, 113] and assuming
that A(()/Aop ~ 0.50, one can calculate the (critical) magnification (it where the
first channel of non-contact area percolates. The following expression relates the
ratio between real area of contact and apparent area of contact to the magnification

¢:

ST N i
— MG g (L0 41
A e ), 7° T\ 2g12 (4.1)

where

c0=7(:25) [Mawicw (42)

2
1—v %
with the surface roughness power spectrum

Cl0) = Gz [ ' (BB (43)

Here the (...) stands for ensemble average, h(y) is the height profile of the rough
surface, while E and v are the Young’s elastic modulus and the Poisson’s ratio of
the rubber.

Using Eq. (4.1) it is now possible to calculate the critical magnification .y where
the ratio A(¢)/Ao ~ 0.50. Knowing the critical magnification, the lateral size of
the critical constriction \¢ = L/(uit. The separation between the two interfaces at
this point is denoted by wu.. It can be calculated (or estimated) as ue &~ uy(Cerit)
using the contact mechanics theory of Persson. Here wu(¢) is defined to be the
average height separating the surfaces which appear to come into contact when the
magnification decreases from ¢ to ( — A(, where A( is an infinitesimal small change
in the magnification. In Fig. 4.6 (a) the black area is the asperity contact regions
at the magnification . The green area is the additional contact area forming when
the magnification is reduced to ¢ — A¢ while u;(() is the average surface separation
in this green area. The quantity u;(¢) is a monotonically decreasing function of ¢,
which can be calculated from the average interfacial separation @(¢) and A(¢) using
[113]

u1(¢) = u(¢) + ' (Q)A(C)/A'(C) (4.4)

where @(() is the average separation between surfaces in the apparent contact regions
observed at the magnification (. It can be calculated from

ql S / *
a(¢) = y/n / dq °Clq)w(g, ) / ap L elwtaon /B (4.5)
4o p(<) p

where p(¢) = poAo/A(() and
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w(g,¢) = <7T /Cq dq’ q’?’C(q’)>_1/2 (4.6)

q0

Knowing the lateral dimension (width and length) A\ ~ L/\. and the height u. =
u1((erit) of the critical constriction, one can estimate the leak rate by assuming
that all the leakage occurs through the critical percolation channel and that the
whole pressure drop AP = P, — P, occurs over the critical constriction. Increasing
the magnification even further leads to the formation of more percolating channels
between the surfaces but with more narrow constrictions then the first channel.
As a first approximation the contribution to the leak rate from these channels is
neglected.

The critical constriction is now approximated as a pore with rectangular cross-
section of width and length A. and height u. << Ac. Assuming an incompressible
Newtonian fluid, the volume flow per unit time through the critical constriction is
given by (Poiseuille flow)

3

Q= aui(;;)AP (4.7)

where 7 is the fluid viscosity. In deriving (4.7) laminar flow is assumed and that
Ue << Ac, which is always satisfied in practise. Another assumption is no-slip boun-
dary condition on the solid walls. This may not always be satisfied at the micro or
nano-scale, but is likely to be a very good approximation in the present case owing
to surface roughness which occurs at length scales shorter than the size of the critical
constriction.

magnification ¢

Abbildung 4.5: An asperity contact region observed at magnification (. It appears
that complete contact occurs but increasing the magnifications to
the highest (atomic scale) magnification (1, it is observed that the
solids are actually separated by the average distance @(().

In Eq. (4.7) a factor « is introduced which depends on the exact shape of the cri-
tical constriction, but which is expected to be of order unity. For a channel with
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rectangular shape and a height much smaller than the lateral dimensions, the flow
rate is calculated using o = 1. However, the real flow channel at the critical con-
striction will differ from a rectangular cross-section because the pore height must
continuously decrease towards zero at the “edges” in the direction perpendicular to
the fluid flow. The pore will also not be exactly rectangular in the xy-plane, which
also influences «.. The separation in the critical constriction also variates within the
pore. This is shown schematically in Fig. 4.6 (b) where, because of surface roughness
observed at shorter length scales then )\, the actual separation between the solid
walls in the green area varies around the average uq(¢). Thus it is expected that
ue = ouq(¢) where o < 1.

Due to the simplifications of the critical constriction to a rectangular pore and the
lack of information about the real shape in the application, « is in this study treated
as a fitting factor. Note also that a given percolation channel could have several
narrow (critical or nearly critical) constrictions of nearly the same dimension which
would reduce the flow along the channel. But in this case one would also expect
more channels from the high to the low fluid pressure side of the junction, which
would tend to increase the leak rate again. These two effects will, at least in the
simplest picture, compensate each other (see discussion in [92]). Finally, since there
are N = L,/L, square areas in the rubber counter surface contact area, the leak
rate can be calculated using

Q= anﬁ(Q%)AP (4.8)

Abbildung 4.6: (a) The black area represents the asperity contact regions at the ma-
gnification (. The green area is the additional contact area observed
when the magnification is reduced to ( — A(. The average separation
between the solid walls in the green surface area is denoted by u;(().
(b) The separation between the solid walls along the blue dashed li-
ne in (a). Since the surfaces of the solids are rough everywhere, the
actual separation between the solid walls in the green area fluctua-
tes around the average ui(¢). At the most narrow constriction the
surface separation is u..
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4.2.2 Effective Medium Theory

The single junction theory presented before assumes that the leak rate is determined
by the resistance towards fluid flow through the critical constriction. In reality one
observes, with increasing magnification, many flow channels at the interface and all
of them contribute to the total leak rate. Here the 2D Bruggeman effective medium
theory is used to calculate (approximately) the leak-resistance resulting from the
network of flow channels. The effective medium theory is a physical model that
is used to describe the macroscopic properties of a medium consisting of random
disordered components, in this case random fluctuations in the interfacial separation
u(x). For a m-component system, as in this case where the separation u takes n
different discrete values, one assumes that the flow in the effective medium is the
same as the average fluid flow obtained when circular regions of the n-components
are embedded in the effective medium.

av

Abbildung 4.7: Effective medium theory takes into account random disorder in a
physical system. The equation determining the “effective medium”
(e.g. the effective conductivity o) is obtained by calculating some
properties of the effective medium and demanding that the same re-
sult is obtained by embedding into the effective medium a circular
region of one component of the original system, and then avera-
ging over the different components, with weights determined by the
fractional areas of the various components in the original physical
system.

Using the 2D Bruggeman effective medium theory it can be shown that (see [11, 47,
53] and Fig. 4.7):

. L
Q = fygeﬂAP (49)

where AP = P, — P, is the pressure drop and where (see [53])

Jlﬁf - /dU P(U)Jeﬁia = /dC (—ﬁ?) UGHEU(O (4.10)

where

(4.11)
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Eq. (4.10) can be solved by iteration.

However, it is not clear that the effective medium theory gives better results than the
single junction theory. The reason for this is the following: In the effective medium
model there is no correlation between the size of a region and the (average) separation
between the surfaces in the region. In reality, the regions where the surface separation
is large are not distributed randomly, but they form large compact and connected
regions (since they are observed already at low magnification).

4.3 Experimental Approach to Leakage

This chapter deals with the presentation of the experimental method that has been
developed in order to test the theoretical approach towards leak rate of static seals.
The method is straight forward and it has been motivated by the simple picture
of a seal shown in Fig. 4.1. The actual device is shown in Fig. 4.8 where a rubber
seal with rectangular cross-section is attached to the bottom surface of a plexiglass
(PMMA) cylinder. The seal is squeezed against a hard solid with well defined surface
roughness by the force Fy. The contact between the rubber ring and the counter
surface is covered with distilled water. To obtain a pressure difference between the
inner and the outer region of the seal, the PMMA cylinder is filled with distilled
water up to a fixed height H. The pressure difference AP = P, — P, = pgH, where
g is the gravitation constant, p the fluid density (p ~ 1.0 kg/ m® for distilled water)
and H the height of the fluid column. With H ~ 1 m, one gets AP ~ 0.01 MPa
or AP =~ 0.1 bar. The leakage of the fluid is detected by measuring the drop in
height of the water column as a function of time. Experimental data is for the fluid
leak rate as a function of the squeezing pressure Py on different rough surfaces. The
squeezing pressure is varied by changing the normal force Fi.

FN Abbildung 4.8: Experimental device for mea-
l suring the leak rate of a sta-
tic seal. A plexiglas cylinder
with a rubber seal attached at
the bottom surface is squee-
_ glass zed against a hard counter sur-
cylinder face with well-defined surface
roughness. A pressure diffe-
rence is realized by filling wa-
ter into the cylinder up to a
certain height. The leak rate
is then detected by measuring
the drop of the water column
as a function of time.

rubber

hard solid

The rubber seal is made from PDMS (Sylgard 184) with purely elastic behavior
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to avoid time dependent deformation or creep of the rubber. The Young’s elastic
modulus £ = 2.3 MPa and the Poisson’s ratio v = 0.5 for rubber. The inner and
outer diameter is 30 mm and 40 mm, respectively, with a height of 5 mm. The
condition Py >> AP for this instrument is already satisfied for nominal loads of the
order kg. This is necessary in order to avoid the influence of the fluid pressure on
the contact mechanics at the interface.

According to Eq. (4.7) it is expected that the leak rate depends linearly on the
fluid pressure difference AP. In order to test the device, an experiment has been
done variating the height of the water column and measuring the corresponding leak
rate. The nominal squeezing pressure is kept constant at Py ~ 60 kPa. The results
in Fig. 4.9 show that, within the accuracy of the experiment, the leak rate depends
linearly on AP.
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Abbildung 4.9: The leak rate as a function of the fluid pressure difference AP for
the nominal squeezing pressure Py =~ 60 kPa. Square symbols are the
measured data while the straight line indicates the linear relation
between leak rate and AP.

4.4 Comparison to the Single Junction Theory

In order to test the theory, experiments have been performed as described before.
The substrate in the first test is a randomly rough corundum paper with the grit size
120. Corundum paper is also referred to as sandpaper. It is usually manufactured
by bonding small abrasive particles to a sheet of paper typically using a resin bond.
This first experiment has been performed using sandpaper because it is available in
many different grit sizes. This makes it is easier to find a suitable roughness profile
so that the experiment can be done on an acceptable time scale. However, it is
not a perfect model surface to apply the contact mechanic theory of Persson since
the theory assumes that the average surface slope is not too large. Sandpaper has
much larger and sharper roughness than the counter surfaces usually used in normal
rubber-seal applications. From a theory point of view it should not really matter
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on which length scale the roughness occurs, expect for “complications” such as the
influence of adhesion and fluid contamination particles which tend to clog narrow
flow channels. Nevertheless, the first validation will be presented using this rather
“unsuitable” sandpaper surface.
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Abbildung 4.10: (a) shows the surface topography and (b) the surface roughness
power spectrum of the sandpaper 120 surface used in the experi-
ment. The root mean square roughness is 44 pm. It consists of hard
corundum particles with diameter of order 110 pym glued to the sub-
strate. The surface area (including only roughness with wavelength
above A\; = 20 pm) is about 40 % larger than the nominal surface
area Ag.

The topography of the sandpaper 120 sheet has been measured using the same
optical methods as reported on in Sec. 3.3. The surface topography data is plotted
in Fig. 4.10 (a) from which the power spectrum C'(g) has been calculated as shown
in (b). The measured root mean square roughness of the sandpaper is 44 pm.
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Abbildung 4.11: The calculated critical magnification (¢, where the non-contact
area percolates, as a function of the squeezing pressure Fy.

According to the procedure that has been introduced in Sec. 4.2.1, first the critical
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magnification (., where the non-contact area percolates, has been calculated using
the surface roughness power spectrum and the elastic properties of the PDMS seals.
Notice that in this first comparison a percolation threshold of p. = 0.6 has been used.
The results are shown in Fig. 4.11 as a function of the applied nominal pressure on
the seal. As expected the percolation happens at higher and higher magnifications
as the squeezing pressure is increased.
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Abbildung 4.12: Calculated critical pore size as a function of the squeezing pressure.
The red line is the lateral pore width and length A, whereas the
green curve represents the pore height u. multiplied by a factor 10.

After calculating the critical magnification it is now possible to compute the dimen-
sions of the critical constriction. In Fig. 4.12 the lateral dimensions \. and the height
uy are plotted as a function of the squeezing pressure. With increasing normal force,
the pore gets smaller and smaller. Note that in the figure the height is multiplied
by a factor 10. Thus, the assumption u, << A, for the inspected system is fulfilled.
Knowing the dimensions of the critical constriction, Eq. (4.8) is used to calculate the
leak rate. The experimental data has been obtained by placing the PDMS rubber
seal attached to the PMMA tube onto the rough surface. The cylinder is filled with
distilled water up to its maximum height and constantly refilled. It is important
to ensure that the contact is covered with distilled water. After some fixed time
period, in order to get rid of undesired effects that may happen in the first minutes
after contact formation, the leak rate is measured by stopping the time the water
column needs to drop a (small) specific distance. The experiment is repeated for
10 different squeezing pressures. It has been repeated on several locations on the
sandpaper surface with increasing the load and then decreasing it again. The results
are shown in Fig. 4.13 (a) and (b). In (a) the measured leak rate is represented by
the data points as a function of the squeezing pressure whereas the green and blue
squares correspond to two different measurements. The solid line is the calculated
leak rate using the surface topography, the measured elastic modulus of the rubber
E = 2.3 MPa and the fluid pressure difference AP = P, — B, = 10 kPa. The
parameter in Eq. (4.8) has been chosen to be o = 0.2, which is in fact in a reasonable
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Abbildung 4.13: (a) Square symbols: the measured leak rate for 10 different squee-
zing pressures. Solid line: the calculated leak rate using o = 0.233.
(b) shows the same as in (a) but with natural logarithm of the leak
rate for a better illustration.

range. Fig. 4.13 (b) shows the same data as in (a), but with the natural logarithm
of the leak rate.

To study how sensitive the theory is on the elastic properties of the seal, the
calculated leak rate for £ = 2.5 MPa and for F = 1.0 MPa are shown in Fig. 4.14
(a) and (b). The factor a has been chosen so that in (a) @ = 0.182 and in (b)
a = 0.625. Note that the theory predictions are rather insensitive on small changes
in the elastic modulus. However, as illustrated in Fig. 4.14 (b), changing F by a

factor of &~ 2 results in a very different contact pressure dependance on the leak rate
than observed.
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Abbildung 4.14: The leak rate as a function of the squeezing pressure. For (a) £ =
2.5 MPa and « = 0.182 while for (b) the parameters have been

varied to test its influence on the predictions to £ = 1.0 MPa and
a = 0.625.
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Good agreement was found between the predictions of the single junction theory
and the experimental data for a PDMS seal squeezed against a sandpaper surface.

4.5 Comparison to the Effective Medium Theory

The effective medium approach predicts a percolation threshold of p. = 0.50. To
compare the predictions of the effective medium theory with those of the single
junction theory p. = 0.50 has been used in Sec. 4.2.1 as well. The surfaces used for
this comparison are a corundum paper with grit size 120 and two sand-blasted plexi-
glas plates. The root-mean-square roughness has been calculated from the measured
topography to be 44 pym, 34 pm and 10 pm, respectively. The different height proba-
bility distributions and the surface roughness power spectra are shown in Fig. 4.15
and 4.16. The roughness profile has been measured using a tactile stylus instrument.
Similar to atomic force microscopy, a stylus is brought into contact with the surface
probe. It is then moved over the surface while the vertical deflection is measured. It
turns out that this method gives much better results than the optical reading of the
surface height profile. As already mentioned before, sandpaper consists of particles
with sharp edges pointing above the surface while the regions between the particles
are filled with a resin binder making the valleys smoother and wider than the peaks.
This is the reason for the asymmetry in the height probability distribution P, as
observed.

30 30
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€ € PMMA
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_;; 20 :3: 20 smooth x 0.3
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Abbildung 4.15: The surface height probability distribution of (a) sandpaper 120 and
(b) two sand-blasted PMMA surfaces. Note that in (b) the results
for the smooth PMMA sample (blue curve) have been multiplied
by a factor of 0.3. The surfaces have a root-mean-square roughness
of 44 pm, 34 pym and 10 pm respectively. The surface area is about
49 %, 28 % and 10 % larger than the nominal surface area Ag. The
distribution is skewed and not perfectly Gaussian.

Randomly rough surfaces have a Gaussian height probability distribution. However
in Fig. 4.15 (b) it is observed that, opposite to the sandpaper surface, the plexiglass
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Abbildung 4.16: The surface roughness power spectrum C(q) of sandpaper 120 and
two sandblasted PMMA surfaces calculated from the measured to-
pography data.

surfaces are asymmetric with a tail towards smaller . The PMMA surfaces have
been prepared by bombarding smooth plexiglass plates with small hard particles.
This results, at least for a short time of sand-blasting, in local indentations (where
the particles hit the surface) separated by smoother surface regions, leading to the
observed asymmetry in Pj. The root-mean-square roughness of the two plexiglass
samples are 34 pm and 10 pm, respectively.

The square symbols in Fig. 4.17 show the logarithmic (with 10 as basis) of the
measured leak rate, for several different squeezing pressures, for both the sandpaper
surface and for the two sand-blasted PMMA surfaces. The solid lines are the cal-
culated leak rate using the measured rubber elastic modulus £ = 2.3 MPa and the
surface roughness power spectra C'(¢) shown in Fig. 4.16. The red lines correspond
to the predictions of the single junction theory while the green lines represent the
effective medium theory. In the calculations « has been chosen to be o = 0.73 for the
sandpaper 120 surface, and a = 0.31 for both PMMA surfaces. Note that the two
theories give remarkable similar results and that the parameter « for the sandpaper
case approaches 1 as the percolation threshold has been changed to p. = 0.50. The
value of « is in a reasonable range, of order unity, as expected before.

Surprisingly, the effective medium theory, where all percolation paths are taken
into account, predicts a slightly lower leak rate than the “simple” single junction
theory where only the first flow channel is included in the analysis. The explanation
for this result may be that in the effective medium model there is no correlation
between the size of a region and the average interfacial separation of the two surfaces
in this region. In reality however regions with large separations also form large,
connected domains. This effect tends to increase the leak rate.

Fig. 4.18 shows the same as Fig. 4.17 but for a wider range of squeezing pressures.
It illustrates what happens if the nominal pressure on the seal is increased further and
further. The red lines are the results of the single junction theory, whereas the green
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Abbildung 4.17: Square symbols: the measured leak rate for different squeezing pres-
sure for sandpaper (upper data points) and sand-blasted PMMA
(lower set of data points). In each case the green line corresponds
to the calculated leak rate using the single junction theory whereas
the red lines represent the effective medium approach. Input for the
calculations has been the measured surface topography, the mea-
sured rubber elastic modulus £ = 2.3 MPa and the fluid pressure
difference AP = P, — P, = 10 kPa obtained from the height of the
water column. Here o = 0.73 for sandpaper and 0.32 for PMMA.

line shows that the effective medium theory gives nearly the same results. Note that
the leak rate of the sandpaper and the two sand-blasted PMMA systems strongly
decays until it finally vanishes. Because the magnification can only be increased until
it reaches its natural cut-off (of order atomic dimensions), for high enough pressure
the condition for the percolation of a flow channel, A({)/Ap ~ 1 — p¢, will no longer
be reached. That is, even for the highest magnification the area of real contact would
be too large for a non-contact region to percolate. In the present case this would
happen for the squeezing pressures 1.0, 0.85 and 0.49 MPa.

To conclude, it has been shown that both theoretical approaches give nearly the
same results for the tested systems. The experimental results are in good agreement
with the predicted leak rate, which has been calculated using percolation theory
and the contact mechanics theory of Persson. Employing a percolation threshold of
pe = 0.50 instead of 0.60 also caused a more realistic value for a.

4.6 Influence of Skewed Surface Roughness

Randomly rough surfaces have a Gaussian height probability distribution. However
many surfaces of engineering interest have skewed distributions, as already observed
in Sec. 4.5. This may also affect the leak rate of a static seal as can be understood
from the following extreme case. A rigid solid block with a flat surface is brought
into contact with a rigid substrate with periodic “surface roughness” as indicated
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Abbildung 4.18: Same as in Fig. 4.17 but for a larger range of squeezing pressures.
The red lines are the results of the single junction theory. The effec-
tive medium theory gives practically the same results as illustrated
for one rough sandblasted PMMA (green curve).

in Fig. 4.19. The two substrate surfaces shown in (a) and (b) have in fact the same
root-mean-square roughness and the same power spectrum. However, intuitively it
is easy to understand that for (a) the leak rate should be much larger than in (b)
due to the larger empty volume between the surfaces in (a).

In the real application the roughness is of course not periodic and the solids
are not rigid but it is expected that the leak rate is larger for a situation where
the asymmetry of the height profile is as for case (a). This may also be the physical
origin why the factor « is larger for the sandpaper surface compared with the PMMA
samples. The surface roughness power spectrum of the rough PMMA surface and the
sandpaper 120 are in fact very similar. However the leak rate differs by roughly two
orders of magnitude. This indicates that some aspects of the surface topography, not
contained in the power spectra, is likely to be of importance. For randomly rough
surfaces, the statistical properties of the surfaces are fully contained in the power
spectrum.

Cla) = o [ o (1G0H(O)e o> (1.12)

However the surfaces presented before are not perfectly Gaussian (P}, is non-Gaussian)
and to account for this, the top and bottom power spectra are defined as follows

Cr(a) = gz [ & (hr(hr (@) o> (113
Cala) = oo [ o (hahao)e > (1.14)

where ht(x) = h(x) for h > 0 and zero otherwise, while hg(x) = h(x) for h <
0 and zero otherwise. These “rectified” profiles are schematically shown in Fig.
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(b)

Abbildung 4.19: The figure shows the contact between a rigid block with a flat sur-
face and a rigid substrate with periodic surface structure. The two
substrate surfaces in (a) and (b) have the same surface roughness
power spectrum. Note that the empty volume between the surfaces
is much larger in case (a) than in case (b), and therefore one would
expect the leak rate to be largest.

4.20. It is clear by symmetry that for a randomly rough surface with Gaussian
height distribution, Ct(¢) = Cg(q). If nT and np are the fractions of the nominal
surface area (i.e. the surface area projected on the xy-plane) where h > 0 and
h < 0, respectively, then one can also define Ci.(¢) = Cr(q)/nr and Cj(q) =
Cg(q)/nB. Roughly speaking, C}. would be the power spectrum resulting if the
actual bottom profile (for A < 0) was replaced by a mirrored top profile (for h > 0).
A similar statement holds for Cf. For randomly rough surfaces with Gaussian height
distribution it is expected C}(q) = Cf(q) = C(q).

h(x)

hg(x)

+ \—

Abbildung 4.20: The surface profile is decomposed into a top hr(x) and a bottom
hg(z) profile. Using these profiles, the top and bottom power spec-
tra can be calculated.

The contact mechanics theory of Persson can in principle also (approximately) be
applied to surfaces with skewed height distributions. For this case it can be shown,
that the predictions can be improved if C7.(¢) is used rather than C(q). It gives
a better representation of the surfaces roughness. The reason for this is that, for
small squeezing pressures, the rubber will only probe the upper part of the substra-
te surface roughness profile. Hence the dependence of the area of contact on the
magnification, and therefore the critical magnification determining the percolation
of non-contact area, will be more accurately described employing C7.(q). Using the
top power spectrum does not mean that one does not take into account for the
surface roughness below the average plane. These region below the average surface
plane are in replaced by a mirrored top profile with the same statistical properties
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as the top profile. From Fig. 4.19 it is also clear that the largest volume of fluid
between the two surfaces will occur above the average surface plane and not below,
at least for small squeezing pressures.
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Abbildung 4.21: The surface height probability distribution for the sandpaper 100
and 120 surfaces with the root-mean-square roughness amplitu-
des 40 pm and 31 pm. The two surfaces have the skewness
(h?)/(h?)3/2 = 0.85 and 0.82 respectively.

To study the influence of skewness on the leak rate, experiments have been performed
for the following two systems:

First system: Two corundum (sandpaper) surfaces with grit sizes 100 and 120. The
rms roughness of the surfaces (40 ym and 31 pum) has been calculated from the
measured surface topography. A stylus instrument has been used to measure
the roughness. From this data the height probability distribution P(h) (shown
in Fig. 4.21) and the surface roughness power spectra C(q) as well as the
top and bottom power spectra (see Fig. 4.22 (a) and (b)) have been deduced.
Both surfaces exhibit an asymmetric height probability distribution with a tail
towards higher h. This has already been noticed in Fig. 4.15 (a) for a different
(but with the same grit size) sandpaper surface. This can be explained by how
these surfaces are produced. The sandpaper surface consist of particles with
sharp edges pointing above the surfaces while the region between the particles
is filled with a resin binder making the valleys smoother and wider than the
peaks. This leads to the asymmetry in P(h) as observed.

Second system: Two samples with “inverted” surface roughness profiles of the two
sandpaper surfaces described before have been studied. The “negatives” are
produced by crosslinking PDMS against the sandpaper surfaces. The samples
obtained have inverted surface statistics so that Cf_;,,sandpaper(Q) now equals

T inverted (@) To measure the leak rate for this system, the seals have been
sqlieezed against a flat glass substrate.
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Comparing the measured leak rate for the configuration flat seal against rough sub-
strate with flat seal with “inverted” roughness against smooth substrate, one can
address the problem illustrated in Fig. 4.19.
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Abbildung 4.22: The surface roughness power spectrum of (a) sandpaper 100 and (b)
120. The three curves are the original surface roughness power spec-
trum C(q) (red), and the top C7.(q) (blue) and the bottom power
spectrum C}(q) (green). For (a) the root-mean-square roughness is
40 pm and for (b) 41 um. The fraction of the projected surface area
above the average surface plane is about 0.44 and 0.45 for (a) and
(b), respectively.

Fig. 4.23 (a) shows the logarithm of the measured leak rate for the sandpaper 100
substrate (upper squares) and for the inverted surface (lower squares) as a function
of the squeezing pressure. The solid lines are the calculated leak rate using the single
junction theory. The experimental data obtained on the sandpaper 120 substrate as
well as the inverted system are shown in (b). The calculation of the top curve uses
the top power spectrum C75(¢) while the leak rate of the inverted systems employs
the measured bottom power spectrum C}(q) of the sandpaper sample.

Considering the experimental data first, there exist a noticeable difference between
the leak rate of the “original” system compared with the “inverted” system. This
difference was explained qualitatively already before, and is related to the larger
empty volume between the surfaces for the original surface as compared with the
inverted surface (see Fig. 4.19). The effect on the leak rate is huge, roughly two
orders of magnitude difference. Utilizing the single junction theory and the top
power spectrum gives very good agreement between the calculated leak rate and the
measured data (upper curves). The fitting parameter « used for the analysis of the
first system is a = 1.0.

Note that the theory is also able to describe the observed effect or difference
between system 1 and 2. Using Cf;(q) of the measured sandpaper surfaces, the cal-
culated leak rate of the inverted system is in good agreement with the experiment
(see Sec. 4.23 (a) and (b), lower curves), where a = 0.8 is used. However with in-
creasing squeezing pressure the deviation between theory and experiment becomes
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Abbildung 4.23: Square symbols: the measured leak rate for (a) sandpaper 100 and
(b) sandpaper 120 (upper curves) and for the inverted surfaces
(lower curves). The solid lines are the calculated leak rate using the
single junction theory. The top curves have been calculated using
the top power spectrum C7(q). For the inverted samples (bottom
curves) the bottom power spectrum C}5(¢) was used. The measured
elastic modulus of the rubber seal is £ = 2.3 MPa while the fluid
pressure difference AP = P, — P, = 10 kPa. For the normal system
o« = 1.0 while for the inverted system o = 0.8.

larger. This is because the leak rate decreases faster as predicted by the theory.
This may be attributed to the influence of adhesion on the contact mechanics and
consequently also on the leak rate. The top of the asperities of the inverted surfaces
are quite smooth as they arise from the relative smooth resin film in the valleys
between the abrasive particles of the sandpaper surface. This feature allows effective
adhesion between the asperities on the PDMS seal and the smooth substrate.

When the glass substrate is clean water will almost completely wet its surface so
that the work of adhesion between glass and PDMS through water may be zero or
even slightly negative. This would lead to a repulsion instead of attraction. However
the glass surfaces were not cleaned chemically and therefore probably covered by
nanometer thick organic contamination layers. In general, these layers are strongly
absorbed to glass. Organic molecules floating in the air are partly oxidized with re-
active bonds, and when absorbed on the glass, they may interact with the surface by
some strong specific interactions. These molecules are not easy to remove by water.
In this case one would expect a dewetting transition in the asperity contact regions
between the substrate surface and the silicon rubber surface [10, 91]. This results in
an effective adhesion which pulls the surfaces in closer contact than expected taking
only the influence of the squeezing pressure into account.

For the case where PDMS is squeezed against a PMMA substrate, the work of
adhesion is effectively larger, pulling the seal even into closer contact with the counter
surface. This explains the difference in the leak shown in Fig. 4.23 (a). In (b) the
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difference is not as big as in (a). This may be due to organic contamination which
could not be removed sufficiently and therefore leads to a smaller difference between
the two different experiments.

4.7 Influence of the Hydrostatic Pressure on the Leak Rate

In all the calculations presented earlier, the influence of the fluid pressure on the
contact mechanics is neglected. This is a good approximation as long as the squee-
zing pressure Py is much higher than the fluid pressure Pgyuq which is true for all
experiments discussed before. However in many practical situations it is not a good
approximation to neglect this influence and therefore the influence of the hydro-
static pressure on the leakage is studied in this section. Consider the case where
Prvia & Py. Since the fluid pressure for the seal is higher on the fluid entrance side
than on the fluid exit side, one expects the elastic body to deform and tilt relative
to the average substrate surface plane. This effect consequently leads to higher lea-
kage. To test this effect the experiment has been repeated as described before. The
inner and outer diameter of the PDMS seal is 40 mm and 60 mm with a height of
5 mm. The normal force is kept constant in the following experiment at Fy = 18.5 N
giving a squeezing pressure of 11.8 kPa. Using a water column with the maximal
applicable height H = 1.2 m gives the fluid pressure Pguq = P. — B, = 11.8 kPa
at the bottom of the fluid column. This equals the squeezing pressure applied on
the seal. If the fluid pressure is larger than the squeezing pressure, the experiment
becomes instable and the tube lifts off from the substrate. The substrate used here
is the “rough” sandblasted PMMA surface reported on in Sec. 4.5. The height pro-
bability distribution and the power spectrum are plotted in the Fig. 4.15 and 4.16
respectively.
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Abbildung 4.24: The shape of the rubber block for P, — P, = Fy. The nominal
squeezing pressure is Py = 11.8 kPa. The dashed line is the shape
of the block when AP = P, — P, = 0 against a sandblasted PMMA
surfaces with the root-mean-roughness 34 pym.
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Fig. 4.24 shows the expected calculated shape/deformation of the rubber seal for
the case if P, — B, = Py = 11.8 kPa. The dashed line corresponds to no hydrostatic
deformation where the average separation is determined by the substrate surface
roughness. In this most extreme case, where the system becomes instable and lift
off from the counter surface, the main contribution to the area of contact between
the two solids is shifted outwards. More results from calculations are presented in
Fig. 4.25 (a) and (b). In (a) the contact pressure between the seal and the rough
substrate is shown as a function of the distance x between the high-pressure and
low-pressure side, for three different cases where (P, — P,)/Py = 0, 0.5 and 1.0.
The higher the fluid pressure, the lower the contribution of the contact pressure. For
(P, — Py)/Py = 0 the contact pressure is highest and independent of the distance
x. Increasing the fluid pressure further and further reduces the contact pressure.
This is true especially on the high-pressure side of the seal. Fig. 4.25 (b) shows the
separation between the average plane of the rough substrate and the lower surface
of the seal as a function of the position z.
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Abbildung 4.25: In (a) the calculated contact pressure as a function of the distance
x between the high-pressure and low-pressure side is shown for the
three cases where (P, — P,)/Fy = 0, 0.5 and 1.0. (b) shows the
calculated interfacial separation as a function of z. For sandblasted
PMMA with root-mean-square roughness 34 pm.

To test the influence of the hydrostatic pressure the leak rate has then been measured
for different water column heights resulting in different fluid pressures AP = P, — PB;,.
The height is then increased up to the critical fluid pressure where the system
becomes unstable. The experimental data is plotted in Fig. 4.26 as square symbols.
Note that the fluid leak rate rapidly increases when the fluid pressure approaches
the nominal squeezing pressure Py = 11.8 kPa. The solid lines are the corresponding
theory predictions of both the single junction and the effective medium theory. The
theory predictions are both in good accordance to the experimental data and the
pressure dependance is well described by both approaches. It is interesting to note
that the influence of the hydrostatic pressure on the contact mechanics can, as a
good simplification, be neglected until it reaches about 60 % of Py.
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Abbildung 4.26: Fluid leak rate as a function of the fluid pressure difference AP =
P, — B,. The nominal squeezing pressure is Py = 11.8 kPa. The
square symbols are measured data while the solid lines are the
theory predictions. In the calculation o = 0.54. The substrate is
a sandblasted PMMA surface with a root-mean-square roughness
of 34 pm.

4.8 Conclusions on the Leak Rate

This study about the leak rate of static seals has been motivated by its importance
in technological applications as well as to test the theory of Persson. Based on the
approach by Persson and percolation theory a model has been developed to simulate
the leak rate. The theory involves the real area of contact as well as the interfacial
separation and therefore test both these aspects of the theory of Persson. A series
of experiments has been carried out in order to validate this model. Within the
comparison it could be demonstrated that the theory is in good agreement with
the experimental data. This is true for both systems studied in Sec. 4.2.1 and 4.2.2
respectively. The conclusion is that the predictions of the contact mechanics theory
are correct.

It has been found that the qualitative behavior of the leakage is well described by
the model. Only the amplitude of the leak rate needs to be adjusted. This could be
accomplished by introducing a factor . This factor has in fact a physical justification
and can be explained by the origin of the pores not to be a perfect rectangular pore.
Introducing the top and bottom power spectra improved the theory predictions a lot,
so that « could be chosen to be of order unity. Also interfaces with skewed surface
height profiles can be analyzed using the contact mechanics theory of Persson when
the top power spectrum is used in the calculations. This information may in fact be
of great importance for many other applications, e.g. rubber friction.

In the last section it was shown that the theory still works well when the fluid
pressure is of order the squeezing pressure. Here the fluid-pressure induced elastic
deformation of the rubber seal enhances the fluid leakage. However it was shown that

o8



this effect can be neglected until the fluid pressure becomes of order 60 % of the
contact pressure Fy. New theory development has been done since the analyzes of
the experiments presented above. The extended theory avoids the fitting parameter
a. Further studies on the leak rate of seals will be performed to test this new theory
and to study the influence of viscoelastic relaxation the rubber and the role of con-
tamination particles which can clog the flow channels. Note that viscoelastic effects
are also very important for the types of rubber usually used in seal applications.
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5 The Fluid Squeeze-Out

The time dependency of the squeezing out of a fluid from the interface
between an elastic solid with a flat surface and a rigid solid with a ran-
domly rough surface is studied. The experimental data is analyzed using
a model based on the contact mechanics approach by Persson and the
Bruggeman effective medium theory.

The influence of surface roughness on the fluid flow at the interface between two
solids in stationary or sliding contact is a topic of great importance in Nature and
technology. This includes for example the leakage of static and dynamic seals, mixed
lubrication as well as the removal of water between a tire tread block and the road
surface. In Nature, fluid squeeze-out is important for the adhesion and grip between
the adhesive pads of a tree frog, or a gecko, with the counter surface during rain. For
all these applications it is of particular interest how long time it takes to squeezing
out the fluid from the contact region between the two solids.

Most objects in engineering have a particular shape characterized for example by
a radius of curvature, e.g. the radius R of a cylinder in a combustion engine. To
the naked eye the surface may appear perfectly smooth, but on short enough length
scales the surface exhibits irregularities, referred to as surface roughness. When
studying the fluid flow between two macroscopic solids, the microscopic equations
of fluid dynamics may be replaced with effective equations describing the average
fluid flow on length scales much larger that the roll-off wavelength Ay of the surface
roughness power spectrum. This approach of eliminating or integrating out short
length scale degrees of freedom to obtain the effective equations of motion, describing
the long distance (or slow) behavior, is a common and powerful concept often used
in physics.

Patir and Cheng developed in the context of fluid flow at the interface between
closely spaced solids with surface roughness a model, showing how the Navier-Stokes
equations of fluid dynamics can be reduced to effective equations of motion involving
locally averaged fluid pressures and flow velocities [68, 69]. In the effective equations
occur so called flow factors. These flow factors are functions of the locally averaged
interfacial surface separation which can be determined by solving numerically the
fluid flow in small rectangular units with linear size of order (or larger than) the
roll-off wavelength A\y. Recently a new analytical theory to calculate the pressure
flow factor was presented by Persson [80]. This approach is based on the contact
mechanics theory of Persson and the Bruggeman effective medium theory to take
into account the topography disorder resulting from the roughness. This is the same
theory that was used in Sec. 4.2 as well.
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In the following section, the basic equations of fluid dynamics are presented and some
simplifications which are valid in the present analysis are introduced. A detailed
description can be found in [55, 56, 80]. After this first part on the theory, the
experimental method used to test this approach is described and the experimental
results are compared with the theory predictions.

5.1 Fluid Squeeze-Out Theory

Abbildung 5.1: The squeezing out experimental device (schematically). A cylindrical
glass or rubber block is squeezed against a substrate with smooth
or rough surface in the presence of a fluid. The cylindrical body has
the height d = 3, 5 or 10 mm and a diameter of D = 2R = 30 mm.
The normal load Fy = 13.8 N and the fluid viscosity 7 = 100 Pas.
The vertical displacement s of the upper surface is registered as a
function of time.

5.1.1 Fluid Flow between Elastic Solids with Surface Roughness

Consider two elastic solids with randomly rough surfaces. As discussed before, even
if the solids are squeezed into contact with a large nominal pressure, because of
surface roughness there will in general be non-contact regions at the interface. If
the squeezing force is small enough, one will observe non-contact channels from
one to the other side of the nominal contact region, see Sec. 4.2. A model has
been developed to calculate the fluid flow at the interface between the solids [56].
Assuming a Newtonian fluid and that the fluid velocity field v(x,t) satisfies the
Navier-Stokes equation:

Z—FV'VV— —;Vp+VV2V (5.1)

where v = n/p is the kinetic viscosity and p the mass density. For simplicity an
incompressible fluid is assumed so that

V.-v=0 (5.2)
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. =
rigid solid

Abbildung 5.2: An elastic solid (block) with a smooth surface in contact with a
rigid solid (substrate) with a rough surface in a fluid. Also shown is
coordinate system as described in the text.

Assuming that the non-linear term v - Vv can be neglected. This is true for small
inertia and small Reynolds numbers, which is usually the case for fluid flow in
between narrowly spaced solid walls. For simplicity the lower solid is assumed to
be rigid with a flat surface, while the upper solid is elastic with a rough surface. A
coordinate system xyz is introduced with the xy-plane in the surface of the lower
solid and the z-axis pointing towards the upper solid as indicated in Fig. 5.2.

The upper solid moves with the velocity v parallel to the lower solid. Let u(x, y, t)
be the separation between the solid walls and assume that the slope |Vu| << 1.
Another condition is that u/L << 1, where L is the linear size of the nominal contact
region. Under these conditions one expects that the fluid velocity varies slowly with
the coordinates x and y as compared with the variations in the orthogonal direction
z. Assuming a slow time dependency, the Navier Stokes equation reduces to

0*v

To.2

where v = (vg,vy), x = (z,y) and V = (0, 0,) are two-dimensional vectors. v, =~ 0

and p(x) is to a good approximation independent of z. The solution of the equation
above is

~ Vp (5.3)

~ L z —up(x))(z —ui(x LO(X)
v —( 0(x))( 1(x)) vP+u1(X)—u0(X)

2n
so that v = 0 on the solid walls at z = ug(x) and v = v for z = u;(x). Integrating
over z from z = ug(x) to z = uy(x) gives the fluid flow vector:

Vo (54)

u3(x) 1
J=- 121 Vp+ Qu(x)vo (5.5)
Mass conservation demands that
Ou(x,t)
_— -J = .
o +V 0 (5.6)

where the interfacial separation u(x,t) is the volume of fluid per unit area. In this
last equation a slow time dependency of u(x,t) is allowed as it would be the case
during squeezing out of a fluid from the interfacial region between two solids.
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5.1.2 Roughness on Many Length Scales

The two equations (5.5) and (5.6) describe the fluid flow at the interface between
contacting solids with rough surfaces. The surface roughness can be eliminated or
integrated out in using the Renormalization Group (RG) procedure. In this pro-
cedure the surface roughness components are eliminated in steps and one obtains
a set of RG flow equations describing how the effective fluid equations evolves as
the surface roughness is integrated out. It has been shown that after eliminating all
roughness components, the fluid current takes the form

J=A(a)Vp+ B(a)vog (5.7)

where A and B are 2 x 2 matrices and where u(x,t) and p(x,t) are now locally
averaged quantities. A and B are in general also functions of Vp (see [98]), but
for the low pressures and pressure gradients prevailing in the application presented
below, they can be neglected. Assuming the sliding velocity v = 0 and surface
roughness with isotropic statistical properties, A is proportional to the unit matrix
and can be written as A = —u3¢,(%)/(12n). Then one gets from Eq. (5.6) and Eq.
(5.7)

o
)

pressure flow factor @p

u/hrms

Abbildung 5.3: The fluid pressure flow factor for the two copper surfaces 1 and 2
as a function of the average interfacial separation u divided by the
root-mean-square roughness amplitude h,,s. The green curve shows
the large u-behavior predicted by Tripp [108].

ot ¢y, (u)

Z_Vv. P N5 ) =0 5.8
ot < 127 P (58)
Fig. 5.3 shows the pressure flow factor ¢,(u) that has been calculated using the
contact mechanic theory of Persson and the Bruggeman effective medium theory for
two copper surfaces with different surface roughness as described below. Here, the

dependance of the flow factor on the separation @ for the two copper surfaces used
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in the experimental study below is shown. The green curve is the large u-behavior
predicted by Tripp [108]:

PRSP L] (5.9)

2 u?
where (h?) = h2,_. is the mean square roughness. The small contact pressure involved
in the experiments below results in relative large average separations between the
surfaces, & > 1.4h.ys for both surfaces [78, 113] so that ¢p(u) is always close to unity
in the presented application.

5.1.3 Theory Approach to the Squeeze-Out of a Fluid

The following model has been developed for a cylindrical rubber block, with height
d and radius R, squeezed against a substrate in the presence of a fluid. It is assumed
that macroscopic deformations of the rubber, due to macroscopically non-uniform
fluid pressure, can be neglected. In this case u(x,t) only depends on the time ¢ and
Eq. (5.8) implies that the fluid pressure

7,2
P = 2Pfiuid (1 - RQ) (5.10)

where r = |x| denotes the distance from the cylinder axis. The average fluid pressure
in the nominal contact region is denoted pgyiq. Substituting Eq. (5.10) in (5.8) gives

du _ 2u® ¢p(1) pauia(t)
dt 3nR2
If po is the applied pressure acting on the top surface of the cylinder block, then

(5.11)

pﬂuid(t) =Po — pcont(t) (512)

where peont 18 the asperity contact pressure. Assume first that the pressure pg is so
small that for all times @ >> h;ys. Fig. 5.3 shows that for this case one can assume
that ¢,(a) ~ 1. For large % one can use from the theory of Persson:

" U
Pcont =~ BE €xp <_) (513)
uo

with wg = hyms/a, where o and 8 depend on the fractal properties of the rough
surface. Employing equations (5.12) and (5.13) in Eq. (5.11) gives

dpcont ~ 277'3(pc0nt(t))

dt 3nR2uq

For long times peont =~ po and Eq. (5.14) simplifies to

Pcont (p(] - pcont) (514)

dpcont ~ 2ﬂ3(p0)
dt 3nR2uq

pO(pO - pcont) (515)
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or

— 3
pcont(t) ~ po — [pO - pcont(o)] exp <_ <Q;L(p0)> j_) (516)

with

3nRuq 3nR?
T = =
2h§msp0 2ah12msp0

(5.17)

Using Eq. (5.13) leads to

i~ oo + (1 - ;%0;1(;)(())) Uoexp <— (if”?)g i) (5.18)

where us, = ug log(BE* /po). Thus, the separation u(t) will approach the equilibrium
separation us, in an exponential way. The time to squeeze out the fluid may be
defined to be the time it takes to reach, say 1.0lus,, which equals a few times the
time constant 7/ = [hyms/u(po)]>7.

For flat surfaces, within continuum mechanics, the film thickness approaches zero
as t — 0o as @ ~ ¢t~ Y/2. Thus for this configuration, there is no natural or characteri-
stic timescale and it is therefore not possible to define a meaningful fluid squeeze-out
time.

At high enough squeezing pressures and after long enough time, the interfacial
separation will be smaller than hyy,s so that the asymptotic relation in Eq. (5.13)
no longer holds. Then the relation peont (@) must be calculated numerically using the
contact mechanics theory of Persson. Substituting Eq. (5.12) in (5.11) and measuring
pressure in units of pg, separation in units of h,s and time in units of 7 one obtains

_— & —ailfﬁp(a)ﬂg(l _pcont) (519)

This equation together with the relation peont(@) constitute two equations for the
two unknowns % and pcont which can be solved numerically.
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5.1.4 Rubber Block under Vertical Loading

Consider a cylindrical rubber block with the height d and the radius R squeezed
between two flat surfaces. If both surfaces are lubricated so that no friction and
therefore perfect slip occurs at the interfaces, the stress at the interfaces is constant
p = po = Fx/7R2. The change in thickness of the block, Ad, (assuming linear
elasticity) is determined using pg = EAd/d. If the rubber adheres to the upper
surface, so that no slip occurs at the contacting interface, the situation can be very
different [26, 107]. If d > R, the stress at the lower interface will again be nearly
uniform and Ad is determined by pg = EegAd/d where E.g > F but nearly identical
to F. In the opposite limit of a very thin rubber disk, with d << R, the pressure
distribution is nearly parabolic as shown in Fig. 5.4.

p(r) =~ 2po[l — (r/R)?] (5.20)

and the effective elastic modulus E.g >> E. For a substrate with large enough
surface roughness, it has been shown that even for a very thin rubber disk the locally
averaged pressure distribution at the bottom surface of the rubber disk is nearly
constant [97]. The reason for this is that the rubber is pressed into the ridges on the
rough surface under vertical loading so that the hydrostatic pressure decreases. Note
that while F.g > E determines the change in the thickness of the rubber block, the
asperity-induced elastic deformations at the lower interface are still determined by
the Young’s modulus E.

lubricated substrate /)

pressure ‘

]

r

Abbildung 5.4: A cylindrical rubber block (height d and radius R) squeezed against
a lubricated substrate (no friction). If d > R the pressure distribu-
tion at the interface is nearly uniform (left). For d < R (right) the
pressure distribution is nearly parabolic. It is assumed that the up-
per surface of the two rubber cylinders is glued to a flat rigid disk
so that no slip occurs at the interface.

It has already been shown (see Eq. (5.10)) that squeezing a flat cylinder surface

against a flat substrate in a fluid results in a parabolic fluid pressure distribution.
This implies that for a very thin elastic disk, adhered to a rigid and flat upper
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surface, the bottom surface is expected to remain nearly flat and the assumption
made in Sec. 5.1.3 holds to a good accuracy. However, when the thickness of the
rubber block increases so that d > R the bottom surface of the block will bend
inwards as indicated in Fig. 5.5. This will slow down the fluid squeezing out because

of the trapped fluid.
#

Abbildung 5.5: The non-uniform hydrodynamic pressure is highest at the center

of the contact region and deforms the rubber block as indicated if
d > R. A reservoir of trapped fluid is formed.

5.2 The Squeeze-Out Experiment

The squeezing out of a fluid from the contacting interface between two solids with
rough surfaces is studied experimentally. In the experiment a cylindrical silicon rub-
ber block is squeezed against different rough counter surfaces in the presence of a
fluid. The experiment is schematically shown in Fig. 5.1 and discussed theoretically
in Sec. 5.1. The rubber block is attached to a dead weight resulting in the loading
or squeezing force Fy = 13.8 N. This normal force is kept constant for all experi-
ments reported on below. A position sensor measures the downwards movement of
the dead weight as a function of time. The sensor is a digital gauge with a relative
position resolution of 0.5 um. In order to slow down the whole experiment a very
high viscosity silicon oil (Dow Corning 200 Fluid) is used: Compared with most tech-
nological applications, a relative low nominal squeezing pressure has been applied.
The viscosity of the fluid is 7 = 100 Pas while the nominal squeezing pressure is of
order 10* Pa.

In the experiments below, different configurations are used in order to test different
effects on the squeezing out process. Either an elastic silicon rubber block or a rigid
glass block is squeezed against a smooth glass substrate or a rough copper surface.
The rubber blocks all have the same radius R = 15 mm but they differ in height
d =3, 5 and 10 mm. The silicon elastomer used is PDMS (Sylgard 184) and it has
been prepared as described in Sec. 3.3. The rough copper surfaces were prepared by
pressing different sandpaper surfaces against a flat and plastically soft copper surface
using a hydraulic press. Variating the grit size and repeating the procedure many
times, resulted in some nearly randomly rough surfaces suitable for the experiments.
The roughness of the copper surface can be changed by using sandpaper of different
maximum grade (consisting of particles with different average diameter).
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The experiments have been performed by placing the silicon rubber or the glass
block, attached to the dead weight, in the high viscosity fluid with some distance to
the rough copper surface or the smooth glass substrate. To avoid trapped air in the
fluid it has been poured in the container carefully and degassed in a vacuum chamber
for a couple of hours. This is necessary because of the high viscosity of the silicon
oil. In order to avoid kinetic effects, due to the inertia of the dead weight, the initial
separation is selected to be very small. The normal force is applied by dropping the
weight while simultaneously the displacement from the starting position is registered
as a function of time.

The surface roughness of the two rough copper surfaces 1 and 2 used in this study
has been measured using an optical sensor. The corresponding root-mean-square
roughness values are 42 um and 88 pum. Fig. 5.6 shows the power spectrum of the
two rough substrates used in this experiment.
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Abbildung 5.6: The surface roughness power spectrum for the two copper surfaces
1 and 2. The root-mean-square roughness of the two surfaces are
42 pm and 88 pm, respectively.

Three different configurations of the experiment have been tested. In the first test,
a nominally flat PDMS or glass cylinder is squeezed against a flat glass substrate.
This is done in order to test the influence of the non-uniform hydrodynamic pressure
on the deformation of the PDMS sample. The squeezing out for the PDMS-glass
combination is expected to take longer than for the glass-glass combination, due to
the trapped fluid as indicated in Fig. 5.5. This first test is referred to as PDMS or
glass cylinder against flat substrate. In the second experiment, flat PDMS cylinders
with different thickness d are squeezed against the rough copper 1 sample. In the
last experiment the flat PDMS cylinder is squeezed against the copper 2 surface.
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5.3 Comparison with the Theory Predictions

In this section the experimental data is compared with the calculated squeezing
out from the model presented in [55]. All relevant information, such as the surface
roughness power spectra as well as the elastic properties of the PDMS, are known.

PDMS or glass cylinder against flat substrate

flat glass substrate
0.3}

©
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Abbildung 5.7: The surface separation as a function of the logarithm of time when
a glass and a PDMS cylindrical block is squeezed against a flat glass
substrate in the presence of a high viscosity silicon oil. Also shown
is the theoretical prediction (lower curve). The cylindrical body has
the height d = 5 mm and the diameter D = 2R = 30 mm. The
normal load Fy = 13.8 N and the fluid viscosity n = 100 Pas.

Fig. 5.7 shows the surface separation as a function of the logarithm of time when a
PDMS or a glass cylindrical block is squeezed against a flat glass substrate in the
presence of a silicon oil. The lower curve in the figure shows the theoretical pre-
dictions neglecting the macroscopic deformation of the block. The cylinder used in
this experiment has a thickness d = 5 mm and diameter D = 2R = 30 mm. The
result from the theory agrees almost perfect for the case of a glass cylinder squeezed
against a flat substrate. There are no fitting parameters used in the calculation. Ho-
wever for the PDMS block squeezed against a flat substrate, the average separation
between the substrate and the PDMS rubber block is larger and the squeezing out
occurs slower than predicted by the theory. This discrepancy is attributed to the
temporarily trapped fluid resulting from the macroscopic deformation of the PDMS
surface before the two solids form contact. This effect is not included in these mo-
del calculations but it can be estimated as follows. The trapped fluid volume AV
is defined as the fluid volume between the bottom surface of the block and a flat
surface in contact with the block only at the edge r = R. Using the theory of elasti-
city AV = 7R2%§ with § = CRp/FEeg, where C is a constant of order unity. For the
present case (d = 5 mm) Eg ~ E[1 + 0.5 (R/2d)?] ~ 4 MPa one gets § ~ 40 pm.
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This results in a volume of trapped fluid that can not be neglected and which results
in a longer squeezing out time as this additional silicon oil is slowly removed. This
assumption is consistent with the experimental observations.

PDMS against the Copper 1 Surface
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Abbildung 5.8: (a) shows the surface separation as a function of the logarithm of
time when two PDMS cylindrical blocks with the thickness 3 mm
and 10 mm are squeezed against the rough copper surface 1 in a
silicon oil. Also shown is the theoretical prediction for a flat substrate
(dashed curve) and for the copper surface 1 (lower solid line). (b)
shows the same as in (a) but for a more narrow time interval. The
thin solid line is the calculated squeezing out assuming the pressure
flow factor ¢,(u) = 1.

Fig. 5.8 (a) and (b) show the surface separation as a function of the logarithm of
time when the PDMS cylindrical block is squeezed against the rough copper surface
1 in the presence of a silicon oil. The experiment has been repeated with PDMS
samples with thickness 3 mm (green curve) and d = 10 mm (blue curve). There is
a clear dependance on the squeezing out process due to the thickness of the rubber
block. Increasing the thickness of the PDMS block also increases the time it takes
for the upper solid to reach its equilibrium position. The reason for this is the effect
described in Sec. 5.3 and explained in Sec. 5.1.4. The fluid pressure induced curvature
of the bottom surface of the rubber is expected to be smaller for the thin rubber
disk.

The dashed line in Fig. 5.8 shows the theory prediction for a flat substrate while
the lower (red) solid curve is the calculated squeezing out for the copper 1 substrate.
In both cases the bottom surface of the rubber disk is assumed to be macroscopically
flat. The agreement between theory and experiment is better for the thinner rubber
disk. But even for the thin rubber disk, fluid-pressure induced bending of the bottom
surface is expected. This effect is believed to be the main origin for the slightly slower
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squeezing out observed in the experiment as compared with the theory.

The thin solid line in Fig. 5.8 (b) shows the calculated squeezing out assuming
the pressure flow factor ¢, (@) = 1. Here, he pressure flow factor is close to unity and
this explains the relative small difference between using ¢, (@) = 1 (thin red line) or
the calculated ¢y, (@) (thick red line).

Fig. 5.9 shows the surface separation as a function of the logarithm of time when
the PDMS disk, with thickness d = 5 mm, is squeezed against a flat glass substrate
(lower curve) and against the rough copper surface 1 in a silicon oil. Before contacting
the substrate the fluid-pressure induced bending of the bottom surface of the block
is the same for both cases. This leads to overlapping curves for ¢ < 300 s. This
changes when the PDMS block comes into contact with the substrate.
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Abbildung 5.9: The surface separation as a function of the logarithm of time when a
5 mm thick PDMS cylindrical block is squeezed against a flat glass
substrate (lower curve), and against the rough copper surface 1 in a
silicon oil.

PDMS against the Copper 2 Surface

In Fig. 5.10 the surface separation as a function of the logarithm of time is shown
when the d = 5 mm thick PDMS cylindrical block is squeezed against the rough cop-
per 2 surface. The lower (solid) curve is the theoretical prediction for the squeezing
out. The dashed line again represents the case for PDMS against a flat substrate.
Note that the experimental data and the theory prediction differ in the beginning.
Again, the main reason for this is the macroscopic bending of the lower PDMS sur-
face due to the fluid pressure. Note that increasing the roughness of the substrate
tends to result in a faster squeezing out. This is also expected as the leak channels,
when the PDMS block has formed contact with the substrate, are much bigger for
surface 2 as for surface 1. The qualitative behavior of the system however is not
changed and the agreement between the predictions of the theoretical approach by
Persson with the experimental information show that the contact is well described
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Abbildung 5.10: The surface separation as a function of the logarithm of time when
a d = 5 mm thick PDMS cylindrical block is squeezed against the
rough copper surface 2 in a silicon oil. Also shown is the theoreti-
cal prediction (lower solid curve). The dashed curve is the theory
prediction for the case of a flat substrate.

by the theory.

5.4 Conclusions to the Squeezing Out

In this section the squeezing out of a fluid from the interface between an elastic
block with a flat surface and a randomly rough, rigid solid has been studied. The
approach by Persson to calculate the average interfacial separation as a function
of time by considering the fluid flow out of the contact has been discussed. The
contact mechanics theory of Persson has been used in combination with thin-film
hydrodynamics with flow factors which were calculated using a recently developed
theory [80]. The importance of the large length-scale elastic deformation on the
squeeze-out has been discussed theoretically. An experiment has been designed in
order to test this approach and the theoretical results have been compared with
the experimental data. In the experiments above, cylindrical rubber blocks with
different height d have been squeezed against rough copper surfaces in the presence
of a high viscosity silicon oil. Changing the height d of the block and also performing
additional experiments, where the flat rubber rubber block is squeezed against a flat
substrate, the importance of the large length-scale and the asperity induced elastic
deformation on the squeezing out could be probed experimentally. In particular, the
large length-scale deformation of the bottom surface of the rubber block resulted
in temporary trapped fluid which drastically slowed down the squeezing out. It
was shown that this effect is smallest for the thinnest rubber block. Indeed, for
this configuration good agreement between theory (which neglects the macroscopic
deformation of the elastic body) and experiment is found.

The good agreement between the theory results and the experiment shows that the
contact formation is well described using the contact mechanics theory of Persson.
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As in Sec. 4.2, where the leakage of a seal is addressed, the application in this section
involved both, the real area of contact and the interfacial separation.
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6 Heat Transfer between Rough Surfaces

The heat transfer between two solids with rough surfaces in contact with
each other is addressed. The contact mechanics theory of Persson is used
to calculate the heat transfer, both via the real area of contact, and from
the non-contact regions. A brief introduction to this topic is given in the
first part of this chapter. The heat transfer between two elastic solids is
derived and the predictions are analyzed. An experimental approach to
this topic is presented, and the experimental results are compared with
the theory predictions and discussed.

The heat transfer between two solids is a topic of great practical importance and
it is closely connected to the nature of the contact between the two solid bodies.
Classical applications include matters such as the cooling of heat exchangers, tyres,
microelectronic devices, spacecraft structures and nuclear engineering. Heat transfer
is also of crucial importance in friction and wear processes, e.g. rubber friction on
hard and rough substrates depends crucially on the temperature increase in the
rubber-counter surface asperity contact regions [77]. Other potential applications
involve the cooling of microelectromechanical systems (MEMS).

A lot of work has been carried out and published on the heat transfer between
randomly rough surfaces [3]. However, most of these studies are based on multias-
perity contact models such as the Greenwood and Williamson theory (GW). It has
been shown above that the GW-model, and other asperity contact models, are rat-
her inaccurate, see Sec. 3.4.2 and [15, 17, 89]. The main reason for this is that the
multiasperity contact models neglect long-range elastic coupling between the aspe-
rity contact regions [79, 87]. Also, the asperity contact regions are assumed to be
circular or elliptical. However, the actual contact regions, observed at high enough
resolution, have in fact fractal-like boundary lines, see Fig. 6.1 and [8, 70, 92]|. Thus,
because of their complex nature, one should avoid to directly involve the nature of
the contact regions when studying contact mechanic problems. Note also that for
elastically hard solids the area of real (atomic) contact A may be only a very small
fraction of the nominal or apparent contact area Ag, even if the nominal squeezing
pressures are high [72, 85].

The contact regions between two elastic solids observed at atomic resolution are
just a few atoms wide, so that the typical diameter of the contact regions may be of
order ~ 1 nm [40, 61, 114]. The heat transfer via such small junctions may be very
different from the heat transfer through macroscopic-sized contact regions, where
the heat transfer usually is assumed to be proportional to the linear size of the
contact regions, rather than the contact area. In particular, if the typical phonon
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Abbildung 6.1: The black area is the contact between two elastic solids with random-
ly rough surfaces. For surfaces which have fractal-like roughness the
whole way down to atomic length scale, the contact at the highest
magnification (atomic resolution) typically consists of nanometer-
sized atomic clusters. The result is obtained using Molecular Dy-
namics (MD), but since there is no natural length scale in elastic
continuum mechanics the picture could also be the contact observed
between two macroscopic elastic solids. Adopted from [92].

wavelength involved in the heat transfer becomes larger than the linear size of the
contact regions, which always happens at low enough temperature, the effective
heat transfer may be strongly reduced. Similarly, if the phonon mean free path is
longer than the linear size of the contact regions, ballistic phonon energy transfer
may occur which cannot be described by the macroscopic heat diffusion equation.
These effects are likely to be of crucial importance in many modern applications
involving micro- (or nano-) sized objects, such as MEMS, where just a few atomic-
sized contact regions may occur. However, for macroscopic solids the thermal (and
electrical) contact resistance is usually very insensitive to the nature of the contact
regions. In fact, the heat transfer is determined mainly by the nature of the contact
regions observed at lower magnifications where it appears to be larger, see Fig. 6.2
and [4, 30].

Recently a novel approach has been presented describing the heat transfer between
macroscopic-sized solids using the approach on contact mechanics by Persson [88].
This approach does not directly involve the complex nature of the contact regions.
The contribution to the heat transfer from the area of real contact observed at
atomic resolution [101, 102, 103] and also the heat transfer across the area of non-
contact, in particular the contribution from the fluctuating electromagnetic field
which surrounds all solid object, are taken into account [45, 109]. The different heat
transfer mechanisms are presented briefly and the necessary information to calculate
the total heat transfer are derived from the contact mechanics theory of Persson.
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Abbildung 6.2: The contact region (black area) between two elastic solids observed
at low (left) and high (right) magnification. The contact resistance
depends mainly on the long-wavelength roughness and can usually
be calculated accurately from the nature of the contact observed at
low magnification (left).

The reader is referred to [88] for a detailed description of the model. In order to test
this approach, a simple device was designed and experiments have been carried out.

In this section, it is assumed that the solids deform elastically and that the adhesio-
nal interaction between the solids can be neglected. However the contact mechanics
theory of Persson can also be applied to cases where adhesion and plastic flow are
important.

6.1 The Heat Transfer Model

In most applications one is interested in the heat transfer between solid objects
located in the normal atmosphere or in a fluid. Most solid objects in the normal
atmosphere have organic and water contamination layers, which may influence the
heat transfer for at least two reasons: (a) Thin contamination layers may occur at
the interface in the asperity contact regions, which will affect the acoustic impedance
of the contact junctions, and hence the propagation of phonons between the solids
(which usually is the origin of the heat transfer, at least for most non-metallic
systems). (b) In addition, capillary bridges may form in the asperity contact regions
and increase the heat transfer. In the normal atmosphere heat can also be transferred
between the non-contact regions via heat diffusion or (at short separation) ballistic
processes in the surrounding gas. For larger separations convective processes may
also be important.

For high-resistivity materials and for hard and very flat surfaces, such as those
involved in many modern applications, e.g. MEMS applications, the non-contact
radiative heat transfer may in fact dominate in the total heat transfer (at least under
vacuum condition). Note that for flat surfaces (in vacuum) separated by a distance d
larger than the thermal length dr = ch/kpT, the non-contact heat transfer is given
by the classical Stefan-Boltzmann law, and is independent of d. However, for very
short distances the contribution from the evanescent electromagnetic waves to the
heat transfer will be many orders of magnitude larger than the contribution from
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propagating electromagnetic waves.

As mentioned above, the heat transfer is mainly determined by the nature of the
contact regions observed at low magnification. It can be shown that for self-affine
fractal surfaces, the contact resistance depends on the range of surface roughness
included in the analysis as ~ 7(H) — (qo/q1)", where gy and ¢; are the smallest
and the largest wave vector of the surface roughness included in the analysis. The
number r(H) depends on the Hurst exponent H but is of order unity. In a typical
case H ~ 0.8, and including surface roughness over only one wave vector decade
qo < q < q1 = 10qp results in a heat resistance which typically is only ~ 10 %
smaller that obtained when infinitely many decades of length scales are included.
At the same time, for elastic solids, the area of real contact approaches zero as
go/q1 — 0. Thus, there is in general no relation between the area of real contact
(which is observed at the highest magnification, and which determines, e.g. the
friction force in most cases), and the heat (or electrical) contact resistance between
the solids.

In the context of electric conduction, one aspect of this was pointed out a long time
ago: if an insulating film covers the solids in the area of real contact, and if electrical
contact occurs by a large number of small breaks in the film, the resistance may be
almost as low as with no film at all [2]. Similarly, the thermal contact resistance of
macroscopic solids usually does not depend on wether the heat transfer occurs by
diffusive or ballistic phonon propagation, but rather by the nature of the contact
regions observed at relative low, magnification.

6.1.1 Heat Transfer Coefficient

Consider two elastic solids (rectangular blocks) with randomly rough surfaces that
are squeezed into contact as illustrated in Fig. 6.3. Assuming that the temperature
at the outer surfaces z = —dy and z = d; is kept fixed at Ty and 717, respectively,
with Ty > T7. Close to the interface the heat current will vary rapidly in space,
J = J(x, z), where x = (x, y) denote the lateral coordinate in the xy-plane. Far from
the interface the heat current should be constant and in the z-direction, i.e., J = Jy2Z.
The average distance between the macro asperity contact regions is denoted by A (see
[76]). It is assumed that A << L, where L is the linear size of the apparent contact
between the elastic blocks. The temperature a distance ~ A from the contacting
interface is approximately independent of the lateral coordinate x = (z,y) and
these temperatures are introduced as Tj) and T} for z = —\ and z = A, respectively.
The heat current for |z| >> X is independent of x and can be written as (to zero
order in A/dy and \/d;)

T — T, T, —T!
Jo=—kop—2——" = —p;——1L
0 L 1

where kg and kq are the heat conductivities of the two solid blocks. It is further

assumed that the heat transfer across the interface is proportional to 7] — 77 and

the heat transfer coefficient is defined as « so that

(6.1)
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Jo=a(Tfy —Ty) (6.2)
Combining Eq. (6.1) with (6.2) gives

B Ty — T,
B do/ﬁ:al + dml_l + a1

Jo (6.3)
This equation is valid as long as A << L and A << dy and d;. Note that o depends on
the macroscopic (or normal) pressure acting at the interface. Thus if the macroscopic
pressure is non-uniform, as it may be the case in many practical applications (e.g.
when a ball is squeezed against a flat substrate), one needs to include the dependency
of & on x. Thus in general one has to write

J(x) = a(x) [Ty(x) — Ti(x)] (6.4)
I N )
: K'1::'::'::']\30”1” '

/.. Li do

Abbildung 6.3: Two elastic solids with nominally flat surfaces squeezed together with
the nominal pressure py. The heat current J,(x) at the contacting
interface varies strongly with the coordinate x = (x,y) in the zy-
plane. The average heat current is denoted by Jy = (J,(x)).

Assume now for simplicity that the two solids are made of the same material so that
one expects the contribution to « from the area of real contact to be proportional
to the heat conductivity k. Assuming only elastic deformation, contact mechanics
theories show that for low enough squeezing pressures pg, the area of real contact is
proportional to pg, and the size distribution of contact regions (and the interfacial
stress probability distribution) are independent of py. Thus one can expect that
« is also proportional to pg. For randomly rough surfaces the contact mechanics
depend only on the (effective) elastic modulus E* and on the surface roughness
power spectrum C'/(q). The only way to construct a quantity which is proportional to
por and with the same dimension as Jo/AT, using the quantities which characterize
the problem, is
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FE*ug

(6.5)

where ug is a length parameter which is determined from the surface roughness
power spectrum C(q). For self-affine fractal surfaces, C(q) depends only on the
root-mean-square roughness h;ns, the fractal dimension Dy which is dimension less,
and on the low and high cut-off wavevectors gy and ¢;. Thus in this case ug =
hems f(Ds, o/ q1, qohrms)- This result is consistent with the analysis presented in Sec.
2.2.1 in [88]. Using the GW theory also results in an expression for « of the form
given above, but with a different function f which now (even for low squeezing
pressures) also depends on py/E* (see for a complete description [93]).

6.2 The Experimental Method

In order to test the approach towards heat transfer between randomly rough surfaces
based on the contact mechanics theory of Persson, the following experiment has
been performed. The instrument is schematically shown in Fig. 6.4. It consists of
two containers which are both filled with distilled water. They are standing on
each other with a thin silicon rubber film separating them. The upper container is
made from copper with an inner diameter of 50 mm. The water is heated to boiling
temperature so that Ty = 100° C. The lower container is made from PMMA with a
cylindrical copper block at the top. To study the effect of surface roughness on the
heat transfer, this copper block can be replaced by other blocks with different surface
roughness. For the experiment reported on below, four different copper blocks with
different surface properties were used. In both containers, the water gets mixed in
order to obtain a uniform water temperature and to enhance the heat transfer from
the water to the copper surfaces. Therefore magnetic-driven, rotating metal bars are
used.

The temperature of the water in the lower container increases with time ¢ due to
the heat current Jy flowing from the upper container via the interface of the rubber
sheet and the rough copper sample to the water in the lower container. Neglecting
the heat transfer to the surrounding from the lower container, energy conservation
gives

Jo = pCVTld (6.6)

Here d is the height of the water column in the lower container (in this configuration
d = 35 mm), p is the water mass density and Cy is the heat capacity of water. In
the experiment the temperature rise of the water in the lower container, due to the
heat transfer, is detected starting at 25° C.

The heat transfer has been investigated using copper blocks with different surface
roughness. These samples were prepared as described in Sec. 5.2. Plastically soft
copper blocks with smooth surfaces have been pressed against different sandpaper
surfaces using a hydraulic press. This procedure has been repeated several times
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Abbildung 6.4: The experimental device to test the theory predictions for the heat
transfer across the interface. The time dependent increase in the
temperature 7} (t) of the water in the lower container determines the
heat transfer between the upper and the lower water container.

in order to obtain surfaces with randomly roughness properties. Due to surface
roughness, the contact between the top surface of the lower container and the thin
silicon rubber sheet (diameter 50 mm, thickness dy = 2.5 mm), attached to the
upper container, is only partial. Fig. 6.5 shows the corresponding surface roughness
power spectra of the copper surfaces used. They are denoted as surface 1, 2 and
3 with rms roughness 42, 88 and 114 um respectively. A fourth surface was used
which has been highly polished so that the surface appears to be very smooth. It is
denoted surface 0 and its measured rms roughness is 64 nm.
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Abbildung 6.5: The surface roughness power spectrum of the three copper surfaces
used in the experiment. The surfaces 1, 2 and 3 have the root-mean-
square roughness 42, 88 and 114 pm, respectively.

The bottom surface of the upper container has been highly polished so that the

resistance to the heat flow at this rubber-copper interface can be neglected. Com-
pared with the resistance to the heat flow arising from the heat diffusion through
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the rubber sheet and also at the interface between the rubber and the rough copper
block, this assumption is fairly accurate. As in all the experiments before, the rubber
sheet used is made from PDMS (Sylgard 184). Because of its purely elastic behavior
(on the time scales involved in this experiment) this is a good model rubber where
the increase of real area of contact due to creep motion of the rubber film can be
neglected. The elastic modulus measured for the rubber is £ = 2.5 MPa (Poisson’s
ratio v = 0.5).

6.3 Numerical Calculations and Results
As in Eq. (6.3) one can write for the heat flow of the system described before

To —Th(t
Jo ~ 0_171“ (6.7)
doky + a1
where kg is the heat conductivity of the rubber. The resistance to the heat transfer
from the copper blocks is neglected because of the high thermal conductivity of

copper. Combining Eq. (6.6) with (6.7) leads to

Ty =To — Ti(t) (6.8)
where 7 is the relaxation time
d 1
70 = pCyd (0 + ) (6.9)
vy (07

Assuming that the relaxation time is time independent gives

Ti(t) = Ty + [T1(0) — Tple~ /™ (6.10)

It is further assumed that there is no heat transfer from the lower container to
the surrounding. This should be a good approximation because of the rather low
temperature difference and the good isolation of the container.

The heat transfer across the rubber-copper interface can have three different cau-
ses. It can occur via the area of real contact through direct contact, via heat diffusion
in the thin air film in the non-contact area, or via radiative heat transfer. All these
heat transfer processes act in parallel, so that on needs to take all of them into
account.

& R Qcon + Qgas + Orad (611)

The different contributions are now estimated for the given experimental configura-
tion. Assuming a nominal pressure of pg =~ 0.01 MPa, £* ~ 2 MPa, ug ~ 10 pum and
the heat conductivity for rubber kg = 0.2 WmK (neglecting the heat conductivity
of copper k1 because it is much higher than for rubber) gives

P Poko
con E*’U,O

~ 100 W/m*K (6.12)
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Using the diffusive heat conductivity of air kgas ~ 0.02 W/mK and assuming that
the average of the inverse of the interfacial separation (d~!) = (20 um)~! gives

Ogas = Fgas (A + A) 1) & Kgas(d™1) = 1000 W/m*K (6.13)

Finally, assuming that the radiative heat transfer is well approximated by the Stefan-
Boltzmann law and that (Ty — T1)/T1 << 1, while Ty = 373 K, one can calculate

214
Tk

60h3c?

Qlrad ~

AT ~ 10 W/m?K (6.14)

The thickness of the silicon rubber film is dy = 2.5 mm so that d 1/<;0 ~ 100 W/ m?K
This finally gives

1 1 1 1 5
—1
— x| —+ (W/m?K) (6.15)
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Abbildung 6.6: Theory results for the surfaces 1, 2 and 3. (a) the variation of the
heat transfer coefficient from the real area of contact, ccon, and the
diffusion via the air-gap, agas, as a function of the squeezing pressu-
re. (b) the variation of the cumulative probability of the interfacial
separation u for the squeezing pressures 11.8, 23.7, 35.5, 47.3, 59.2,
and 71.9 kPa (from left to right).
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This shows that in the present case the thin rubber film gives the dominant contri-
bution to the heat resistance. However it is not possible to use a thinner film neither
to change the rubber material. The reasons are that a thinner film will would no
longer behave as an elastic half space and therefore the contact mechanics would be
changed. Changing the material also doesn’t help because of the small variation in
heat conductivity between different rubber materials. Choosing a different rubber
one would also loose the perfect elastic response properties of the PDMS. However,
the experimental results reported on below should give some indication about how
good the theory works.

Before comparing the experimental results to the theory predictions, some calcu-
lated results are shown. Fig. 6.6 (a) shows the pressure dependence of the contact
heat transfer coefficient, acon (upper figure), and the air-gap heat transfer coeffi-
cient, yas (lower figure), for the surfaces 1, 2 and 3. Increasing the normal pressure
results in an increase of the area of real contact. For low squeezing pressures, the
relation between A and pg is linear so that the contact heat transfer is proportional
to po. The lower figure shows that aga.s also varies nearly linear with pg. At first sight
this appears remarkable because it has been shown in Sec. 3.1 that the average sur-
face separation u depends logarithmical on the applied pressure. However, the heat
transfer via heat diffusion in the air gap depends on ((u + A)~!). This expression
depends almost linear on py as long as w >> A and this is true in the presented
configuration.

From Fig. 6.6 (a) it can be concluded that in this experiment mainly the theory
for the heat flow in the air gap has been tested. The reason for this is that agas >>
Qcon- Fig. 6.6 (b) shows the variation of the cumulative probability of the interfacial
separation u as a function of the normal pressure py for the surfaces 1 and 3 (top)
and 2 (bottom). The squeezing pressure is increased stepwise resulting in decreasing
interfacial separations (from left to right).

6.4 Comparison to Experimental Data

Fig. 6.7 shows the measured temperature (dots) in the lower container as a function
of time. The results are for all copper surfaces used and for the normal squeezing
pressure pg = 0.012 MPa. The solid lines in Fig. 6.7 are the predictions of the theo-
retical approach, using the contact mechanics theory of Persson for the four given
configurations. Each experiment has been repeated several times and all the measu-
red information are plotted in Fig. 6.7. Changing the surface roughness properties
clearly leads to a difference in the resistance to the heat flow. Increasing the rough-
ness more and more also increases the time it takes to heat the water in the lower
container. However the heat transfer of the different configurations does not vary
too much. This can, as already mentioned above, be attributed to the dominating
heat resistance of the thin rubber film (because of the low heat conductivity xg). For
direct metal-metal contact the contact resistance would be much more important.
However, for very rough metallic surfaces it is likely that plastic flow of the me-
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tals could be already observed at low magnifications which would affect the contact
resistance as well.
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Abbildung 6.7: The measured temperature increase (dots) in the lower container as
a function of time. Also shown as solid lines, the calculated tempera-
ture increase. Results are for all four surfaces. The applied, nominal
squeezing pressure is pg = 0.012 MPa.

An additional experiment has been performed to test the dependency of the heat
transfer on the squeezing pressure pg. The experiment was performed with the copper
surface 2 for two different squeezing pressures py = 0.012 MPa and 0.071 MPa. Fig.
6.8 shows the measured temperature (dots) in the lower container and the calculated
temperature (solid lines) as a function of time.

In the analysis discussed above there are no fitting parameter involved. The heat
transfer model is based on the contact mechanics approach by Persson taking into
account the heat transfer via the real area of contact and via the non-contact regions.
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Abbildung 6.8: The same as in Fig. 6.7 but for the two different squeezing pressures
po = 0.012 (lower curve) and 0.071 MPa (upper curve). The substrate
used for this test was the copper 2 surface.
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As in Sec. 4.2, this application was also useful to test the predictions of the contact
mechanics theory of Persson as the heat transfer model needs important information
such as the area of real contact and the interfacial separation. The agreement
between theory and experiment is relatively good taking into account the problems
described before. In order to obtain better experimental information two different
configurations could be considered. One would be to use two metal surfaces to avoid
the high resistance of the rubber film, as suggested above. It would also be interesting
to repeat the experiment under vacuum conditions. For this case, half of the heat
transfer resistance would arise from the thin rubber film while the other half comes
from the area of real contact. This would make it easier to study the influence of
the latter contribution.

To summarize, it was shown that the theory of Persson could be successfully
applied to the problem of heat transfer between two elastic solids with randomly
rough surfaces. The theory results agree very well with the experimental data. This
gives additional support that the contact mechanics theory of Persson describes the
contact formation correctly.
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7 Rubber Friction

Different energy dissipation mechanisms relevant for rubber friction are
discussed. A theoretical approach, based on the contact mechanics theory
reported on above, is presented. A new instrument to measure the friction
between a rubber block and a rough substrates is described and the theory
predictions are compared with experimental results for filled and unfilled
SB rubber sliding on concrete surfaces.

The friction of rubber sliding on a hard and randomly rough substrate is a matter
of great interest and relevance for many practical applications [24, 29, 35, 36, 48,
62, 67, 71, 81, 82, 110]. For most technical systems the friction should be as small
as possible in order to improve the efficiency of a technical system, e.g. for rubber
seals, wiper blades or syringes. A rubber-counter surface combination that has not
been optimized during the design process may lead to a bad energy efficiency and
usually also to higher wear. In addition, stick-slip may occur which can perturb the
primary function of the machine. However there are also several technical systems
were rubber friction is required to be as high as possible. This is the case for a car
tyre during braking or high speed cornering.

Despite of its importance, there did not exist any good, physical model to calculate
rubber friction until recently. The design of a tyre for instance is still based mainly
on experience and experimental information. To simulate vehicle dynamics, the tyre
body is modeled in great detail using powerful finite element methods. However,
following the very first idea of Amonton and Coulomb, friction is often modeled
using only two parameters, namely a static coefficient of friction (ustatic) and a
kinetic coefficient of friction (fdynamic). It is then assumed that static friction occurs
between a rubber solid and a counter surface when there is no relative motion. To
accelerate the rubber solid, the static friction needs to be overcome and, when the
two solids are in relative motion to each other, the kinetic friction prevails. It is
usually assumed that pstatic > fidynamic and that piqynamic is independent from the
sliding velocity.

However, it has been found that rubber friction is not independent of the sliding
velocity. Grosch showed experimentally already in 1963 a strong velocity depen-
dance of rubber friction [33]. Thus modeling the frictional interaction between the
rubber and the counter surface by using only two simple parameters is not enough
to describe, e.g., tyre dynamics, so that this simple approach has turned out to be
the bottleneck for most state-of-the-art tyre models. Employing a physical model to
calculate the rubber friction would be a major improvement for most simulations.
The reason why there does not exist any reasonable model for rubber friction can be
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lead back to contact mechanics. Understanding the friction between a rubber block
and a hard and rough substrate requires a deep insight into the contact formation
of the two solids. The different energy dissipation mechanisms discussed below need
information about the area of real contact, the size of the contact spots and
the viscoelastic deformations. Until recently there did not exist any good contact
mechanics model, so that rubber friction remained an unsolved problem in physics.

In the first part of this thesis a new contact mechanics theory has been tested. Very
good agreement has been found between the experimental data and the predictions
of the contact mechanics theory of Persson. Within this last section an experimental
analysis of the rubber friction approach by Persson based on his contact mechanics
theory is presented.

7.1 Introduction to Rubber Friction

Measuring the friction of rubber-like materials, it is observed that the coefficient of
friction increases with the sliding velocity until a maximum is reached, after which
it decreases again. Generally speaking, friction is a function of the sliding velocity.
There are at least four different contributions to rubber friction:

Adhesion: In the regions where the rubber is in contact with the substrate, the
polymer chains bind to the atoms of the substrate due to, e.g. attractive van
der Waals interactions. When the rubber is in relative motion to the substrate,
these chains are elongated until the stress gets too large and the chain break
off from the substrate. The elongated chains then rearrange to a state where
its energy is minimized. The elastic energy stored in the chains is dissipated
resulting in a shear force which is proportional to the real area of contact. It is
believed that this mechanism is of importance for rubber sliding on clean and
relatively smooth surfaces, e.g. glass.

Hysteresis: When rubber slides on a hard and rough surface, the asperities of the
substrate exerts oscillating forces on the rubber surface leading to cyclic defor-
mations of the rubber. Elastic energy is constantly stored and released resulting
in a continuous rearrangement of the polymer chains. This is in fact a visco-
elastic process and energy is lost due to internal damping in the rubber bulk.
Hysteretic dissipation may be the dominant mechanism for rubber friction on
rough surfaces, e.g. road surfaces [39, 74, 83].

Viscous damping: If there is a fluid in between the two solids, this fluid layer gets
sheared and the viscosity of the fluid results in a friction force which is propor-
tional to the sliding velocity (assuming constant film thickness and Newtonian
viscosity). If surface roughness occurs and the velocity is small enough, the
rubber comes into partial contact with the substrate. This is referred to as the
“mixed lubrication” regime. The relation between friction force and velocity
is known as the “Stribeck curve”.
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Cohesion: During sliding the rubber may wear and small rubber particles are formed
by crack propagation. In this process energy is used to break rubber bonds
and to form new interfaces resulting in a contribution to the friction force

19, 37, 59, 64, 84, 90, 99].

Grosch showed with his experiments in 1963 that rubber friction is in many cases
directly related to the internal hysteresis of the rubber (bulk contribution) [33].
Thus, rubber samples sliding on silicon carbide paper and glass surfaces gave the
same temperature dependance of the friction coefficient as that of the complex elastic
modulus F(w) of the rubber. It has therefore been concluded by Persson and others
that rubber friction is mainly due to internal hysteresis in the rubber bulk.

The complex elastic modulus E(w) is used to characterize the viscoelastic proper-
ties of polymers. It relates the stress (e = €p sin(wt)) to the strain (o = ¢ sin(wt+4))
of a material as a function of an excitation frequency w. Viscoelastic materials usual-
ly have a phase difference § between stress and strain resulting from internal energy
dissipation. The complex elastic modulus is described as

B(w) = E +iE" (7.1)

where the storage modulus E' = (0¢/€p)cosd and the loss modulus E” = (o /€p)sind.

Persson has developed a theory to calculate rubber friction for a rubber block
sliding on a hard and rough surface with roughness on many different length scales.
This theory takes into account the energy dissipation due to hysteresis as well as the
contribution due to crack opening. In the following sections this theory approach is
briefly described and then compared with the results of a rubber friction experiment
that has been performed in order to test this theory.

7.2 Rubber Friction on Surfaces with Isotropic Statistical
Properties

7.2.1 Approach on Rubber Friction by Persson

In this section the basic equations used to calculate the contribution of the different
energy dissipation mechanisms to rubber friction are presented and discussed.

Process (a) - Asperity-Induced Bulk Energy Dissipation

Here the energy dissipation from the viscoelastic deformations of the rubber surface
by the roughness asperities of the substrate is considered. A rigid asperity sliding
against a flat rubber surface gives rise to time dependent deformation of the rubber
which is characterized by the frequency w = v/d, where d is the linear size of the
contact region. The viscoelastic deformation, and also most of the energy dissipation,
extends into the rubber by the typical distance d. It follows, that a large fraction
of the energy dissipation occurs in a volume element of order d°. If the perturbing
frequency w is close to the frequency w* where tand = ImF(w)/ReE(w) is maximal,
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the contribution of the asperity-induced friction is large, see w; in Fig. 7.2. If w is
far away from w* the hysteresis due to bulk energy dissipation is small, see wp in
Fig. 7.2.

As already discussed before, the contact between the rubber and the substrate does
not happen on only one length scale, but over many decades of length scales. Real
surfaces have a wide distribution of asperity contact sizes which can be illustrated
best as big asperities on top of which occur smaller asperities on top of which occur
even smaller asperities and so on. This is illustrated in Fig. 7.1 for a system where
roughness occurs on two length scales. To get the total energy dissipation one needs
to take into account the time dependent deformations of the rubber on all relevant
length scales. This leads to a wide range of perturbing frequencies, say from wy to
wi. In order to have high rubber friction, this interval is required to be as close as
possible to w* where tand is maximal. The contribution of each frequency has to
be summed up to obtain the total contribution of the asperity-induced bulk energy
dissipation.

It is important to include all length scales in the analysis because they may all
be of equal importance. For example, a short wavelength roughness component with
wavelength A1 and amplitude i1 can give the same contribution as a long wavelength
component with Ag and hg if the ratio hi /A1 = ho/No, see [74].

hard solid

Abbildung 7.1: Viscoelastic deformation of the rubber due to surface roughness as-
perities of the substrate on two different length scales. The dissipa-
ted energy per unit volume is largest in the small asperity contact
regions.

Temperature has a crucial influence on the viscoelastic modulus of the rubber ma-
terial that has to be taken into account. Usually tand is influenced strongly by
temperature so that an increase of 10° C of the rubber may shift the whole tand
curve by one decade in frequency to higher frequencies. As illustrated in Fig. 7.2,
increasing the temperature from Ty to Ty, the tand curve is much smaller for the
frequency range from wg to wi. Therefore the rubber friction due to bulk energy
dissipation becomes smaller at higher temperatures.

The viscoelastic energy dissipation in the rubber bulk results in local heating of
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the rubber in exactly that region where the dissipation occurs. This leads to a local
temperature increase (in time and space) which becomes larger and larger when
smaller and smaller asperity contact regions are considered. The effect has been
described theoretically in [77] where it is referred to as the flash temperature. This
effect is of huge importance because of the strong temperature dependance of the
viscoelastic modulus. However, for sliding velocities v < 0.001 m/s the produced
heat has enough time to diffuse away from the contact regions so that the frictional
heating can be neglected. For sliding velocities above ~ 0.001 m/s it has been shown
that rubber friction depends on the history of the sliding motion, which is crucial
for an accurate description [77]. This history dependance is mainly due to frictional
heating in the rubber-substrate contact regions. Many experimental observations,
e.g. an apparent dependence of the friction on the normal stress, can in fact be
attributed to the impact of frictional heating.

To

ImME/ReE

Wo W1 log w

Abbildung 7.2: The tand curve for two different temperature Ty < T;. Increasing
the temperature shifts the curve to higher frequencies. Also shown is
the interval of perturbing frequencies on the rubber from wp to w;.
Increasing the temperature of the rubber usually leads to a decrease
of the asperity-induced bulk energy dissipation.

Only the surface roughness components with wavevectors ¢ < ¢ are included in
the rubber friction theory of Persson. The reason for this is that on clean road
surfaces, the stresses (and the local temperature) in the asperity contact regions
for wavevectors larger than the cut-off wavevector ¢; gets so high that the rubber
material starts to yield (rubber bonds break). This results in a thin modified layer of
rubber at the surface regions with a thickness of order 1/g;. If the rough substrate is
contaminated, e.g. because of sand particles, the cut-off ¢ may be determined by the
nature of this contamination particles. The cut-off length 1/¢; depends in general
on the rubber compound used as well as on the nature of the substrate roughness.
Changing the substrate results in a run-in process of the rubber in order to form a
new modified surface layer at the rubber interface corresponding to a new cut-off
length.

Based on the idea presented above, Persson has derived a set of equations des-
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cribing the friction acting on a rubber block squeezed with the stress oy against a
randomly rough surface. The equations to calculate the frictional shear stress pog
can be summarized as follows

E(qu coso)

1/!11 3 /27r

= dq ¢°C(q)P d¢ cos¢ Im 7.2
=g 5 q4°C(q9)P(q) ; ¢ cosg 0 — 900 (7.2)
The function P(q) is defined as

Plg) = % /0 ~ e % exp(—22G) = exf <2\i§) (7.3)

where
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The normalized contact area is given by A/Ag = P(q1)

Process (b) - Energy Dissipation at the Opening Crack

The strength of adhesion and cohesion of elastomers can be described by the amount
of energy GG needed to advance a crack tip by one unit area. It has been shown
experimentally that G depends on the crack tip velocity v and on the temperature
T [27, 28, 60] so that

G(v,T) = Go[l + f(v,T)] (7.5)

For interfacial crack propagation the measured value of G at low crack velocities,
neglecting viscous effects in the rubber, is of order ~ 0.1 J/m?2. This is denoted as
G, representing the energy to break the interfacial rubber-substrate bonds at the
crack tip in the so called crack-tip process zone which are usually of van der Waals
type. The temperature dependance of the energy dissipation for simple hydrocarbon
elastomers can be completely accounted for by simply multiplying the crack velocity
v with a factor ap so that f(v,T) = f(apv). This factor has in fact been found to be
equal to the WLF function [111]. This proves that the large influence of the crack
velocity and temperature on the crack propagation in rubber materials is due to
viscoelastic processes, depending on F(w), in the rubber bulk. This involves highly
non-linear processes which are difficult to describe theoretically. Until recently Gy
could only be estimated directly from experimental data. In [84, 86] it has been
shown how to calculate f(v,T) which may enhance G by a factor of 10* or more for
high crack tip velocities:

92 2mv/a F 1
1- 25, / do T gy L (7.6)
T 0

Glv) = Go w E(w)

where Ey = E(0) and where
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Flw) = [1 - (“’O‘ )2] v (7.7)

P

Here a is the crack tip radius which also depends on the crack velocity v. How to
calculate this quantity is described in [86].

The effective frictional stress acting in the area of real contact derived from the
energy dissipation at the opening crack is called of. With A being the real area of
contact, the dissipated energy for sliding a distance dz is

ofAdr = G(v)Nldz (7.8)

where it is assumed that the contact area consists of N regions of linear size [. Thus
Nldz is the surface area covered by the crack during sliding a distance dz. Since
A = NI? it can be deduced

or = G(v)/l (7.9)

Process (c) - Energy Dissipation by Shearing of a Thin, Viscous Film

Many fluids undergo shear thinning at relative low shear rates. The viscosity is often
well approximated by

~ o
n(w,v) & 1 (/D)7 (7.10)
where 7 is the viscosity at low shear rates, whereas ¥ = v/u is the shear rate and
u the film thickness. At low shear rates, where the fluid viscosity is constant, the
orientations of the fluid molecules are random. At higher shear rates, the molecules
start to orientate along the flow direction. This effect is called shear thinning. A
similar effect is the confinement of the molecules between two closely spaced walls.
Here the molecules tend to form layers parallel to the solid walls. Eq. (7.10) is also
valid if the thickness of the confined layers is of order nanometer but because of the
large shear rate, Eq. (7.10) then takes the form

n(u,v) ~ By~ " (7.11)
giving the shear stress
of = ny ~ BY“ (7.12)

where the exponent & = 1 — n is a ~ 0.1 while B ~ 8.9 - 10* when o¢ and ¥ are in
ST units [112].
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7.3 Experimental Investigations on Rubber Friction

To test the rubber friction theory, a couple of experiments have been performed. The
first experiment was kept as simple as possible to test if the considered experimental
method is applicable and how good the repeatability of the experiment is. After this
first approach, a novel instrument has been designed to measure rubber friction for
different systems based on the know-how gained with this first experiment.

Because rubber friction is strongly dependent on many parameters, the experiment
was designed to be as basic as possible. A too complex test would lead to a situation
where the results are influenced by too many parameters. It is then very difficult to
analyze the measured data and to validate any theoretical approach.

7.3.1 A Simple Experimental Approach to Rubber Friction

A rubber block with a smooth surface is attached to a steel plate and brought into
contact with a hard and randomly rough counter surface (see Fig. 7.3). A normal
force Fy is applied by adding a dead weight on top of the steel plate. Similar to the
first classic “sliding sled” studies by Leonardo da Vinci, the rubber block is pulled
over the rough substrate by a constant force F'. This is done by coupling a dead
weight with the steel plate using a thin cord and a deflection roller.

v F

— ——

Abbildung 7.3: A rubber block squeezed into contact with a rough counter surface
by the normal force Fy. The rubber block is attached to a steal
plate that is pulled over the substrate by the force F'. The velocity
is measured for different pulling forces F' and ambient temperatures
T.

The whole experiment is placed in a water bath, submerged in distilled water, where
the temperature 7' can be changed continuously from ~ 0° C (ice water) up to
> 90° C (boiling water). Because of the low sliding velocities in this study, the
influence of the water on the rubber friction can be neglected.

The coefficient of friction u = F/Fx. In the following experiments Fy is kept
constant so that the nominal pressure oy =~ 0.1 MPa for all experiments while the
pulling force F' is varied. The sliding velocity is then obtained from the time the sled
needs to travel a certain distance. To avoid the effect of the flash temperature on
the rubber friction, the highest velocity is of order 1 mm/s while the lowest sliding
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Abbildung 7.4: The logarithm of the shift factor at of the two rubber samples used in
this experiment as a function of the temperature T'. The red dots are
for the tire tread rubber, the green dots for the unfilled SB rubber.

speed is of order 1 pum/s. In this experimental test F' is changed so that the velocity
varies from the highest possible to the lowest speed capable. The temperature T
is then changed and the whole procedure repeated at different temperatures. It is
possible to shift the curves, obtained at different temperatures, according to the
time-temperature superposition of the Williams-Landel-Ferry equation [111] and to
built up the broad (in velocity) master curve for a given reference temperature, see
Fig. 7.5. It is assumed, that the rubber material does not suffer from ageing effects
during the test time. For very long time spans effective time theory has to be utilized
to make useful predictions [5, 106].

The rubber used in this study was a tyre tread rubber cut out of a tread block
and an unfilled Styrene-Butadiene-Rubber (SBR). The temperature shift factors
at for both compounds, as shown in Fig. 7.4, have been measured using dynamic
mechanical analysis (DMA). A paving stone made of concrete was used as hard and
randomly rough counter surface. The dependance of the rubber friction coefficient u
on the sliding velocity v is presented in Fig. 7.5 (a) for the tyre tread rubber and (b)
for the unfilled SB rubber. As already observed in [94, 95], the friction increases with
v. This is a good indication that this method to measure rubber friction is applicable.
The data in Fig. 7.5 (a) is rather noisy and seems to be not as reproducible as in
[33]. This may be related to the fact that in the present experiment the friction force
is controlled while the velocity is measured as well as because of the complex nature
of the rubber compounds measured. It has been found that the difference of the
sliding velocity can be rather large when repeating the experiment and therefore it
is advised to control v and measure the friction force F.

It has also been found in this first study, that the rubber sample needs to be
run-in/prepared for the experiment in a proper way. During the run-in process, the
interface of the rubber in contact with the substrate gets abraded and a small layer
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Abbildung 7.5: The coefficient of friction for a rubber sample sliding on a hard and
rough substrate in water (blue points). The experimental results have
been shifted according to the shift factors shown in Fig. 7.4. The
reference temperature is 20° C. Also shown in (a) is the friction
coefficient under dry conditions at 20° C (red points).

of modified rubber is formed. The frictional properties can vary quiet a bit if the
run-in process is not done in the same way for each experiment. This change in
velocity as a function of number of repetition during run-in is shown in Fig. 7.6, for
a constant pulling force F.
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Abbildung 7.6: The measured sliding velocity as a function of the experiment num-
ber when repeating the experiment many times during the run-in
phase. The driving force F' is kept constant.

Summarizing this first and simple approach towards rubber friction, it can be con-
cluded that the method is suitable to test the rubber friction theory of Persson. It
is proposed to rather control the sliding velocity then the friction force. This would
also allow the friction curves, as shown in Fig. 7.5, to be measured at higher veloci-
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ties where the friction coefficient y decreases with increasing v. At velocities higher
then where p = pmax the simple experiment becomes unstable, and the sled starts
to accelerate to very high sliding velocities.

7.3.2 Experimental Device and Procedure

A novel experiment, shown schematically in Fig. 7.7, has been developed. A rubber
block is attached to the lower surface of an aluminium plate and brought into contact
with a randomly rough substrate. The normal force Fi can be changed by adding
plates with different weights on top of the aluminum plate. The rough surface is
clamped to a steel sledge which is moved translational using a voice coil actuator.
This actuator is capable to generate a constant force without force ripples, leading
to a constant velocity even at very low velocities. The position of the sledge is
measured to control the actuator and its velocity. As explained before, to avoid flash
temperature effects, the sliding velocities are small. The highest possible velocity
is of order 0.001 m/s while the lowest velocity used was 5- 1077 m/s. To control
the velocity, the position of the sledge is gauged using an analog magnetostrictive
position encoder with an absolute resolution of < 10 ym. The stroke of the sledge
is limited to 50 mm.

SRS R

Force Sensor

A

Moving
Sledge

Rough

rubber Surface

Voice Coil
Motor

o N
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Thermal ;Q\m\‘mmmm\‘mmm
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Abbildung 7.7: A rubber block is squeezed against a rough substrate. The rough
surface is clamped on a sledge that is moved translational with a
constant velocity v. The friction force acting on the rubber block
is measured using a load cell. The instrument is located inside a
box where the temperature T can be changed from —10° C to >
120° C. The friction forces are measured at different velocities and
temperatures and then shifted according to the WLF equation to a
master curve for a given reference temperature.

The friction force is measured using a tension and compression load cell that is
mounted in line with the rubber-substrate interface to avoid torque. The friction
forces in the linear ball bearing system are excluded from the results of the force
measurements. The force cell can be replaced in order to change the effective range
that can be measured. The resolution depends on the load cell used, but is always of
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order 0.2 N or better. The experimental device is placed inside a temperature box
where the temperature can be changed from —10° C to above 120° C. The heating
is built into the upper aluminium plate as well as in the ground plate of the linear
guides to ensure a homogenous temperature distribution.

The experiment is performed as followed. A rubber test specimen is cut out off
a rubber sheet and then clamped onto a sample holder. The rubber usually has
a surface layer with different properties from its bulk material resulting from the
production process and/or because of storing it for a long time. This layer is removed
by abrading the rubber surface using sandpaper with small grain sizes. The specimen
with the sample holder is then placed in the instrument, brought into contact with
the rough counter surface and a constant normal force is applied. The sample is run-
in at room temperature, with a sliding velocity of about 0.001 m/s, until the friction
force reaches a steady state condition. Depending on the rubber material, the run-in
time needed can vary quiet a bit. It is proposed to run in the specimen at high
sliding velocities because of the modified layer the rubber develops at the interface.
In order to have the same properties for the rubber during the whole experiment, the
thickness of this layer should be large so that even if rubber particles are removed
from the interface, e.g. because of wear, one has still the same layer with equal
properties for the rest of the study.
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Abbildung 7.8: The surface roughness power spectrum obtained from 1D-stylus line
scan (red line), 2D-optical (green line) and 2D-AFM measurements
(blue line). The stylus line scan data joins smoothly with the AFM
results in the overlapping wavevector range. The results from the

optical data deviate in particular for large wavevectors. The large
wavevector cut-off q; used in the calculations is indicated.

After this preparation procedure the sliding velocity is varied from high to low
velocities and the friction force is measured. For each velocity, the rubber sample
is slid in an oscillatory manner until a stable friction value is measured. When the
experiment is completed for the full range of velocities, the temperature T is changed
and the whole procedure is repeated. Finally, the experiment is repeated at room
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temperature to check the results obtained in the beginning of the test. The different
curves are then shifted to a master curve using the shifting factors at obtained from
the DMA.

The surface roughness of the concrete surface used has been measured using dif-
ferent methods, namely 1D-stylus line scan, 2D-optical data using a white light
interferometry sensor, and an infinite focus microscope, as well as atomic force mi-
croscopy (AFM). The surface roughness power spectra have been calculated from
the measured surface height profiles, see Fig. 7.8. The power spectrum obtained from
the data of the stylus line scan joins smoothly with that of the AFM measurements.
The power spectra from the optical measurements, that have been obtained using
two different sensors, deviate already at small wavevectors. In the calculations pre-
sented below, only the power spectra from the line scan and the AFM data are used.
Also indicated in this figure is the large cut-off wavevector ¢; used in the analysis.
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Abbildung 7.9: The tand(w) = ImE(w)/ReF(w) curve as a function of the logarithm
of the frequency w for the unfilled (red line) and the filled (blue line)
SB rubber used in the experiment. The modulus was measured in
oscillatory shear at constant stress amplitude.

The viscoelastic moduli of the rubber compounds have been obtained using dynamic
mechanical analysis (DMA). F(w) is measured in oscillatory shear mode at a con-
stant force amplitude of 25 N corresponding to a stress amplitude of ~ 0.25 MPa. The
rubber sample is fixed at both interfaces and then sheared at different frequencies.
To obtain a broad master curve, this is repeated at several different temperatures.
The data is then shifted along the frequency axis, similar to the friction results
for different temperatures, and the shift factors ar are obtained. In Fig. 7.9 the
tand curve is shown as a function of the logarithm of the frequency for both rubber
samples.

An important issue for measuring the viscoelastic modulus of real rubber materi-
als, in particular filled rubber, is that they exhibit non-linear rheological properties.
As E(w) enters in both dissipation mechanisms (a) and (b), it is of great import-

99



ance how this quantity is measured. Because of the very high strain (or stress) in
the asperity contact regions, as well as in the vicinity of a crack tip, it is suggested
that E(w) is measured at as large strain (or stress) as possible, to include in an
approximate way these non-linear properties, e.g. the Paine effect or the Mullins
effect.

7.3.3 Comparison of Theory with Experiment

Fig. 7.10 shows the measured friction coefficient (red line) for the unfilled SB rub-
ber as a function of the logarithm of the sliding velocity. The data is the result of
experiments carried out as described in Sec. 7.3.2. Also shown in this figure is the cal-
culated contribution from the asperity-induced viscoelastic contribution, denoted as
process (a), to the rubber friction. It can be concluded that for velocities < 0.001 m/s
the energy dissipation in the rubber bulk due to time dependent viscoelastic defor-
mations is negligible in the present case. Reaching velocities > 0.01 m/s this effect
actually becomes dominant. This is somehow surprising, because rubber friction was
expected to be dominated by process (a) but as will be shown below, the discrepancy
between the measured data and the theory predictions for v < 0.0001 m/s can be
attributed to the shearing of a thin, confined contamination (or smear) film in the
asperity contact regions [resulting from process (c)].
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Abbildung 7.10: The measured friction coefficient as a function of the logarithm of
the sliding velocity (red line) for the unfilled SBR. Also shown is the

calculated asperity-induced viscoelastic contribution to the rubber
friction denoted as process (a) (blue curve).

If one subtracts the theory predictions in Fig. 7.10 (blue line) from the experimental
data (red line), and plot [fiexp — Htheory(a)|o0/A, Where A is the area of real contact
and o9 = 0.065 MPa the nominal pressure, one gets the frictional shear stress oy
acting at the interface. This is shown in Fig. 7.11 as red line. The blue line is
the predicted frictional shear stress from process (c) using oy = Cv® with (in SI-
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units) C = 7.45 - 10° and « = 0.0875. Assuming that the thickness of the sheared
film is of order d = 3 nm, since the shear rate 4 = v/d, one gets (in SI-units)
B = Cd* ~ 1.34 - 10°. Thus the frictional shear stress is rather well described by
Eq. (7.12), with the parameters B and « in close agreement with the values deduced
from direct measurements, and from MD calculations of confined hydrocarbon films
[104]. This is a strong indication that for the present case o¢ originates from shearing
a thin confined contamination film.
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Abbildung 7.11: The calculated frictional shear stress in the area of real contact as
a function of the logarithm of the sliding velocity (red line) for the
unfilled SB rubber. This data is obtained by subtracting the blue
curve from the red line in Fig. 7.10. The blue line is a fit to the
frictional shear stress, arising from process (c), assuming oy = Cv®
where C = 7.45-10° and o = 0.0875.

This is also according to the observations made during the experiment where for
unfilled SB rubber sliding on a concrete surface, a smear film could be observed on
the substrate. Also, the run-in for this system involving the formation of a thin, high
viscosity, liquid-like smear film, took much longer time than the run-in of the filled
SB rubber, sliding on the same concrete surface (see below).

For velocities faster then v = 0.0001 m/s the contribution from process (c) de-
creases rapidly with increasing velocity. The reason for this is that increasing the
sliding velocity results in a strictly monotonous decrease of the area of real contact.
This reduces the contribution arising from process (c¢). The dependency of the area
of real contact on v is illustrated in Fig. 7.12 below. At small sliding velocities A/Ay
is about 10 % of the nominal contact area. However increasing the sliding velocity
results in a strong decrease to ~ 0.1 % for velocities > 1 m/s.

The frictional shear stress from process (c) does not exhibit the same temperature
dependence as the bulk viscoelastic contribution from process (a). The fact that
the friction coefficient nevertheless, to a good approximation, obeys the WLF-type
of temperature-velocity shifting is due to the fact that the area of real contact A
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Abbildung 7.12: The logarithm of the area of real contact normalized by the appa-
rent area of contact for the unfilled and the filled SB rubber as a
function of the logarithm of the sliding velocity.
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Abbildung 7.13: The measured friction coefficient as a function of the logarithm of

the sliding velocity (red line) for the filled SB rubber. Also shown

is the calculated asperity-induced viscoelastic contribution to the
rubber friction denoted as process (a) (blue curve).

Fig. 7.13 shows the results of the friction coefficient measurements for the filled SB
rubber as a function of the logarithm of the sliding velocity v (red line). As in Fig
7.10 the predicted coefficient of friction for process (a) is plotted in the same graph
as blue line. Again, there is a clear discrepancy between the two curves so that it is
clear that the friction cannot be explained only by accounting for the contribution
of process (a). The difference can also not be explained as resulting from shearing
of a thin contamination layer [process (c)] as done above for the unfilled SB rubber.
The reason for this is that the area of real contact for the filled SB rubber at low
sliding velocities is ~ 10 times smaller as compared with the unfilled compound, see
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Fig. 7.12.

w
o

filled SB rubber

N
(63}

N
o

[EEN
o

frictional shear stress (MPa)
[EEY
ol

al

process (b)

K=
(Y

10 8 6 4 2 0
log v (m/s)

Abbildung 7.14: The calculated frictional shear stress in the area of real contact
as a function of the logarithm of the sliding velocity (red line) for
the filled SB rubber. This data is deduced by subtracting the blue
curve from the red line in Fig. 7.13. The blue line here is a fit
to the frictional shear stress arising from process (b), assuming
or = 01G(v)/Go where o1 = 0.25 MPa and G(v) /Gy the viscoelastic
crack propagation factor for filled SB rubber.

If one subtracts away the theory prediction of process (a), associated with the blue
line in Fig. 7.13, from the measured data one gets the frictional shear stress at the
interface. The result of this, [tlexp — ftheory(a)|00/A, is shown in Fig. 7.14 as red line.
The blue line in that figure is the predicted frictional shear stress from the crack
opening mechanism explained in process (b). The stress arising from process (b) is
found to be ~ 30 times bigger than what would result from process (c).

To check the assumption that the measured data can be explained as a superpositi-
on of the energy dissipation from both, process (a) and (b), an additional experiment
has been performed where a very thin lubricant film is deposited on the interface of
the filled SB rubber. If this film is thin enough, it will not affect the contribution
from process (a) but it may remove (or reduce) the opening crack contribution to
the rubber friction. The fluid used was a high viscosity silicon oil (n = 1 Pas). The
result of this experiment can be seen in Fig. 7.15. The coefficient of friction can
have negative values because of the fact that the rubber slides in both directions
in a translatory motion resulting in a negative friction force for one direction. The
experiment is first done without lubricant at a constant sliding velocity of 50 pm/s
resulting in a constant friction coefficient of p =~ 0.95. At ¢ ~ 5000 s the oil is deposi-
ted on the rubber and a drastic drop in the friction coefficient from =~ 0.95 to ~ 0.34
can be observed. This is in fact consistent with the contribution from process (a)
at v = 5-107° m/s in Fig. 7.13 assuming that the oil film completely removes the
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crack-opening contribution while the contribution from the asperity-induced visco-
elastic deformations remains unchanged. A more detailed analysis can be found in

[57).
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Abbildung 7.15: The measured friction coefficient © = Fy/Fy of the filled SBR as a
function of time for the constant sliding velocity v = 0.05 mm/s.
At t = 5000 s a thin film of silicone oil is deposited on the rubber
surface. This results in a drop of p from =~ 0.95 to ~ 0.34.

Comparing the unfilled with the filled SB rubber, very different rubber wear proces-
ses have been found. This is in fact consistent with the frictional processes observed.
For the unfilled SB rubber a smear film forms on the concrete surface which cannot
be removed easily. In this case the wear-rate appears to slow down after some run-in
time period and a constant contamination layer forms, resulting in additional energy
dissipation due to shearing of this thin film. The thin and high viscosity film is in
fact believed to be the reason why the crack-opening mechanism is absence for the
unfilled SB rubber. The wear of the filled SB rubber instead results in micrometer-
sized particles that accumulate as dry dust, and which can easily be removed by
blowing air on the concrete surface. This wear process seems to occur at a steady
state rate. The cut-off length, as discussed in the description of process (a), used in
the present study is ¢; = 5-10% m~'m which is consistent with the linear size of the
smallest wear particles observed. They are of order 10 pm when they get separated
from the bulk material, see Fig. 7.16 (a). However, after the debris is removed from
the rubber bulk, it sticks together and forms long wound-up clusters before it leaves
the interface, see Fig. 7.16 (b) and (c).
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(a) A small compact wear particle with dia- (b) A big rubber wear particle (diameter =
meter ~ 15 pm. 300 pm) consisting of agglomerates of many

small particles

Mag= 4.00KX WD = 4.7 mm EHT = 10.00 kV
[t Sinat A= inLens IBN

(¢) Another big rubber wear particle (length (d) Zoom-in on the wear particle in (b). Note
~ 500 pm, width ~ 150 pm) consisting of the strong variations of the surface topogra-
agglomerates of many small particles phy on the length scale of ~ 1 pym.

Abbildung 7.16: Pictures of the rubber wear particles of the filled SB rubber as
collected after studying the friction of on a concrete surface. The
pictures have been obtained using scanning electron microscopy.
The smallest particles found are of order 10 pm as shown in (a).
These small wear particles stick together and form large wound-up
clusters before they leave the interface. Magnifying on these long
clusters very rough structures can be observed as shown in (d).
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7.4 Rubber Friction on Anisotropic Surfaces

Many surfaces of practical interest have surface roughness with statistical proper-
ties which are isotropic, e.g. asphalt surfaces or sand-blasted surfaces. However there
exist also many surfaces that have isotropic surface roughness. For example, for tech-
nological applications many surfaces are polished unidirectional in order to obtain
smooth surfaces. This results in wear tracks along the polishing direction so that
the surface roughness power spectrum C(q) depends not only on the magnitude of
the wave vector q, but also on its direction. These surfaces may have strongly ani-
sotropic statistical properties and therefore should also exhibit frictional properties
that depend on the direction of sliding.

In [18] the theory of Persson has been extended in such a way that in can also
handle rubber friction on anisotropic surfaces. This is done by employing a 2D power
spectrum C'(q), which can be obtained from a measured height profile h(x) = h(z,y)
using 2D Fast Fourier Transform. To illustrate this theory, some theory predictions
are presented in the following figures.
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Abbildung 7.17: (a) shows the surface topography (over 10 ym x 10 pm) of an uni-
directional polished steel surface used to calculate the red curve in
(b). In (b) the angular average of the 2D surface roughness power
spectrum Cyp(q) from the 2D data (red curve) and from 1D data
(line scan) obtained at lower resolution corresponding to smaller
wave vectors is shown.

Consider a rubber block sliding on an uni-axial ground steel surface. The surface
roughness topography is plotted in Fig. 7.17 (a) over an area of 10 ym x 10 um
so that one can see the grooves from the polishing process. The angular averaged
surface roughness power spectrum can be calculated from this information as plotted
in (b). Here the power spectra from the 2D-data and from 1D line scans are shown
covering a larger wave vector range. Fig. 7.18 (a) shows the calculated coefficient
of friction as a function of the logarithm of the sliding velocity for rubber. The
friction has been calculated for different angles a between the sliding direction and
the xz-axis which lays in the direction of polishing. One can see that increasing the
angle a results in a decrease in friction. This is also expected as one would assume
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that sliding against the polishing grooves (o = 0) gives the highest friction. Fig.
7.18 (b) shows the coefficient of friction as function of the sliding angle « for the
same system as in Fig. 7.18 (a) and for a constant sliding velocity of 0.001 m/s. The
kinetic friction for this configuration can vary up to 50 % depending on a.

0.3
0.4 v =0.001 m/s
u
[ angular averaged
power spectrum 0.2
0.2
0.1
0
& 8 % 7 2 0 % 30 60 9%
log v (m/s) angle a (degree)

(a) (b)

Abbildung 7.18: (a) The calculated kinetic friction coefficient as a function of the
logarithm of the sliding velocity for different sliding angles o bet-
ween the sliding direction and the z-axis. The results are for a seal
rubber compound sliding on an unidirectional polished steel sur-
face. (b) The calculated kinetic friction coefficient as a function of
the angle «.. For the same system as in (a), with a constant sliding
velocity of 0.001 m/s.

7.4.1 Experimental Observations

The predictions of the rubber friction theory for anisotropic surfaces has been tested
qualitatively. A deeper analysis of the experimental data was not possible due to
lacking information about the rubber. However, also a qualitative comparison to the
predictions of the rubber friction model of Persson provides important information
about its validity. For this purpose, a rubber block has been slid against a steel
surface that was prepared as described above. The compound of the rubber block
was a typical seal rubber but the exact composition was not known.

A well defined load has been put on the rubber using a dead weight, chosen so that
in the present study the nominal squeezing force on the rubber is =~ 0.1 MPa. The
temperature was kept constant at 17° C during the experiment. A constant pulling
force has then been applied to the dead weight resulting in a constant movement of
the rubber sample. The sliding velocity v has been obtained from the time needed for
the rubber sample to travel a certain distance. This assumes that v is constant over
the distance measured. The sliding velocity is changed by variating the driving force
F so that the coefficient of friction as a function of sliding velocity was measured by
repeating the experiment for different sliding velocities. Dividing the pulling force

107



0.4  45°

0.3} 80°

6 5 4 3
log v (m/s)
Abbildung 7.19: The friction coefficient as a function of the logarithm of the sliding
velocity for three angles o = 0°, 45° and 80° (square symbols). The

rubber block was slid on a unidirectional polished steel surface at a
nominal squeezing pressure of 0.1 MPa and temperature T' = 17° C.

with the normal force Fx gives the coefficient of friction as a function of v, a and
Fx. Here only the dependance of the friction coefficient 1 on the sliding velocity v
and the relative angle o to the polishing groves was studied.

Before starting the experiment, it is crucial to first run in the rubber samples
properly. As already discussed before, a thin skin-layer forms on the rubber surface
during the run-in, and dirt particles and surface irregularities from the production
process as well as from the normal atmosphere will be removed. The thin boundary
layer formed on the rubber surface modify the surface properties. It is important to
run in the rubber at the highest velocity and with the highest coefficient of friction.
Thereby a boundary layer with rather high thickness can be formed. This layer
hopefully is thick enough so that it does not change very much during the following
tests at lower sliding speeds and normal forces. In between the experiments the steel
surface has been cleaned using a mixture with 10 % acetylacetone in isopropanol.

Fig. 7.19 shows the measured friction coefficient as a function of the logarithm of
the sliding speed for three different angles a = 0, 45° and 80°. The theory predicts
that the real area of contact for these three angles is nearly the same so that the
dependance of the friction on « is likely due to hysteretic contribution alone. At
high velocities the 80° curve increases stronger as expected. This is because of the
shear forces tilting the slider into the direction of the wear tracks. The measure-
ments presented are for a different rubber and a different (but similarly prepared)
substrate than the compound used in the calculations plotted in Fig. 7.18 (a) and
(b). Therefore the results in Fig. 7.18 (a) cannot be compared quantitatively to the
calculations. But qualitatively the agreement between the experimental results and
the theory prediction is good. The calculated friction for different « increases faster
with increasing sliding velocities than in the experiment. This can have different
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Abbildung 7.20: The friction coefficient p as a function of the normal load when
sliding orthogonal to the polishing direction (« = 0°). The velocity

of the tread rubber block was kept constant at ~ 0.2 mm/s. A weak
load dependence of the friction could be observed.

reasons, namely that the calculations only included surface roughness over slightly
more than 2 decades in length scale, or there may be another non-negligible con-
tribution to the friction, e.g., from energy dissipation during crack opening which
exhibits a different velocity dependance.

An additional experiment shows that in this configuration studied, the friction
coeflicient u has a very weak dependence on the applied normal load, as can be seen
in Fig. 7.20. If adhesion manifested itself on a macroscopic scale as a finite pull-off
force, the friction coefficient would in fact decrease with increasing load, whereas
Fig. 7.20 shows that the opposite is the case. This indicates that adhesion is not so
important in the experimental study presented above.

7.5 Conclusion on Rubber Friction

Rubber friction is a topic of huge importance for many technological applications.
Understanding rubber friction involves a deep insight into the contact mechanics
between the rubber solid and the rough substrate. Until recently, there did not exist
a good theoretical approach towards contact mechanics so that rubber friction is still
a not well understood phenomena. In this section a novel theory approach based on
the contact mechanics theory of Persson has been introduced where rubber friction
is modeled as superposition of different energy dissipation mechanisms. In order to
test this theory, an experimental method to measure rubber friction, based on the
simple sledge experiments by Leonardo da Vinci, has been discussed and tested with
a simple experiment. This method has then been adopted to design an instrument to
study rubber friction at different temperatures and very low sliding velocities. The
experimental data has been shifted to a smooth master-curve, using the temperature-
frequency shifting factors obtained from the measurements of the bulk viscoelastic
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modulus of the compounds. It has then been compared with the theory predictions
of Persson. The theory takes into account the contribution to the friction from the
substrate asperity-induced viscoelastic deformations of the rubber and from shearing
the area of real contact. The experimental data agrees very well with the calculated
rubber friction for the two systems studied. Similar experimental results have also
been found with different rubber on rough surfaces in [13]. It is concluded that
for the present case of rubber sliding on rough and hard surfaces, the approach by
Persson is capable to describe the different energy dissipation mechanisms.

An additional experiment has been performed to test the predictions of the theory
for rubber friction on anisotropic surfaces qualitatively. This comparison between the
experimental data, obtained by sliding a rubber sample on an uniaxial ground steel
surface, to the theory predictions resulted in a good qualitative agreement.
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8 Summary

This thesis presented an experimental study of contact mechanics and rubber fric-
tion. These are topics of huge importance in Nature and in technology. Despite its
importance and the theoretical and experimental effort carried out, contact mecha-
nics and rubber friction are still not well understood today. The motivation of this
work has been to compare the approach of Persson to contact mechanics and rubber
friction with state-of-the-art theories and to test its accuracy by comparing the pre-
dictions with experimental results. The experiments described here not only address
the two topics contact mechanics and rubber friction but also different applications
that are of great importance in many technological systems. It is the first time that
experimental data has been used to test the approach of Persson in detail.

Very good agreement has been found with the Persson approach, while the pre-
dictions of the standard theories disagree even qualitatively. This is due to severe
approximations made in the state-of-the-art theories, such as the neglect of long-
range elastic deformations and the oversimplified description of surface roughness.
Very good agreement has been found when the approach of Persson was applied to
different problems involving contact mechanics, including the leak rate of seals or the
squeeze-out of a fluid. There are no fitting parameters used in the analysis. Within
the accuracy of the experiments, the theory on contact mechanics by Persson has
been shown to work very well.

In the last section of the thesis, the predictions of a rubber friction theory based
on the contact mechanics approach are tested using a novel instrument that has been
designed. The experimental data could be explained well by the theory if different
energy dissipation mechanisms are taken into account and the rubber friction theory
of Persson explains the results within the accuracy of the measurements. It is the
only physical model that can presently be applied to rubber friction on hard and
rough substrates.

More work needs to be done in order to test the influence of temperature effects
(flash temperature) on rubber friction during energy dissipation. This is crucial for
technical problems, such as friction of a tyre or dynamic seals. Further study of
rubber friction on different substrates, e.g. road surfaces and ground steel surfaces,
is needed to test the theory in detail.
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