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Abstract
We present a molecular dynamics study of the contact between a rigid solid with a randomly
rough surface and an elastic block with a flat surface. The numerical calculations mainly focus
on the contact area and the interfacial separation from small contact (low load) to full contact
(high load). For a small load the contact area varies linearly with the load and the interfacial
separation depends logarithmically on the load. For a high load the contact area approaches the
nominal contact area (i.e. complete contact), and the interfacial separation approaches zero. The
numerical results have been compared with analytical theory and experimental results. They are
in good agreement with each other. The present findings may be very important for soft solids,
e.g. rubber, or for very smooth surfaces, where complete contact can be reached at moderately
high loads without plastic deformation of the solids.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

What happens at the atomic and molecular level when surfaces
come into contact with each other? And how do these
events relate to macroscopic properties and observations?
These questions, which center on the phenomena of adhesion
and friction, pose challenges not only in engineering but
also in many areas of physical and biological sciences [1].
Finding correlations and models that connect the atomic and
macroscopic worlds is usually not easy. However, recently we
have surprisingly found that the pressure distribution obtained
from molecular dynamics calculations is in a good agreement
with the prediction based on continuum contact mechanics, and
in particular with the analytical contact mechanics theory of
Persson [2–4].

When two elastic solids with rough surfaces are squeezed
together, the solids will in general not make contact
everywhere in the apparent contact area, but only in a
distribution of asperity contact spots [5, 6]. The separation
u(x) between the surfaces will vary in a nearly random
way with the lateral coordinate x = (x, y) in the apparent
contact area. When the applied squeezing pressure increases,
the contact area A will increase and the average surface
separation ū = 〈u(x)〉 will decrease, but in most situations

it is not possible to squeeze the solids into perfect contact
corresponding to ū = 0. The area of real contact, and the
space between two solids has a tremendous influence on many
important processes.

Most studies of contact mechanics have focused on
small loads where the contact area depends linearly on the
load [7–12]. However, for soft solids, such as rubber or
gelatin, and for smooth surfaces nearly full contact may occur
at the interface, and it is of great interest to study how the
contact area, the interfacial surface separation and the stress
distribution vary with load from small load (where the contact
area varies linearly with the load) to high load (where the
contact is (nearly) complete). Here we will present such
a study using molecular dynamics, and we will compare
the numerical results with the prediction of the analytical
contact mechanics theory of Persson. Our multiscale molecular
dynamics approach [10] has been developed to study contact
mechanics for surfaces with roughness on many different
length scales, e.g. self-affine fractal surfaces.

This paper presents an extension of the work reported in
two short publications [4, 13]. In section 2 we briefly review
the contact mechanics of Persson. In section 3 we consider the
relation between interfacial separation and squeezing pressure.
Section 4 deals with the molecular dynamics (MD) model.
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In sections 5 and 6 we compare the numerical results of the MD
model with the analytical theory for the real contact area and
interfacial separation, respectively. In section 7 we compare
the Persson theory with finite element calculations. Section 8
deals with how average surface separation depends on the
magnification ζ . In section 9 we consider the adhesion between
randomly rough surfaces. Section 10 contains the summary
and conclusion.

2. Theory: contact area

We consider the frictionless contact between elastic solids with
randomly rough surfaces. If z = h1(x) and h2(x) describe the
surface profiles, E1 and E2 are the Young’s elastic moduli of
the two solids and ν1 and ν2 the corresponding Poisson ratios,
then the elastic contact problem is equivalent to the contact
between a rigid solid (substrate) with the roughness profile
h(x) = h1(x) + h2(x), in contact with an elastic solid (block)
with a flat surface and with a Young’s modulus E and Poisson
ratio ν chosen so that [16, 17]

1 − ν2

E
= 1 − ν2

1

E1
+ 1 − ν2

2

E2
.

Persson [2, 3] has developed a contact mechanics theory where
the surfaces are studied at different magnification ζ = λ0/λ,
where λ0 is some reference length, e.g. the roll-off wavelength
of the surface roughness power spectra (see below), and λ

the shortest wavelength roughness which can be observed
at the magnification ζ (see figure 1). We define q0 =
2π/λ0. In this theory [2] the stress distribution P(σ, ζ ) at
the interface between the block and the substrate has been
shown to obey (approximately) a diffusion-like equation where
time is replaced by magnification and the spatial coordinate
by the stress σ . When the magnification is so small that no
atomic structure can be detected, the surface roughness will be
smooth (no abrupt or step-like changes in the height profile)
and one can then show [18] that in the absence of adhesion
P(0, ζ ) = 0. Using this boundary condition the solution to
the diffusion-like equation gives the pressure distribution at the
interface (σ > 0):

P(σ, ζ ) = 1

2(πG)1/2

(
e−(σ−p)2/4G − e−(σ+p)2/4G

)
, (1)

where p is the nominal squeezing pressure and where

G = π

4

(
E

1 − ν2

)2 ∫ ζq0

qL

dq q3C(q) (2)

where qL is the smallest surface roughness wavevector which
may be of order 2π/L, where L is the linear size of the system.
The surface roughness power spectrum [19]

C(q) = 1

(2π)2

∫
d2x〈h(x)h(0)〉e−iq·x,

where 〈· · ·〉 stands for ensemble average. The relative contact
area

A

A0
=

∫ ∞

0+
dσ P(σ, ζ ) ≡ P(q), (3)

Figure 1. A rubber block (dotted area) in adhesive contact with a
hard rough substrate (dashed area). The substrate has roughness on
many different length scales and the rubber makes partial contact
with the substrate on all length scales. When a contact area is studied
at low magnification it appears as if complete contact occur, but
when the magnification is increased it is observed that in reality only
partial contact occurs.

where q = ζq0. Sometimes, when we want to emphasize that
P(q) depends on the pressure p, we will denote it by Pp(q).
Note that there is a delta-function contribution to P(σ, ζ ) of
the form [(A0− A)/A0]δ(σ ) which arises from the non-contact
area. Including this delta-function the integral of P(σ, ζ ) over
all σ will be unity, as expected for a probability distribution.
In what follows we will always consider σ > 0 in which case
P(σ, ζ ) is given by (1). Substituting (1) into (3) gives after
some simplifications

A

A0
= 1

(πG)1/2

∫ p

0
dσe−σ 2/4G = erf

( p

2G1/2

)
. (4)

Thus, for small nominal squeezing pressure p � G1/2 we get

A

A0
≈ p

(πG)1/2
. (5)

A critical discussion of the theory presented above was
given by Manners and Greenwood [14] (see also Carbone and
Bottiglione [15]).

3. Theory: interfacial surface separation

The space between two solids has a tremendous influence
on many important processes, e.g. heat transfer [20], contact
resistivity [21], lubrication [22], sealing [23] and optical
interference [24]. One of us has recently presented a simple
theory for the (average) separation ū as a function of the
squeezing pressure p [4]. The theory shows that for randomly
rough surfaces at low squeezing pressures p ∝ exp(−ū/u0),
where the reference length u0 depends on the nature of the
surface roughness but is independent of p, in good agreement
with experiments [24].

Consider an elastic block with a flat surface squeezed
against a hard rough substrate surface (see figure 2). The
separation between the average surface plane of the block and
the average surface plane of the substrate is denoted by ū with
ū � 0. When the applied squeezing force p increases, the
separation between the surfaces at the interface will decrease,
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Figure 2. An elastic block squeezed against a rigid rough substrate.
The separation between the average plane of the substrate and the
average plane of the lower surface of the block is denoted by u.
Elastic energy is stored in the block in the vicinity of the asperity
contact regions.

and we can consider p = p(ū) as a function of ū. The
elastic energy Uel(ū) stored in the substrate asperity–elastic
block contact regions must equal the work done by the external
pressure p in displacing the lower surface of the block towards
the substrate, i.e.

∫ ∞

ū
du′ A0 p(u′) = Uel(ū), (6)

or

p(ū) = − 1

A0

dUel

dū
, (7)

where A0 is the nominal contact area. Equation (7) is exact,
and shows that if the dependence of the surface separation u
on the squeezing pressure p is known, e.g. from finite element
calculations or molecular dynamics, one can obtain the elastic
energy Uel stored in the asperity contact regions [10]. This is
an important result as Uel(ū) is relevant for many important
applications.

Theory shows that, for low squeezing pressure, the area
of real contact A varies linearly with the squeezing force
p A0, and that the interfacial stress distribution, and the size
distribution of contact spots, are independent of the squeezing
pressure [25, 26]. That is, with increasing p existing contact
areas grow and new contact areas form in such a way
that in the thermodynamic limit (infinite-sized system) the
quantities referred to above remain unchanged. It follows
immediately that for small load the elastic energy stored in
the asperity contact region will increase linearly with the load,
i.e. Uel(ū) = u0 A0 p(ū), where u0 is a characteristic length
which depends on the surface roughness (see below) but is
independent of the squeezing pressure p. Thus, for small
pressures (7) takes the form

p(ū) = −u0
dp

dū
,

or
p(ū) ∝ e−ū/u0 , (8)

in good agreement with experimental data for the contact
between elastic solids when the adhesional interaction between
the solids can be neglected [24]. We note that the result (8)

differs drastically from the prediction of the theory of Bush
et al [7], and that of Greenwood and Williamson(GW) [8],
which for low squeezing pressures (for randomly rough
surfaces with Gaussian height distribution) predict p(ū) ∝
ū−a exp(−bū2), where a = 1 in the Bush et al theory and
a = 5/2 in the GW theory. Thus these theories do not
correctly describe the interfacial spacing between contacting
solids. This is not surprising because these approaches assume
a rigid substrate surface covered with flexible asperities. In
reality, the bulk of the solids whose surfaces are in contact is
not rigid. Furthermore, there exist a hierarchy of asperities on
many length scales, all of which can distort.

The elastic energy Uel has been studied in [3] and [26].
Here we will use

Uel ≈ A0 E∗ π

2

∫ q1

q0

dq q2W (q, p)C(q), (9)

where we have chosen q0 = qL and where E∗ = E/(1 − ν2),
q1 is the largest surface roughness wavevector and

W (q, p) = Pp(q)
[
γ + (1 − γ )P2

p(q)
]
, (10)

where Pp(q) is given by equation (4):

Pp(q) = erf

(
p

2G1/2(ζ )

)
. (11)

For complete contact (infinite squeezing pressure) Pp = 1 and
thus W (q, p) = 1 and in this limit (9) is exact. For small
squeezing pressure W (q, p) ≈ γ Pp. The parameter γ is of
the order of ≈0.4 (see below), and takes into account that the
elastic energy stored in the contact region (per unit surface
area) in general is less than the average elastic energy (per unit
surface area) for perfect contact (see [26]). The particular way
we interpolate between the limits W (q, p) = 1 for complete
contact and W (q, p) = γ Pp for very small contact using (10)
was designed to give good agreement between the calculated
(using (7)) interfacial separation, and the interfacial separation
obtained from molecular dynamics (MD) and finite element
method (FEM) (see sections 6 and 7).

Let us write (11) as [2, 27]

Pp(q) = 2√
π

∫ s(q)p

0
dx e−x2

, (12)

where s(q) = w(q)/E∗ with

w(q) =
(

π

∫ q

q0

dq ′q ′3C(q ′)
)−1/2

.

Using (12) gives

∂ Pp

∂ ū
= 2√

π
s

dp

dū
e−s2 p2

. (13)

Substituting (9) and (10) in (7), and using (13) gives

p(ū) = −√
π

∫ q1

q0

dq q2C(q)w(q)
[
γ + 3(1 − γ )P2

p(q)
]

× e−[w(q)p/E∗]2 dp

dū
,
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or

dū = −√
π

∫ q1

q0

dq q2C(q)w(q)
[
γ + 3(1 − γ )P2

p(q)
]

× e−[w(q)p/E∗]2 dp

p
.

Integrating this from ū = 0 (complete contact, corresponding
to p = ∞) to ū gives

ū = √
π

∫ q1

q0

dq q2C(q)w(q)

×
∫ ∞

p
dp′ 1

p′
[
γ + 3(1 − γ )P2

p′(q)
]

e−[w(q)p′/E∗]2
. (14)

Let us consider the limiting case of very low squeezing
pressure. If we introduce x = w(q)p′/E∗ the last integral
in (14) becomes

J =
∫ ∞

pw(q)/E∗
dx

1

x

[
γ + 3(1 − γ )P2(x)

]
e−x2

,

where

P(x) = 2√
π

∫ x

0
dx ′ e−x′2

.

Performing a partial integration gives

J =
[
log x

[
γ + 3(1 − γ )P2(x)

]
e−x2

]∞
pw(q)/E∗

−
∫ ∞

pw(q)/E∗
dx log x

(
6(1 − γ )P(x)P ′(x)

+ [
γ + 3(1 − γ )P2(x)

]
(−2x)

)
e−x2

.

The leading contributions to J as p → 0 is

J = −γ log

(
pw(q)

E∗

)
−

∫ ∞

0
dx log x

(
6(1 − γ )P(x)P ′(x)

+ [
γ + 3(1 − γ )P2(x)

]
(−2x)

)
e−x2

= −γ log

(
pw(q)

εE∗

)
(15)

where

ε = exp

[
−

∫ ∞

0
dx log x

(
6

1 − γ

γ
P(x)P ′(x)

+
[

1 + 3
1 − γ

γ
P2(x)

]
(−2x)

)
e−x2

]
. (16)

Using (16) we get ε = 4.047. Note that ε depends on Pp(q)

for all pressures from small relative contact area (P � 1) to
complete contact corresponding to P = 1. Thus, although
the slope of the linear relation between u and log p, which
holds for very small p, only depends on Pp(q) for very small
p (where the relative contact area is proportional to p), the
lateral position of the line does depend on the whole function
Pp(q) (or P(x)). For this reason it is important to accurately
describe how Uel depends on Pp(q) for all p, even if one is
only interested in the relation between ū and p for very small
p. The physical reason for this is simple: even for arbitrarily
small applied nominal stress p, the stress (at high enough
magnification) in the area of contact will be very high, which
may result in (nearly) complete contact in the asperity contact
regions.

Substituting (15) in (14) gives

ū = −√
π

∫ q1

q0

dq q2C(q)w(q)γ log

(
pw(q)

εE∗

)

= −u0[log p − log(β E∗)],
or

p = β E∗e−ū/u0 , (17)

where

u0 = √
πγ

∫ q1

q0

dq q2C(q)w(q), (18)

and

β = ε exp

[
−

∫ q1

q0
dq q2C(q)w(q) log[w(q)]∫ q1

q0
dq q2C(q)w(q)

]
. (19)

The relation (8) between p and ū for the special case of self-
affine fractal surfaces was studied in [4] using W (q, p) =
γ Pp(q) in the expression for the elastic energy.

4. Molecular dynamics

We have performed molecular dynamics (MD) to study the
contact area and the interfacial separation from small contact
to full contact. We are interested in surfaces with random
roughness with wavelength components in some finite range
λ0 > λ > λ1, where λ0 is typically similar to (but smaller
than) the lateral size of the nominal contact area. In order
to accurately reproduce the contact mechanics between elastic
blocks, it is necessary to consider a solid block which extends
at least a distance ∼λ0 in the direction normal to the nominal
contact area. (Note: the lower part of the system has been
called the substrate while the upper part is called the block.)
This leads to an enormous number of atoms or dynamical
variables even for a small systems. In order to avoid this
trouble we have developed a multiscale MD approach. This
approach has been described in detail in [10] and is only
summarized here. The system has lateral dimensions Lx =
Nx a and L y = Nya, where a is the lattice space of the block.
Periodic boundary conditions have been used in xy plane. For
the block Nx = Ny = 400, while the lattice space of the
substrate b ≈ a/φ, where φ = (1+√

5)/2 is the golden mean,
in order to avoid the formation of commensurate structures at
the interface. The mass of the block atoms is 197 amu and
a = 2.6 Å. The elastic modulus and Poisson ratio of the block
are E = 77.2 GPa and ν = 0.42, respectively.

The atoms at the interface between the block and substrate
interact with the repulsive potential U(r) = ε(r0/r)12, where
r is the distance between a pair of atoms. We use r0 = 3.28 Å
and ε = 74.4 meV. In the MD model calculations there is no
unique way to define the separation ū between the solid walls
(see [10] for a discussion of this point). We have used the same
definition as in [10] ū = d − dc, where d is the separation
between the average z coordinate of the bottom layer of the
block atoms and the average plane of the substrate. dc is the
critical atom–atom separation we use to define contact on an
atomic scale. Thus, u = 0 corresponds to the separation
dc = 4.3615 Å between planes through the center of mass
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of the interfacial atoms of the block and the substrate. For
self-affine fractal surface the power spectrum has power-law
behavior C(q) ∼ q−2(H+1), where the Hurst exponent H is
related to the fractal dimension D f of the surface via H =
3 − D f . For real surfaces this relation holds only for a
finite wave vector region q0 < q < q1. Note that in many
cases, there is a roll-off wave vector q0 below which C(q) is
approximately constant (see figure 3). The magnification has
been defined as ζ = q/q0, where q = 2π/λ and λ is the
wavelength of surface roughness. When the magnification is
high, the surface is quite rough because there are many short-
wavelength roughnesses. When the mangification is low, the
surface looks much smoother than at high magnification (see
figure 4). If we bring the elastic block into contact with the low
magnification surface (figure 4(b)), at low squeezing pressure,
the elastic block does not deform much so there are only a few
spots which are in contact (see figure 5(a)). At high squeezing
pressure, the elastic block deforms considerably so that one can
find almost complete contact (see figure 5(b)).

5. Numerical results: contact area

From our molecular dynamics simulation we can calculate the
interfacial stress distribution. In order to obtain the contact area
we follow the procedure outlined in [10] and fit the numerical
results to the theoretically predicted stress distribution

P(σ, ζ ) = 1

2(π G̃)1/2

(
e−(σ−p)2/4G̃ − e−(σ+p)2/4G̃

)
, (20)

where G̃(p, ζ ) depends on the nominal squeezing pressure
p and the magnification ζ (but which is independent of σ ),
and which we choose to get the best agreement with numerical
data. In figure 7 we have shown the good agreement
between the numerical pressure distribution and the analytical
function (20) for ζ = 4 under three different nominal
pressures. When G̃ is known we can calculate the relative
contact area using

A

A0
=

∫ ∞

0
dσ P(σ, ζ ), (21)

which is equivalent to using (4) with G replaced by G̃.
In figure 8 we show the result for A/A0 as a function of
normalized pressure p/E∗.

In figure 9 we have compared the contact area between
MD simulations and the continuum contact mechanics theory
of Persson. Note that the simulation for small loads predicts a
contact area which is about 30% larger than predicted by the
theory. This is slightly larger than what was found in earlier
numerical simulations. Thus, the finite element calculations
of Hyun and Robbins [28] and the Green’s function molecular
dynamics study of Campana and Müser [11] give a contact
area which is about 20% larger than that predicted by the
Persson theory. Similarly, the study of Hönig [29] gives a
contact area which is about 25% bigger than the analytical one
for small load. However, none of the computer simulations
can be considered as perfectly converged, and the difference
between theory and fully converged computer simulations may

-38
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Figure 3. Surface roughness power spectra C(q) of the
mathematically generated substrate surface studied in [19] and
below. For a self-affine fractal surface with the fractal dimension
Df = 2.2 and qL = 6.04 × 107 m−1, q0 = 1.81 × 108 m−1, and
q1 = 3.9 × 1010 m−1, and the root mean square roughness amplitude
hrms = 1 nm.

be smaller than that indicated by the numbers given above.
Thus, most of the numerical studies reported use rather few
grid points within the shortest wavelength roughness, which
results in an overestimation of the contact area [30]. In our
simulation for ζ = 4 we have many atoms within the shortest
substrate roughness wavelength, but the surface roughness
extends over less than one decade in length scale.

Finally, we note that while the pressure distribution we
obtain for low magnification (ζ = 4) is in a good agreement
with Persson’s theory, for the highest magnification (ζ =
216) this is not the case because only one atom (or of the
order of one atom) occurs within the shortest wavelength
roughness of the substrate (which is roughly given by the
substrate lattice constant). In the latter case we observe that
the stress probability distribution for high normal stress falls
off roughly exponentially rather than like a Gaussian. This
was also observed in earlier (non-converged) finite element
calculations [9]. It is clear that this limiting case cannot be
described by the elastic continuum model, which is the basis
for all analytical contact mechanics theories.

6. Numerical results: interfacial surface separation

In figure 10 we show the (natural) logarithm of the normalized
average pressure p/E∗, as a function of the normalized
separation ū/hrms between the average plane of the substrate
and the average plane of the lower surface of the block. We
show results for the magnification ζ = 4 (open circles) and
ζ = 216 (solid squares). In this figure ū = 0 corresponds
to the separation (4.3615 Å) between the plane through the
center of the atoms of the top layer of substrate atoms and
the bottom layer of block atoms. Since the atoms interact
with a long-range repulsive ∝r−12 pair potential, it is possible
to squeeze the surfaces closer to each other than the distance
corresponding to ū = 0. This explains why simulation data
points also occur for ū < 0. The theory described in section 3
assumes a contact interaction potential so that ū � 0, and can
therefore not be compared with the MD simulations for very
small (and negative) ū.

5
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Figure 4. Surface height profile of a mathematically generated
self-affine fractal surface (104 × 104 nm2 square surface area) with
the root mean square roughness 1 nm: (a) high magnification
(ζ = 216), (b) low magnification (ζ = 4).

In figure 11 we compare the MD results from figure 10
(solid squares) with the theoretical prediction calculated
from (14) using the same surface roughness power spectra (and
other parameters) as in the MD calculation. The theory is in
good agreement with the numerical data for 0.2 < ū/hrms < 2.
For ū/hrms < 0.2 the two curves differ for the reason discussed
above, i.e. the ‘soft’ potential used in the MD simulation allows
the block and substrate atoms to approach each other beyond
ū = 0, while in the analytical theory a contact potential is
assumed where the repulsive potential is infinite for ū < 0
and zero for ū > 0. The difference between the theory and
the MD results for ū/hrms > 2 is due to a finite size effect.
That is, since the MD calculations use a very small system,
the highest asperities are only ∼3hrms above the average plane
(see the height distribution in figure 6), and for large ū very
few contact spots will occur, and in particular for ū > 3hrms

no contact occurs and p must vanish. In the analytical theory,
the system is assumed to be infinitely large. So that even for
a Gaussian distribution of asperity height, there will always
be (infinitely) many infinitely high asperities and contact will
occur at arbitrarily large separation ū. The asymptotic relation
ū ∝ log p will hold for arbitrarily large ū (or small squeezing
pressures p).

7. Contact mechanics for a measured surface

Pei et al [30] have performed a finite element method (FEM)
computer simulation of the contact mechanics for a polymer

Figure 5. 3D images of contacting regions with both substrate and
block, at low magnification ζ = 4 under different loads
(a) σ0/E∗ = 0.0129 and A/A0 = 0.1089, (b) σ0/E = 0.26 and
A/A0 = 0.9527. Note E∗ = E/(1 − ν2) is an effective modulus.
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Figure 6. The probability distribution Ph of surface height h for the
mathematically generated surface shown in figure 4. For a square
area 104 × 104 nm2 with lattice constant a = 1.605 Å.

surface, using the measured surface topography [24] as input,
squeezed against a flat surface. Here we would like to compare
the FEM results with the analytical results of Persson.

In figure 12 we show the surface height profile of a
polymer surface studied in [24] with the root mean square
roughness 14 nm. The probability distribution of surface height
Ph , for two different square 10 × 10 μm2 surface areas on
the polymer film, is shown in figure 13. These two surface
areas were used in the FEM calculation by Pei et al as the
upper and lower surfaces. It is remarkable that in spite of
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Figure 7. The pressure distribution for ζ = 4 for three different
nominal pressures. The analytical theory has been used to fit the
numerical pressure distribution as well as possible. Note r = G̃/G
(see [13]).
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Figure 8. Contact area ratio A/A0 calculated from (21), as a
function of normalized pressure p/E∗.

the fact that the height distributions are not perfectly Gaussian
(in particular one surface exhibits a ‘bump’ in the height
distribution on the outer side of the height profile), Pei et al
obtained a nearly perfect linear relation between log p and ū.
This result indicates that even in the present case the area of
real contact is proportional to the load (see below) and the
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Figure 9. Projected contact area comparison between molecular
dynamics simulations AMD and continuum mechanics theory of
Persson ATH. At small squeezing pressure, AMD is about (30–38)%
bigger than the ATH. However, the difference decreases with
increasing pressure.
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Figure 10. An elastic block squeezed against a rigid rough substrate.
The (natural) logarithm of the normalized average pressure p/E∗, as
a function of the normalized separation between the average plane of
the substrate and the average plane of the lower surface of the block
and the average plane of the lower surface of the block denoted by
ū/hrms. Adapted from [13].
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Figure 11. The relation between the (natural) logarithm of the
squeezing pressure p (normalized by E∗) and the interfacial
separation ū (normalized by the root-mean-square roughness
amplitude hrms) for an elastic solid squeezed against a rigid surface
with the power spectra shown in figure 4. In the calculation we have
used γ = 0.42. Adapted from [13].

statistical properties of the contact regions do not change with
load for small load. The surface roughness power spectra
of the two surfaces are shown in figure 14, and are almost
identical despite the difference which occurs in the height
distribution Ph .

7



J. Phys.: Condens. Matter 20 (2008) 215214 C Yang and B N J Persson

Figure 12. Surface height profile of a polymer surface, with the root mean square roughness 14 nm, measured over a 10 × 10 μm2 square
surface area.
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Figure 13. The probability distribution Ph of surface height h for the
polymer film in figure 12. The two curves correspond to height
profile data measured at two different square surface areas, each
10 × 10 μm2.

Figure 15 shows the relation between the logarithm (with
10 as basis) of the squeezing pressure p (normalized by E∗)
and the interfacial separation ū (in nm) for an elastic solid
squeezed against a rigid surface with the power spectra given
by the sum of the two power spectra shown in figure 14. The
line (a) is the result of the FEM calculation of Pei et al, and
shows that for large separation p ∝ exp(−ū/γ hrms) with
γ ≈ 0.4, which is consistent with our analytical results (see
line (b) in figure 15).

Figure 16 shows the relation between the relative contact
area, A/A0, and the normalized squeezing pressure, p/E∗,
for an elastic solid squeezed against a rigid surface with the
power spectra given by the sum of two power spectra shown in
figure 14. Line (a) is the result of the FEM calculation of Pei
et al, while line (b) is the prediction of the theory where A/A0

is scaled by a factor of 1.29.
The good agreement between the FEM calculations and

the analytical theory found above indicates that the contact
mechanics results are robust and not very sensitive to many

6 7 8

-34
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-30

log    q (1/m)10
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4

10

Figure 14. Surface roughness power spectra C(q) of the polymer
film in figure 12. The two curves correspond to height profile data
measured at two different square surface areas, each 10 × 10 μm2.
The height probability distribution for the same surface areas is
shown in figure 13.

details such as the assumption of perfectly random surfaces,
which is unlikely to be exactly obeyed for the polymer
surfaces, the surface topography of which was used in the FEM
calculations. (In order to address to what extent a measured
surface is randomly rough, one would need to calculate higher
order correlation functions and show that odd order functions
in the height coordinate vanish (or are very small), and that
even order height correlation functions can be decomposed into
a sum of pair correlation functions. We are not aware of any
such study for ‘real’ measured surface profiles.)

Finally we note that the observation of an effective
exponential repulsion has important implications for tribology,
colloid science, powder technology and materials science [24].
For example, the density or volume of granular materials has
long been known to have a logarithmic dependence on the
externally applied isotropic pressure or stress, as found for
example in the compression stage during the processing of
ceramic materials [31]. Recent work on the confinement of
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Figure 15. The relation between the logarithm (with 10 as basis)
of the squeezing pressure p (normalized by E∗) and the interfacial
separation ū (in nm) for an elastic solid squeezed against a rigid
surface with the power spectra given by the sum of the two power
spectra shown in figure 14. Line (a) is the result of the finite element
calculation of Pei et al, while line (b) is the prediction of the theory.
In the calculation we have used γ = 0.38.
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Figure 16. The relation between the relative contact area, A/A0,
and the normalized squeezing pressure, p/E∗, for an elastic solid
squeezed against a rigid surface with the power spectra given by the
sum of the two power spectra shown in figure 14. Line (a) is the
result of the finite element calculation of Pei et al, while line (b) is the
prediction of the theory where A/A0 is scaled by a factor of 1.29.

nanoparticles has also indicated an exponential force upon
compression [32], suggesting that this relationship could
be prevalent among quite different types of heterogeneous
surfaces.

8. Variation of the average surface separation ū(ζ )
with the magnification ζ

The theory presented above can be easily generalized in
various ways. Thus, it is possible to include the adhesional
interaction [16, 33]. In this case the work done by the external
pressure p will be the sum of the stored (asperity induced)
elastic energy plus the (negative) adhesional energy, i.e. the
right-hand side of (6) will now be Uel + Uad. The theory
can also be applied to study how the spacing ū(ζ ) depends
on the magnification. Here ū(ζ ) is the (average) spacing
between the solids in the apparent contact areas observed at
the magnification ζ .

Figure 17 shows an asperity contact region at the
magnification ζ . It appears that complete contact occurs in the
asperity contact region, but upon increasing the magnification

u(ζ)

magnification ζ

hard solid

elastic solid

Figure 17. An asperity contact region observed at the magnification
ζ . It appears that complete contact occurs in the asperity contact
region, but upon increasing the magnification it is observed that the
solids are separated by the average distance ū(ζ ).
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Figure 18. The dependence on the magnification of the average
distance ū(ζ ) (in units of the root-mean-square roughness amplitude
hrms(1) of the whole surface) between the surfaces in an asperity
contact region observed at the magnification ζ for the polymer
surface with the power spectra shown in figure 14. We have assumed
the effective elastic modulus E∗ = 2 GPa and the nominal squeezing
pressure (a) p0 = 1, (b) 10, (c) 100 and (d) 200 MPa.

it is observed that the solids are separated by the average
distance ū(ζ ). The information about how ū(ζ ) depends on
the magnification is crucial for many important applications,
e.g. sealing (see below).

We study the contact between the solids at increasing
magnification. In an apparent contact area observed at the
magnification ζ , the substrate has the root mean square
roughness amplitude

h2
rms(ζ ) = 2π

∫ q1

ζq0

dq qC(q).

The separation between the surfaces ū(ζ ) is given by (14)
but with the lower integration limit given by q0ζ instead
of q0 and the lower pressure integration limit given by

9
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Figure 19. The dependence on the magnification of the relative
contact area A(ζ )/A0, the root-mean-square roughness amplitude
hrms(ζ ) (in units of the root-mean-square roughness amplitude
hrms(1) of the whole surface) and the average distance ū(ζ ) between
the surfaces in an asperity contact region observed at the
magnification ζ . All quantities are shown on a logarithmic (with 10
as basis) scale. For the polymer surface with the power spectra
shown in figure 14. We have assumed the effective elastic modulus
E∗ = 2 GPa and a nominal squeezing pressure p0 = 10 MPa.

p(ζ ) = p0 A0/A(ζ ):

ū(ζ ) = √
π

∫ q1

ζq0

dq q2C(q)w(q)

×
∫ ∞

p(ζ )

dp′ 1

p′
[
γ + 3(1 − γ )P2(q, p′, ζ )

]
e−[w(q,ζ )p′/E∗]2

(22)

where

w(q, ζ ) =
(

π

∫ q

ζq0

dq ′q ′3C(q ′)
)−1/2

(23)

and where P(q, p′, ζ ) is given by (12) with s = w(q, ζ )/E∗.
When we study the apparent contact area at increasing
magnification, the contact pressure p(ζ ) will increase and the
surface roughness amplitude hrms(ζ ) will decrease. Thus, the
average separation ū(ζ ) between the surfaces in the (apparent)
contact regions observed at the magnification ζ , will decrease
with increasing magnification.

In figure 18 we show, for the polymer surface with the
power spectra shown in figure 14, how the logarithm of
the average distance ū(ζ ) (in units of the root-mean-square
roughness amplitude hrms(1) of the whole surface), depends
on the magnification ζ . We have assumed the effective elastic
modulus E∗ = 2 GPa and the nominal squeezing pressures
(a) p0 = 1, (b) 10, (c) 100 and (d) 200 MPa. Note that
for ζ > 2 the two lowest squeezing pressures give virtually
identical separation between the surfaces in the (apparent)
asperity contact regions, despite the fact that the pressure for
curve (b) is 10 times higher than for curve (a). This just reflects
the fact stated earlier that for low squeezing pressure the area
of (apparent) contact A varies linearly with the squeezing
force p A0, and the interfacial stress distribution, the size
distribution of contact spots and the interfacial separation ū(ζ ),
are independent of the squeezing pressure [25, 26]. That is,
with increasing p, existing contact areas grow and new contact
areas form in such a way that in the thermodynamic limit
(infinite-sized system) the quantities referred to above remain
unchanged.
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Figure 20. The interfacial separation ū(ζ ) and u1(ζ ) as a function of
the magnification ζ for the surface shown in figure 4 and for the
squeezing pressure 1.3 GPa.

In figure 19 we again show how the average distance
ū(ζ ) depends on the magnification ζ . We also show the
ζ -dependence of the relative contact area A(ζ )/A0, and the
root-mean-square roughness amplitude hrms(ζ ) (in units of the
root-mean-square roughness amplitude hrms(1) of the whole
surface). All quantities are shown on a logarithmic (with 10
as basis) scale, and the results are for the polymer surface
with the power spectra shown in figure 14. We have assumed
the effective elastic modulus E∗ = 2 GPa and the nominal
squeezing pressure p0 = 10 MPa. Note that for ζ < 2,
ū(ζ )/hrms(1) ≈ 1.23, i.e. at the lowest magnification the upper
surface is ‘riding’ on top of the largest substrate asperities. The
separation between the solids in the asperity contact regions
rapidly drops with increasing magnification (corresponding
to smaller and smaller asperity contact regions), and at
the magnification ζ = 10 the separation is already only
∼3% of the average separation which occurs at the lowest
magnification. This is, of course, mainly due to the strong
increase in the local pressure (as manifested in the decreased
contact area, A(10)/A0 ≈ 0.1) in the asperity contact regions
at high magnification but also due to the reduction in the
effective roughness detected over short distances (the largest
contribution to hrms(1) comes from the longest wavelength
roughness components).

Let u1(ζ ) be the (average) height separating the surfaces
which appear to come into contact when the magnification
decreases from ζ to ζ−
ζ , where 
ζ is a small (infinitesimal)
change in the magnification. The empty volume between the
surfaces which appears to be in contact at the magnification
ζ − 
ζ is given by ū(ζ − 
ζ)A(ζ − 
ζ). But this
volume must be the sum of the volume ū(ζ )A(ζ ) between the
surfaces which appear to be in contact at the magnification ζ ,
plus the additional volume u1(ζ )[A(ζ − 
ζ) − A(ζ )] which
results from the increase in the apparent contact area as the
magnification decreases from ζ to ζ − 
ζ :

ū(ζ −
ζ)A(ζ−
ζ) = ū(ζ )A(ζ )+u1(ζ )[A(ζ−
ζ)− A(ζ )]

or
u1(ζ ) = ū(ζ ) + ū′(ζ )A(ζ )/A′(ζ ). (24)

In figure 20 we show the interfacial separation ū(ζ ) and u1(ζ )

as a function of the magnification ζ for the surface shown

10



J. Phys.: Condens. Matter 20 (2008) 215214 C Yang and B N J Persson

in figure 4 and for the squeezing pressure 1.3 GPa. Note
that for small magnification u1 increases rapidly. This can be
understood as follows: the theory is for an infinite system. For
an infinite system, even for a Gaussian distribution of surface
height, there will always be some infinitely high asperities
and some infinitely deep valleys. Thus during contact there
will always be some regions where the surface separation is
arbitrarily high. Of course, the fraction of the surface where u1

is large is extremely small. The reason is that the variation of
the (apparent) contact area with the magnification is negligible
in the region where u1 starts to grow fast (see figure 20).
Thus, the strong increase in u1 for small magnification is of
no practical importance—it is a purely academic result.

The quantity u1(ζ ) is very important in the context of
leakage through rubber sealing: let us study the interface
between the rubber and the substrate as the magnification
increases. At low magnification it appears as if the solids
make perfect contact at the interface. As we increase the
magnification the non-contact area becomes visible. At large
enough magnification, say ζ = ζ ∗, the non-contact area will
percolate [19]. A first rough estimate of the gas (or fluid)
leakage is obtained by assuming that the gas flow through a
pipe or pore with width and length λ ≈ L/ζ ∗ (where L is the
linear size of the sealing contact area) and height u1(ζ

∗), and
that the whole pressure drop 
p = p1− p0 (where p1 and p0 is
the pressure to the left and right of the sealing) occurs over the
pore. Thus, for an incompressible fluid, the mass-flow per unit
time through the interfacial pore will be Q̇ ≈ ρu3

1(ζ
∗)
p/12η

(where η is the viscosity). We will analyze this problem in
greater detail elsewhere [34].

Finally, let us consider the distribution of interfacial
separations [13]

Pu = 〈δ(u − u(x))〉 (25)

where 〈· · ·〉 stands for the ensemble average (which is is
equivalent to the average over the surface area). We also define
another distribution P̄(u) of interfacial separations which
differ from (25) by using instead of u(x) another function
which involves some average over the spatial coordinate and
defined as follows: the probability of finding the surface
separation u < u1(ζ ) is

�(u) = A(ζ )/A0 = P(ζ )

where ζ = ζ(u) is the solution to u = u1(ζ ) (note: u1(ζ ) is a
monotonically decreasing function of ζ so there exists a unique
solution ζ = ζ(u) to u = u1(ζ )). The probability distribution

P̄u = d�(u)

du
= P ′(ζ )

u′
1(ζ )

∣∣∣∣
ζ=ζ(u)

.

We can also write

P̄u = −
∫

dζ
A′(ζ )

A0
δ [u − u1(ζ )] . (26)

It is convenient to change the integration variable to μ defined
by ζ = exp(−μ) and consider A and u1 as a function of μ.
This gives

P̄u = −
∫

dμ
A′(μ)

A0
δ [u − u1(μ)] . (27)
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Figure 21. The probability distributions Pu and P̄u are defined in the
text. For the surface shown in figure 4 and for the squeezing pressure
1.3 GPa. The distribution P̄u has a delta-function at u = 0 with the
weight A(ζ1)/A0 ≈ 0.047.

In figure 21 we show Pu and P̄u for the surface shown in
figure 4, and for the squeezing pressure 1.3 GPa. The result
for Pu was obtained from the MD-simulations, while P̄u was
obtained from the analytical theory presented above. As
expected, the distribution P̄u is narrower than Pu (since it
involves u1 which is already an average of u(x)), but it is easy
to show that average of u is the same for both P and P̄ and
equal to the average separation between the surfaces. Thus

∫
du u P̄u = −

∫
dζ

A′(ζ )

A0
u1(ζ ).

Substituting (24) in this equation gives
∫

du u P̄u = − 1

A0

∫ ζ1

ζ0

dζ
d

dζ
[A(ζ )ū(ζ )] = ū(ζ0)

where we have used that ū(ζ1) = 0 and that A(ζ0) = A0 (note:
ζ0 is the lowest magnification usually chosen as unity). Since
ū(ζ0) equals the average separation between the surfaces we
have proved our statement. Note that P̄u has a delta-function at
u = 0 with the weight A(ζ1)/A0. Using this fact it is easy to
show that distribution P̄u has the zero order moment equal to
unity: ∫

du P̄u = 1.

Thus, the zero order and first order moments of Pu and P̄u are
the same, but higher order moments will differ.

9. Elastic energy and adhesion

In section 3 we have shown that from the dependence
of the surface separation u on the squeezing pressure p,
deduced from, for example, experiments or from MD or FEM
calculations, one can obtain the elastic energy Uel stored in the
asperity contact regions. Thus, in section 3 we have presented
an expression for Uel which results in nearly the same relation
between u and p as observed in the numerical MD and FEM
studies. This is an important result as Uel is relevant for many
important applications, e.g. adhesion between elastic solids
with randomly rough surfaces [3, 35, 36].

We consider the adhesive contact between two elastic
solids with randomly rough surfaces. Assume that the
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Figure 22. The effective interfacial binding energy and the area of
real contact as a function of the normalized root-mean-square
roughness hrms/hrms0. The case hrms = hrms0 corresponds to the
power spectra obtained from the measured height profile for the
surface 7 (with hrms0 ≈ 0.2 μm) studied in [37] (see also figure 23).
In the calculation we have used the measured (low-frequency) elastic
modulus (E ≈ 5 MPa) and the measured (for flat surfaces) interfacial
binding energy (per unit area) (
γ ≈ 0.1 J m−2). In (a) we show the
calculated γeff(1) (curve 1) and the atomic contact area A(ζ1)/A0

observed at the highest magnification. Curve 2 gives γeff(1) under the
assumption that complete contact occurs at the interface. When the
system is in thermal equilibrium it will be in the state where γeff is
maximal. In (b) we show the thermal equilibrium interfacial binding
energy and the corresponding contact area. Note that the system flips
abruptly from the complete contact to partial (about 50%) contact at
hrms ≈ 0.9hrms0.

surface roughness power spectrum has a long-distance roll-
off wavelength λ0 (corresponding to the roll-off wavevector
q0 = 2π/λ0) which is much smaller than the diameter of the
nominal contact area. In this case we can take into account the
influence of the surface roughness on the (adhesive) contact
mechanics by using an effective interfacial binding energy [3]

γeff(ζ )A∗(ζ ) = 
γ A∗(ζ1) − Uel(ζ ),

where Uel(ζ ) is the elastic energy stored in the asperity contact
region as a result of the asperities which cannot be observed
at the magnification ζ (i.e. due to the surface roughness with
wavelength shorter than λ0/ζ ). A∗(ζ ) is the contact area when
the surface is studied at the magnification ζ , which in general
is larger than the projected contact area A(ζ ). The interfacial
binding energy per unit surface area for the contact between
two perfectly flat surfaces of the two solids is denoted by 
γ ,
and A∗(ζ1) is the contact area observed at the highest (atomic)
magnification ζ1. Using (9) we can write [3]

γeff(ζ ) = 
γ
A∗(ζ1)

A∗(ζ )
− E∗ π

2

A0

A∗(ζ )

∫ q1

q0ζ

dq q2W (q, p)C(q).

theory
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Figure 23. The normalized effective interfacial binding energy
γeff/
γ as a function of the root-mean-square roughness for seven
differently prepared surfaces. Blue curve, theory, assuming perfect
(atomic) contact at the interface; green curve, (a); and red curve, (b).
The experimental data for the pull-off velocity 0.2 and 2 μm s−1.
From [37].

The macroscopic effective interfacial binding energy γeff(1)

determines the macroscopic contact mechanics and the pull-off
force. For example, for a rubber ball (radius R) in contact with
a nominal flat substrate, the pull-off force is given by the JKR
formula Fpull−off = (3π/2)Rγeff. Thus, the surface roughness
enters into the expression for γeff(1), but the surfaces can be
considered as perfectly smooth when solving the macroscopic
contact mechanics problem.

In [3] one of us studied γeff(ζ ) using the approximation
W (q, p) = Pp(q) when calculating the elastic energy. Here
we will present results using the improved expression for Uel

with W (q, p) given by (10). In figure 22 we show the effective
binding energy and the area of real contact as a function of the
normalized root-mean-square roughness hrms/hrms0. The case
hrms = hrms0 corresponds to the power spectra obtained from
the measured height profile for the surface 7 (with hrms0 ≈
0.2 μm) studied in [37] (see also figure 23). The power
spectra used in figure 22 have been obtained by scaling the
power spectrum of surface 7 with the factor (hrms/hrms0)

2.
In the calculation of γeff we have used the measured (low-
frequency) elastic modulus (E ≈ 5 MPa) and the measured
(for flat surfaces) interfacial binding energy (per unit area)
(
γ ≈ 0.1 J m−2). In figure 22 (a) we show the calculated
γeff(1) (red curve) and the atomic contact area A(ζ1)/A0

observed at the highest magnification. The green curve gives
γeff(1) under the assumption that complete contact occurs at
the interface. When the system is in thermal equilibrium it
will be in the state where the interfacial binding energy γeff

is maximal. In figure 22(b) we show the thermal equilibrium
interfacial binding energy and the corresponding contact area.
Note that the system flips abruptly from complete contact to
partial (about 50%) contact at hrms ≈ 0.9hrms0. Very similar
abrupt transitions have been found in an exact solution for a
cosines roughness profile, see e.g. [38]. We also note that while
figure 22(b) shows the minimum free energy state, hysteresis
may occur in practical situations (see [38]). Finally, note
that the contact area A(ζ1) is also finite when γeff(1) = 0,
i.e. adhesion increases the contact area even if no adhesion
can be detected in a pull-off experiment. Since it is the area
of real contact which determines the sliding friction force, the
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adhesional interaction may increase the sliding friction even if
no adhesion can be detected in a pull-off experiment. We plan
to study the adhesive contact between randomly rough surfaces
using MD simulations to compare with the predictions of the
theory described above.

In an earlier publication one of us studied the effective
binding energy as a function of the root-mean-square
roughness for seven differently prepared surfaces [37] (see
figure 23). The theory curve (blue curve) in figure 23 is based
on the assumption of perfect (atomic) contact at the interface.
Curves a and b are experimental results for the pull-off velocity
0.2 and 2 μm s−1. The theory data point for γeff(1)/
γ for
the highest roughness value (hrms = hrms0 ≈ 0.2 μm) was
actually negative (about −0.1, see figure 22), indicating that
the complete contact state cannot be the ground state, and in
figure 23 we therefore gave the binding energy γeff(1) = 0
of the fully detached state. However, in accordance with the
experimental data points, we find that with the improved elastic
energy used above the partly contact state has a lower free
energy (a larger binding energy) than the fully contact state,
i.e. γeff(1) is positive for the surface 7, albeit still somewhat
smaller than observed experimentally (compare figure 22 for
hrms/hrms0 = 1 with figure 23 for hrms0 = 0.2 μm).

10. Summary and conclusion

We have used our recently developed multiscale molecular
dynamics approach [10] to study the real contact area and
interfacial separation from small contact to full contact. The
real contact area increases linearly with load for small load.
Here we have found that at low magnification where the
atomistic nature of the solids becomes unimportant, the MD
results match very well with Persson’s theory, especially when
the contact approaches full contact.

The interfacial separation as a function of squeezing
pressure has been derived theoretically. For non-adhesive
interaction and small applied pressure, p ∝ exp(−ū/u0) is in
good agreement with experimental observation. This relation
has been tested with MD simulations and they match quite
well with each other. The present results may be of great
importance for soft solids, e.g. rubber-like material, or very
smooth surfaces.
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