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Contact electrification and the work of adhesion
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Abstract – We present a general theory for the contribution from contact electrification to the
work necessary to separate two solid bodies. The theory depends on the surface charge density
correlation function 〈σ(x)σ(0)〉 which we deduce from Kelvin Force Microscopy (KFM) maps of
the surface electrostatic potential. For silicon rubber (polydimethylsiloxane, PDMS) we discuss
in detail the relative importance of the different contributions to the observed work of adhesion.
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When two solid objects are removed after adhe-
sional or frictional contact, they will in general remain
charged [1–5]. At the macroscopic level charging usually
manifests itself as spark discharging upon contact with
a third (conducting) body, or as an adhesive force. The
long-range electrostatic force resulting from charging is
important in many technological processes such as photo-
copying, laser printing, electrostatic separation methods,
and sliding-triboelectric nanogenerators based on in-plane
charge separation [6]. Contact charging is also the origin
of unwanted effects such as electric shocks, explosions or
damage of electronic equipments.

Contact electrication is one of the oldest areas of sci-
entific study, originating more than 2500 years ago when
Thales of Miletus carried out experiments showing that
rubbing amber against wool leads to electrostatic charg-
ing [7]. In spite of its historical nature and practical im-
portance, there are many not-well-understood problems
related to contact electrification, such as the role of sur-
face roughness [8–10], surface migration [11] and contact
de-electrification [12].

The influence of contact electrification on adhesion
has been studied in the pioneering work by Derjaguin
et al. [13,14] and by Roberts [15]. These studies, and most
later studies, have assumed that removing the contact be-
tween two bodies results in the bodies having uniform sur-
face charge distributions of opposite sign. However, a very
recent work [16–18] has shown that the bodies in general
have surface charge distributions which vary rapidly in
space (on the sub-micrometer scale) between positive and
negative values, and that the net charge on each object is

much smaller (sometimes by a factor of ∼1000) than would
result by integrating the absolute value of the fluctuating
charge distribution over the surface area of a body.

Contact electrification occurs even between solids made
from the same material [16]. This has been demonstrated
for silicon rubber (PDMS). If two rubber sheets in adhe-
sive contact (contact area A) are separated, they obtain
net charges ±Q of opposite sign. However, as discussed
above, each surface has surface charge distributions fluc-
tuating rapidly between positive and negative values, with
magnitudes much higher than the average surface charge
densities ±Q/A. The net charge scales with the contact
surface area as Q ∼ A1/2, as expected based on a picture
where the net charge results from randomly adding pos-
itively and negatively charged domains (with individual
area ∆A) on the surface area A: when N = A/∆A ≫ 1,
we expect from statistical mechanics that the net charge
on the surface A is proportional to N1/2 as observed [16].
Note that in the thermodynamic limit, A → ∞, the net
surface charge density Q/A = 0.

In this letter we will present an accurate calculation of
the contribution from contact electrification to the work
of adhesion to separate two solids. The same problem has
been addressed in a less accurate approach by Brörmann
et al. [19]. They assumed that the charged domains formed
a mosaic pattern of squares, where each nearby square
has charge of opposite sign but of equal magnitude. To
this problem they applied an approximate procedure [1]
(see also [20,21]) to obtain the contribution to the work
of adhesion from charging. In this letter we will present a
general theory, where the surface charge distribution σ(x)
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Fig. 1: (Colour on-line) After separation the bottom solid has
the surface charge distribution σ0(x) and the top solid the sur-
face charge distribution −σ0(x), i.e., the charge distribution
on one surface is the negative of that of the other surface.

is characterized by the density-density correlation function
〈σ(x)σ(0)〉, the power spectrum of which can be deduced
directly from Kelvin Force Microscopy (KFM) potential
maps. We find that for polymers the contact electrification
may contribute only with a small amount to the observed
work of adhesion. However, more KFM measurements at
smaller tip-substrate separation are necessary to confirm
the conclusion presented below.

We will calculate the force between the two charged
solids when the surfaces are separated by the distance d,
see fig. 1. The lower surface has the surface charge den-
sity σ0(x), where x = (x, y) is the in-plane coordinate,
and the upper surface the surface charge density −σ0(x),
i.e., the charge distribution on one surface is the negative
of that of the other surface. We write the electric field as
E = −∇φ so that the electric potential φ satisfies ∇2φ = 0
everywhere except for z = 0 and z = d. We write

σ0(x) =

∫

d2q σ0(q)eiq·x.

The electrostatic stress tensor:

σij =
1

4π

(

EiEj −
1

2
E

2δij

)

.

Here we are interested in the zz-component:

σzz =
1

8π

(

E2
z − E

2
‖

)

. (1)

In the space between the surfaces the electric potential:

φ =

∫

d2q
[

φ0(q)e−qz + φ1(q)eqz
]

eiq·x,

where q = (qx, qy) and x = (x, y) are 2D vectors. Thus,
for z = 0:

Ez =

∫

d2q q [φ0(q) − φ1(q)] eiq·x (2)

and

E‖ =

∫

d2q(−iq) [φ0(q) + φ1(q)] eiq·x. (3)

Using (1), (2) and (3) gives:
∫

d2x σzz = 2πRe

∫

d2q q2φ0(q)φ∗
1(q). (4)

We now calculate φ0(q) and φ1(q). We write the electric
potential φ(q, z) as:

φ = φ0e
−qz + φ1e

qz, for 0 < z < d,

φ = φ2e
qz, for z < 0,

φ = φ3e
−q(z−d), for z > d.

Since φ must be continuous for z = 0 and z = d we get:

φ0 + φ1 = φ2, (5)

φ0e
−qd + φ1e

qd = φ3. (6)

Let ǫ0 and ǫ1 be the dielectric function of the region be-
tween the bodies (0 < z < d) and in the bodies (z < 0 and
z > d), respectively. In our application the space between
the bodies is filled with non-polar gas and ǫ0 ≈ 1. From
the boundary conditions ǫ0Ez(0

+) − ǫ1Ez(−0+) = 4πσ0

and ǫ1Ez(d + 0+)− ǫ0Ez(d− 0+) = −4πσ0, and using (5)
and (6), we get:

φ0 + gφ1 =
2π

q
σ,

gφ0e
−qd + φ1e

qd = −
2π

q
σ,

where σ = σ02/(ǫ1+ǫ0) and g = (ǫ1−ǫ0)/(ǫ1+ǫ0). Solving
these equations gives:

φ0 =
2π

q

σ

1 + ge−qd
, φ1 = e−qdφ0.

Using these equations in (4) gives:

〈Fz〉 =

∫

d2x〈σzz〉 = (2π)3
∫

d2q〈|σ(q)|2〉
e−qd

(1 + ge−qd)
2 ,

(7)
where we have performed an ensemble average denoted by
〈..〉.

Consider the correlation function:

〈|σ(q)|2〉 =
1

(2π)4

∫

d2xd2x′〈σ(x)σ(x′)〉eiq·(x−x
′).

Assuming that the statistical properties of the surface
charge distribution are translational invariant, we get:

〈σ(x)σ(x′)〉 = 〈σ(x − x′)σ(0)〉

and

〈|σ(q)|2〉 =
A0

(2π)4

∫

d2x〈σ(x)σ(0)〉eiq·x,

where A0 is the surface area. If σ̄ = 〈σ(x)〉 denotes the
average surface charge density, then we define the charge
density power spectrum:

Cσσ(q) =
1

(2π)2

∫

d2x〈[σ(x) − σ̄][σ(0) − σ̄]〉eiq·x. (8)
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Using this definition, we get:

〈|σ(q)|2〉 =
A0

(2π)2
[

Cσσ(q) + σ̄2δ(q)
]

. (9)

Substituting (9) in (7) gives:

〈Fz〉 = 2πA0σ̄
2 + 2πA0

∫

d2q Cσσ(q)
e−qd

(1 + ge−qd)
2 .

We expect the statistical properties of the surface charge
distribution to be isotropic which imply that Cσσ(q) only
depends on the magnitude q = |q|. This gives:

〈Fz(d)〉 = 2πA0σ̄
2 + (2π)2A0

∫

dq qCσσ(q)
e−qd

(1 + ge−qd)
2 .

The first term in this expression is the attraction between
the surfaces due to the (average) uniform component of
the charge distribution which, as expected, is independent
of the separation between the surfaces (similar to a parallel
condenser). The second term is the contribution from the
fluctuating components of the surface charge distribution.
The contribution to the work of adhesion from the surface
charge is given by:

U =

∫ d

0

dz〈Fz(z)〉 = 2πA0σ̄
2d

+ (2π)2A0

∫ ∞

0

dq qCσσ(q)

∫ d

0

dz
e−qz

(1 + ge−qz)
2 . (10)

For an infinite system, the first term in U increases with-
out limit as the surfaces are separated. For bodies of fi-
nite size the expression given above for the contribution
from the net charging is of course only valid for separa-
tions smaller than the linear size of the bodies (i.e. d < L,
where A0 = L2), and the interaction energy will decay like
∼ 1/d for large separation. Thus, for a finite-sized system
the contribution to the normalized work U/A0 to separate
the solids, from the first term in U , will be of order ∼ σ̄2L,
with a prefactor which depends on the actual shape of the
bodies. Note that in the thermodynamic limit L → ∞,
since σ̄ ∼ 1/L this contribution to U/A0 will actually van-
ish. Roberts (see ref. [15]) has argued that the first term
in (10) gives a negligible contribution to the work of ad-
hesion also for finite-sized objects. Here we take a more
pragmatic approach and we will not include this term in
the work of adhesion, in particular since it depends on the
shape of the bodies, and also because experimentally it is
easy to measure the work to separate the solids to such
small distance that the first term in (10) is completely
negligible, see ref. [22]. The contribution to the work of
adhesion from the second term in (10) (for d → ∞) is:

wch =
U

A0
=

(2π)2

1 + g

∫ ∞

0

dq Cσσ(q). (11)

Note that the integral:
∫

d2q Cσσ(q) = 〈[σ(x) − σ̄]2〉 = 〈∆σ2〉 (12)

is the mean of the square of the fluctuating surface charge
distribution. Using this equation, we can write:

wch =
2π

1 + g

〈∆σ2〉

〈q〉
, (13)

where

〈q〉 =

∫ ∞

0
dq qCσσ(q)

∫ ∞

0
dq Cσσ(q)

. (14)

The study above is for the limiting case where the sur-
faces separate so fast that no decay in the surface charge
distribution takes place before the separation is so large
as to give a negligible interaction force. Experiments [17]
have shown that the charge distribution decay with in-
creasing time as exp(−t/τ), where the relaxation time
τ ≈ 103 s depends on the atmospheric condition (e.g., hu-
midity and concentration of ions in the surrounding gas).
Taking into account the decay in the surface charge dis-
tribution, and assuming z = vt (where v is the normal
separation velocity) we need to replace the integral over z
in (10) with:

f(q, v) =

∫ ∞

0

dz
e−qze−2t/τ

(1 + ge−qz)
2 =

∫ ∞

0

dz
e−(qz+2z/vτ)

(1 + ge−qz)
2

and (11) becomes

wch = (2π)2
∫ ∞

0

dq qCσσ(q)f(q, v). (15)

In the limit v → ∞ we have f → 1/[q(1 + g)] and in this
limit (15) reduces to (13). In the opposite limit of very
small surface separation velocity, f → vτ/[2(1 + g)2] and
in this limit:

wch =
(2π)2vτ

2(1 + g)2

∫ ∞

0

dq qCσσ(q) =
πvτ〈∆σ2〉

(1 + g)2
. (16)

Note that this expression is of the form (13) with 1/〈q〉
replaced by vτ/[2(1 + g)]. Since typically τ ≈ 103 s and
(1 + g) ≈ 1 and 〈q〉 ≈ q1 ≈ 109 m−1 (where q1 is defined
below) we get vc = 2(1 + g)/(〈q〉τ) ≈ 10−12 m/s. In most
applications we expect the separation velocity in the vicin-
ity of the crack tip v ≫ vc, and in this case the limiting
equation (13) holds accurately. Note, however, that the
separation velocity v may be much smaller than the crack
tip velocity.

In the KFM measurement the local potential at some
fixed distance d above the surface is measured, rather than
the surface charge density. From the measured data the
potential power spectrum:

Cφφ(q) =
1

(2π)2

∫

d2x〈[φ(x) − φ̄][φ(0) − φ̄]〉eiq·x

can be directly obtained. However, we can relate the po-
tential to the charge density:

φ(q) =
2π

q
σ(q)e−qd.
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Fig. 2: (Colour on-line) (a) The voltage power spectrum Cφφ

and (b) the surface charge density power spectrum Cσσ as a
function of the wave vector. The results have been calculated
from the measured (KFM) voltage maps for PDMS/PDMS
(blue) and PDMS/polycarbonate (PC) (red) [17].

Thus:

Cσσ(q) =
q2

(2π)2
Cφφ(q)e2qd. (17)

The results presented above is in Gaussian units. To
obtain (17) in SI units we must multiply the right-hand
side with (4πǫ0)

2, where ǫ0 = 8.8542× 10−12 C V−1 m−1.
Thus:

Cσσ(q) = 4ǫ20q
2Cφφ(q)e2qd. (18)

To get (11) in SI units we must multiply the right-hand
side by (4πǫ0)

−1:

wch =
π

2ǫ0(1 + g)

∫ ∞

0

dq Cσσ(q). (19)

We now analyze experimental data involving elastically
soft solids with smooth surfaces, where the initial contact
between the solids is complete due to the adhesion between
the solids. In ref. [17] several such systems where studied
and here we focus on PDMS rubber against PDMS. Af-
ter breaking the adhesive contact between two sheets of
PDMS (which involves interfacial crack propagation) the
electrostatic potential a distance d above one of the sur-
faces was probed using KFM measurements. From the

measured potential map we have calculated the potential
power spectrum Cφφ(q) and then from (18) the charge den-
sity power spectrum Cσσ(q). The measurements where
done at the tip-substrate separation d ≈ 10−7 m, and
since the electric potential from a surface charge density
distribution with the wave vector q decay as exp(−qd)
with the distance d from the surface, the KFM is ef-
fectively limited to probing the surface charge distribu-
tion with wave vector q < 1/d. In fig. 2 we show both
power spectra for q < 2 × 107 m−1. Note that the charge
density power spectrum appears to saturate for a large
wave vector, say q > q0, with q0 ≈ 107 m−1. This re-
sult follows if, as expected, the process of creating surface
charges is uncorrelated in space at short length scales.
In that case 〈σ(x)σ(0)〉 ∼ δ(x) and using (8) this gives
Cσσ(q) = const. The fact that Cσσ(q) decays for decreas-
ing q for q < q0 ≈ 107 m−1 implies that at some length
scale λ0 = 2π/q0 ≈ 0.6µm the charge distribution be-
comes correlated. The physical reason for this may relate
to inhomogeneities on the PDMS surface, e.g., due to filler
particles (see below).

We assume that the charge density power spectrum
saturates for q > q0 at C0

σσ ≈ 2.2 × 10−23 C2/m2 (see
fig. 2(b)). The assumption that the process of creating
surface charges is uncorrelated in space at short length
scales gives C0

σσ = (2π)−2e2n, where n = 1/λ2
1 is the

number of elementary charges (±e) per unit surface area.
Thus we obtain n = 3.4 × 1016 m−2 and λ1 ≈ 6 nm and
q1 = 2π/λ1 ≈ 109 m−1. The charge density 〈|σ|〉 = ne ≈
0.5µC/cm2 is similar to what was estimated by Baytekin
et al. [17]. Using (12) we get the mean square charge
fluctuation 〈∆σ2〉 ≈ πq2

1C0
σσ ≈ 7 × 10−5 C2/m4 or the

rms charge fluctuation ≈ 1µC/cm2, which, as expected,
is similar to ne.

From (19) we get wch ≈ (q1 − q0)C
0
σσ/ǫ0, where we

have used that π/[2(1 + g)] ≈ 1. The large wave vector
cut-off q1 is of order 2π/λ1, where λ1 is of order the av-
erage separation between the surface charges (which we
assume to be point charges of magnitude ±e, where e
is the electron charge). Since q0 ≪ q1 ≈ 109 m−1 we
get wch ≈ q1C

0
σσ/ǫ0 ≈ 0.002 J/m2. This value is smaller

than the measured work of adhesion during adiabatic (very
slow) separation of the surfaces where [22] w ≈ 0.05 J/m2.

The calculation above does not include the interaction
between the charges when the surface separation is smaller
than ∼ 1 nm. However, this contribution cannot be accu-
rately estimated without an accurate knowledge of the ex-
act location and spatial extent of the localized charges, and
probably also requires a knowledge about how the charge
separation processes occur, e.g., does it involve electron
tunneling at some finite surface separation?

The analysis above is based on the assumption that the
surface charge density power spectrum saturates at a value
C0

σσ ≈ 2.2× 10−23 C2/m2 for large wave vectors. This hy-
pothesis should be tested by performing KFM measure-
ments to smaller tip-substrate separations. The number
of surface charges per unit area, n, which determines the
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cut-off q1 in the study above, may also be probed by sur-
face reaction experiments, such as bleaching experiments
reported in ref. [18].

Sylgard 184, which was used in [17], is intrinsically a
heterogeneous polymer with siliceous fillers [23]. Even
though the filler is partially modified by organic groups,
it imparts non-negligible polarity of the polymer as evi-
denced from the high contact angle hysteresis (∼ 20◦−40◦)
of water on this polymer as compared to that (∼ 5◦)
on a pure PDMS matrix. X-ray photoelectron spec-
troscopy [24] also shows that the silicon (Si2p) peak of the
silica is 1 eV higher than that of the surrounding matrix,
thus suggesting that the electron affinity of the silica-rich
region is likely different from the surrounding matrix. So,
when two surfaces of sylgard 184 are brought close to each
other, electrons may be transferred from one type of do-
main to another, which may show up as heterogeneous
patches when the surfaces are separated. If the binding
energy of the Si2p peak is an indicator, the PDMS ma-
trix is more electron rich than the silica-rich region. The
breaking of the siloxane bond requires very large force and
is unlikely to contribute to charging [24–26]. Silica almost
always has silanol (SiOH) groups. The silanol groups may
form very weak hydrogen bond with the oxygen of poly-
dimethylsiloxane. If that happens some charge transfer
may occur during the separation of the surfaces, which will
show up as heterogeneous charge after the two surfaces are
separated. This idea may be tested experimentally by per-
forming KFM experiments using a clean PDMS network
that does not have silica fillers.

At low crack-tip velocities, where the viscoelastic energy
dissipation at the crack tip, and other non-equilibrium ef-
fects, are negligible (see ref. [22]), the work of adhesion is
usually assumed to result from the Van der Waals inter-
action between the surfaces at the interface. The study
above indicate indeed that the contributions from contact
electrification gives only a small fraction (∼ 4%) of the
observed work of adhesion.

To summarize, we have derived a general expression for
the contribution to the work of adhesion from contact elec-
trification, and we have shown that for PDMS (and prob-
ably for polymers in general) the contact electrification
gives only a small fraction of the observed work of adhe-
sion. More KFM measurements at smaller tip-substrate
separation are necessary to confirm this conclusion.
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