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Abstract

The contact mechanics model of Persson is applied to layered materials. We calculate the M

function, which relates the surface stress to the surface displacement, for a layered material,

where the top layer (thickness d) has different elastic properties than the semi-infinite solid

below. Numerical results for the contact area as a function of the magnification are presented

for several cases. As an application, we calculate the fluid leak rate for laminated rubber seals.

(Some figures may appear in colour only in the online journal)

1. Introduction

Contact mechanics involving layered materials is very

common [1]. Thus most solids have thin surface layers with

different properties than the bulk. This is the case for all

metals (except gold), which are covered by oxide layers.

Most engineering surfaces are painted (typically involving

thin polymer coatings) or have surface layers to improve

their properties, e.g. thin rubber coatings to improve the wear

resistance [2, 3] or to prevent barnacles and mussels from

attaching themselves to ships’ hulls, reducing drag on the

ship [4].
Figure 1 shows the contact between a rigid and rough

substrate with a rubber block coated with a thin, elastically

stiffer layer. In this case the surface of the block may be able

to bend and make contact with the substrate on length scales

much longer than the thickness d of the stiff layer. However,

because of the stiff coating it cannot bend and follow the

roughness on length scales of the order of or smaller than

the thickness d. This has many important implications. For

example, rubber seals are sometimes coated by a thin (d ≈
10 µm) Teflon layers to reduce the friction during sliding.

However, the coating usually increase the leak rate because

the non-contact channels, which exist in the apparent contact

area owing to the surface roughness, will be larger for the

Teflon-coated rubber than for the uncoated rubber.
We have recently developed a contact mechanics model

for randomly rough surfaces [5–7]. The theory is based

on studying how the interfacial stress distribution P(σ, ζ )

depends on the magnification ζ (or resolution L/ζ , where

L is the linear size of the system) at which the interface is

Figure 1. The contact between a rigid and rough substrate with a
rubber block coated with a thin, elastically stiffer layer. At low
magnification ζ the surface of the block can bend and make contact
with the substrate on length scales much longer than the thickness d
of the stiff layer. However, at higher magnification it is observed
that the surface cannot bend and follow the roughness on length
scales of the order of or smaller than the film thickness d.

probed. This model is very flexible and can be applied to

elastic, viscoelastic and elastoplastic materials, and to surfaces

with anisotropic roughness. The theory is valid for arbitrary

squeezing pressure, e.g. even at so high pressures that nearly
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complete contact prevails (which may be realized only for

elastically soft materials such as rubber or gel). Here we

will show that the theory can also be applied to layered

materials. We first calculate the M function, which relate

the surface stress to the surface displacement, for a layered

material, where the top layer (thickness d) has different elastic

properties than the semi-infinite solid below. Numerical

results for the contact area as a function of the magnification

are presented for several cases. As an application, we calculate

the fluid leak rate for laminated rubber seals with Teflon-like

coating.

A large number of papers have been published on contact

mechanics for layered materials [8–12]. Thus Bufler has

presented a general theory of elasticity for multilayered

materials [8]. Burminster studied the deformation of a

two-layer system due to a uniform pressure applied within

a circular region [9]. Li and Chou presented the elastic

solution of a layered half-space with perfect interfacial

bonding under an axisymmetrical compressive loading on

the plane surface [10]. The analysis is intended to model

the nano-indentation of thin-film coating/substrate systems.

Nogi and Kato presented a numerical simulation technique

for calculating the pressure distribution and the deformed

geometry of an elastic half-space which has a hard surface

layer in contact with a rigid indenter with a rough surface [11].

Sullivan and King studied the quasi-static sliding contact

stress field due to a spherical indenter on an elastic

half-space with a single layer [12]. The resulting stresses were

discussed for different values of the layer stiffness relative

to the substrate and also for different values of the friction

coefficient. In [12] the M function was derived in the static

limit ω = 0 using the Papkovich–Neuber elastic potential. In

this paper we derive the M function for finite frequencies

which is relevance in some applications, e.g. rubber sliding

friction on layered materials at high sliding velocity [5]. When

ω→ 0 our expression for M reduces to that of Sullivan and

King. Our method of the derivation of the M function differ

from that of [12] and is more general (finite frequencies).

2. Basic equations

Consider the layered material shown in figure 2. Introduce a

coordinate system xyz and assume that the z axis is pointing

into the solid as indicated in the figure. Let σ (a vector

with the components σi, i = 1–3) be the force per unit area

(or stress) acting on the surface z = 0 and u the surface

displacement induced by σi. Let x = (x, y) and q = (qx, qy)

be two-dimensional vectors and write

u(x, t) = u(q, ω)ei(q·x−ωt),

σ(x, t) = σ(q, ω)ei(q·x−ωt),

then

u(q, ω) = M(q, ω)σ(q, ω).

We define M(q) = M(q, 0).

In the Persson contact mechanics model the area of

contact (projected on the xy plane) A(ζ ) at the magnification

Figure 2. Semi-infinite elastic solid (Young’s modulus E1, Poisson
ratio ν1) with an elastic slab (E0, ν0) of thickness d as top layer.

ζ is given by [5]

A(ζ )

A0
= 2√

π

∫

√
G/2

0

dx e−x2 = erf

(

1

2
√

G

)

where A0 is the nominal contact area and

G(ζ ) = π
∫ ζq0

q0

dq q|σ0Mzz(q)|−2C(q).

In this expression σ0 is the external squeezing pressure and

Mzz is the zz component of the matrix M(q).
We now calculate the M function for a layered system

consisting of an elastic slap on top of a semi-infinite elastic

substrate. Both materials are described as an isotropic elastic

continuum. Let n be a unit vector along the z axis. Following

appendix A in [5] we write the elastic deformation field

u(x, z, t) as

u = pA+KB+ p×KC (1)

where p = −i∇ and K = n × p. In what follows we will

assume that all fields depend on x = (x, y) and on time t

as exp(iq · x − iωt), and we will not write out this (x, t)

dependency explicitly. We have

p×K = nq2 − qpz

so that

u = KB+ q(A− pzC)+ n(pzA+ q2C). (2)

Assume that on the surface z = 0 act the stress σi = σ3i which

we denote as σ. One can show that for z = 0 (see (A12)–(A14)

in [5])

R0A+ 2q2pzC = −
i

µ0
n ·σ (3)

q2pzB = −
i

µ0
K ·σ (4)

2q2pzA− q2R0C = − i

µ0
q ·σ (5)

where

R0 =
(

ω

cT0

)2

− 2q2 (6)

where µ0 = E0/2(1 + ν0) is the shear modulus and cT0 =
(µ0/ρ0)

1/2 is the sound velocity of transverse polarized

elastic waves for solid 0 (top layer).
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3. M function for the B field

The B-field contribution to u is denoted by uB and is defined

by

uB = KB (7)

where

B = B0(e
ipT0z + rBe−ipT0z) for 0 < z < d (8)

B = B0tBeipT1z for d < z (9)

where

pT0 =
[

(

ω

cT0

)2

− q2

]1/2

and similar for pT1. For z = 0 we have from (4)

q2pzB = −
i

µ0
K ·σ (10)

and using (8) this gives

B0 = −
i

µ0

1

q2pT0(1− rB)
K ·σ. (11)

Using (7), (8) and (11) gives for z = 0:

uB = −
i

µ0

1

q2pT0

1+ rB

1− rB

KK ·σ

where now K = n×q. Thus if we define uB = MB ·σ then we

can write

MB = −
i

µ0

1

q2pT0

1+ rB

1− rB

KK. (12)

For z= d both B andµpzB must be continuous. This gives

eipT0d + rBe−ipT0d = tBeipT1d (13)

µ0pT0(e
ipT0d − rBe−ipT0d) = µ1pT1tBeipT1d. (14)

Thus

1− rBe−i2pT0d

1+ rBe−i2pT0d
= µ1pT1

µ0pT0
(15)

or

rB =
µ0pT0 − µ1pT1

µ0pT0 + µ1pT1
ei2pT0d. (16)

Substituting this in (12) gives MB(q, ω).

In the limit ω→ 0 we get

pT0 =
[

(

ω

cT0

)2

− q2

]1/2

→ iq (17)

and similar for pT1 so that

rB ≈
µ0 − µ1

µ0 + µ1
e−2qd (18)

and

1+ rB

1− rB

≈ (µ0 + µ1)+ (µ0 − µ1)e
−2qd

(µ0 + µ1)− (µ0 − µ1)e−2qd
. (19)

Substituting this in (12) gives MB(q) = MB(q, 0):

MB(q) = −
1

µ0q3

(µ0 + µ1)+ (µ0 − µ1)e
−2qd

(µ0 + µ1)− (µ0 − µ1)e−2qd
KK. (20)

If we introduce the unit vector e = ẑ× q̂ we can also write

MB(q) = −
1

µ0q

(µ0 + µ1)+ (µ0 − µ1)e
−2qd

(µ0 + µ1)− (µ0 − µ1)e−2qd
ee. (21)

When µ0 = µ1 we get MB = (1/µ0q)ee which is a

well-known result (see the appendix in [13]).

4. M function for the A and C fields

The M function for the A and C fields is much more

complicated to calculate in part because these fields are

coupled at the interfaces and also because we need to calculate

rA(ω) and rC(ω) to first order in (ω/cq)2 even if we are just

interested in M(q, ω) for ω = 0 (see below).
In what follows we will assume that the stress σ is normal

to the surface z= 0 and we will only focus on the z component

of u. From (2)

uz = pzA+ q2C (22)

and (3) and (5) reduces to

R0 A+ 2q2pzC = −
i

µ0
n ·σ (23)

2pzA− R0C = 0. (24)

The last equation gives pzA = R0C/2 so that for z = 0

uz = pzA+ q2C = 1

2
(R0C + 2q2C) = 1

2

(

ω

cT0

)2

C. (25)

This equation shows that, in order for uz to be finite as ω→ 0,

it is necessary that C ∼ ω−2 as ω→ 0.
Let us write

A = A0(e
ipL0z + rAe−ipL0z) for 0 < z < d (26)

C = C0(e
ipT0z + rCe−ipT0z) for 0 < z < d (27)

A = A0tAeipL1z for d < z (28)

C = C0tCeipT1z for d < z. (29)

Substituting this in (23) and (24) gives

R0A0(1+ rA)+ 2q2pT0C0(1− rC) = −
i

µ0
n · σ (30)

2pLA0(1− rA)− R0C0(1+ rC) = 0. (31)

Using (30) and (31):

C0(1+ rC) = −
i

µ0

2pL0σz

R2
0ZA + 4q2pL0pT0ZC

(32)

where

ZA =
1+ rA

1− rA

, ZC =
1− rC

1+ rC

. (33)

Using (25) this gives

uz = Mzzσz (34)

3
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with

Mzz =
1

µ0

(

ω

cT

)2 2q

R2
0ZA + 4q2pL0pT0ZC

. (35)

Note that as ω→ 0 we have R2
0 → 4q4 and 4q2pL0pT0 →

−4q2. Thus in order for Mzz to remain non-zero as ω→ 0 we

must have ZA = ZC for ω = 0. We can expand

ZA(ω) = a0 + a1

(

ω

cL0q

)2

(36)

ZC(ω) = c0 + c1

(

ω

cT0q

)2

(37)

where a0 = c0. Substituting (36) and (37) in (35) gives

Mzz(q) = Mzz(q, 0):

Mzz(q) =
1

µ0q

1

[(cT0/cL0)
2−1]a0 + 2[a1 (cT0/cL0)

2−c1]
or

Mzz(q) = −
2(1− ν2

0)

E0q
S(q) = − 2

E∗0q
S(q) (38)

where E∗0 = E0/(1− ν2
0) and where

S(q) = (cT0/cL0)
2−1

[(cT0/cL0)
2−1]a0 + 2[a1 (cT0/cL0)

2−c1]
. (39)

Using that

[

(

cT0

cL0

)2

− 1

]−1

= −2(1− ν0) (40)

and

(

cT0

cL0

)2
[

(

cT0

cL0

)2

− 1

]−1

= −(1− 2ν0) (41)

we get from (39)

S(q) = 1

a0 − a12(1− 2ν0)+ c14(1− ν0)
. (42)

For a semi-infinite solid (no layer system) rA = rC = 0 so that

a0 = 1, a1 = c1 = 0 and (42) reduces to S = 1.

If we expand the reflection factors

rA(ω) = a′0 + a′1

(

ω

cL0q

)2

(43)

rC(ω) = c′0 + c′1

(

ω

cT0q

)2

(44)

then we can write

a0 =
1+ a′0
1− a′0

, a1 =
2a′1

(1− a′0)
2

(45)

c0 =
1− c′0
1+ c′0

, c1 =
−2c′1

(1+ c′0)
2
. (46)

Note also that a0 = c0 implies that a′0 = −c′0. Substituting

(45) and (46) in (42) gives

S(q) =
(1− a′0)

2

1− a′0
2 − 4a′1(1− 2ν0)− 8c′1(1− ν0)

. (47)

4.1. Mzz for a limiting case

We consider first a simple limiting case, namely where the

solid for z > d can be considered as rigid and where there is

no friction between the elastic slab and the substrate. In this

case uz = 0 and σ‖ = 0 for z = d. From (5) it follows that

the parallel stress will vanish for z = d if 2pzA+ R0C = 0 for

z = d, while from (2) it follows that uz will vanish for z = d

if pzA+ q2C = 0 for z = d. Thus we conclude that C = 0 and

pzA = 0 for z = d. This gives

eipT0d + rCe−ipT0d = 0 (48)

eipL1d − rAe−ipL1d = 0. (49)

Thus

ZA =
1+ e2ipL1d

1− e2ipL1d
, ZC =

1+ e2ipT1d

1− e2ipT1d
.

Substituting these results in (35) gives Mzz(q, ω).

In the limit ω→ 0 we can expand

rC = −ei2pT0d ≈ −e−2qd

[

1+ qd

(

ω

cT0q

)2
]

(50)

rA = ei2pL0d ≈ e−2qd

[

1+ qd

(

ω

cL0q

)2
]

. (51)

Thus

a′0 = −c′0 = e−2qd (52)

and

a′1 = −c′1 = e−2qdqd. (53)

Substituting these results in (47) gives

S(q) = 1

a0 + 2a1
= (1− e−2qd)

2

1− e−4qd + 4qde−2qd
. (54)

Note that S → 1 as qd →∞.

4.2. Mzz for the general case

The displacement field u and the stress must be continuous

for z = d. The continuity of u implies that A − pzC and

pzA + q2C must be continuous for z = d. The continuity of

the stress implies that µ(RA + 2q2pzC) and µ(2pzA − RC)

(where R = R0 for z < d and R = R1 for z > d, where R1 is

obtained by replacing cT0 with cT1 in the expression for R0)

are continuous. It is convenient to write µ(RA + 2q2pzC) =
µ[(R+2q2)A−2q2(A−pzC)] andµ(2pzA−RC) = µ[2(pzA+
q2C) − (R + 2q2)C] since the bracket terms involving pz are

continuous in both cases. Note that (R + 2q2) = (ω/cT)
2 =

4
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κ is already of order ω2. Using (26)–(29) and denoting

α = pT0C0/A0 the continuity of u implies

U1 = TA − α
pT1

pT0
TC (55)

U2 =
pL1

pL0
TA +

αq2

pT0pL0
TC (56)

where

U1 = (eipL0d + rAe−ipL0d)− α
(

eipT0d − rCe−ipT0d
)

(57)

U2 = (eipL0d − rAe−ipL0d)+ αq2

pT0pL0

× (eipT0d + rCe−ipT0d) (58)

TA = tAeipL1d, TC = tCeipT1d. (59)

The continuity of the stress gives

µ0κ0(e
ipL0d + rAe−ipL0d)− (µ0 − µ1)2q2U1 = µ1κ1TA

or

TA =
µ0κ0

µ1κ1
(eipL0d + rAe−ipL0d)− 2(µ0 − µ1)

µ1κ1
q2U1 (60)

and
µ0κ0α

pT0pL0
(eipT0d + rCe−ipT0d)− (µ0 − µ1)2U2 =

µ1κ1α

pT0pL0
TC

or

TC =
µ0κ0

µ1κ1
(eipT0d + rCe−ipT0d)

− 2(µ0 − µ1)

µ1κ1

pT0pL0

α
U2. (61)

Using (31) we have

α = 2pT0pL0(1− rA)

R0(1+ rC)
. (62)

Equations (55)–(62) constitute five equations for five

unknowns (rA, tA, rC, tC, α). To zero order in ω2 the equations

above are all satisfied if rA(0) = −rC(0) (or a′0 = −c′0) and

tA(0) = tC(0). Note that α→ 1 as ω→ 0.
From (55) and (56) we get

U2 −
pL1

pL0
U1 =

α(q2 + pT1pL1)

pT0pL0
TC (63)

pT1

pT0
U2 +

q2

pT0pL0
U1 =

(q2 + pT1pL1)

pT0pL0
TA. (64)

Substituting (60) and (61) in (63) and (64) and defining

φ(ω) = (q2 + pT1pL1)/κ1 gives

U2 −
pL1

pL0
U1 =

φµ0κ0α

µ1pT0pL0
(eipT0d + rCe−ipT0d)

− 2φ(µ0 − µ1)

µ1
U2

pT1

pT0
U2 +

q2

pT0pL0
U1 =

φµ0κ0

µ1pT0pL0
(eipL0d + rAe−ipL0d)

− 2φ(µ0 − µ1)q
2

µ1pT0pL0
U1

or

− pL1

pL0
U1 +

(

1+ 2φ(µ0 − µ1)

µ1

)

U2

= φµ0κ0α

µ1pT0pL0
(eipT0d + rCe−ipT0d) (65)

q2

pT0pL0

(

1+ 2φ(µ0 − µ1)

µ1

)

U1 +
pT1

pT0
U2

= φµ0κ0

µ1pT0pL0
(eipL0d + rAe−ipL0d). (66)

Substituting (57) and (58) in (65) and (66) gives

a11rA + a12rC = b1

a21rA + a22rC = b2

or

rA =
a22b1 − a12b2

a11a22 − a12a21
(67)

rC =
a11b2 − a21b1

a11a22 − a12a21
(68)

where

a11 = −
(

pL1

pL0
+ ψ

)

e−ipL0d (69)

a12 = −α
(

pL1

pL0
− ψq2

pT0pL0
+ φµ0κ0

µ1pT0pL0

)

e−ipT0d (70)

a21 =
(

ψq2

pT0pL0
− φµ0κ0

µ1pT0pL0
− pT1

pT0

)

e−ipL0d (71)

a22 = α
(

ψq2

pT0pL0
+ pT1

pT0

q2

pT0pL0

)

e−ipT0d (72)

b1 = α
(

φµ0κ0

µ1pT0pL0
− pL1

pL0
− ψq2

pT0pL0

)

eipT0d

+
(

pL1

pL0
− ψ

)

eipL0d (73)

b2 = α
(

ψq2

pT0pL0
− pT1

pT0

q2

pT0pL0

)

eipT0d

+
(

φµ0κ0

µ1pT0pL0
− ψq2

pT0pL0
− pT1

pT0

)

eipL0d (74)

where

ψ = 1+ 2φ(µ0 − µ1)

µ1
. (75)

Using (33), (35) and (67)–(75) gives Mzz(q, ω).
Note that for ω = 0, a11 = a22 = a12 = a22 = −(1 +

ψ)eqd and b1 = b2 = 0 so that both the numerator and the

denominator in (67) and (68) vanish. Thus it is necessary to

include higher-order terms in ω2 in order to calculate rA and

rC. Expanding rA and rB to order ω2 and using (47) gives after

some simplifications

S = 1+ 4mqde−2qd − mne−4qd

1− (m+ n+ 4mq2d2)e−2qd + mne−4qd
(76)

where

5
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Figure 3. The logarithm of the surface response function S as a
function of the logarithm of qd, where q is the wavevector and d the
film thickness, for two different cases: (a) stiff layer on top of a soft
semi-infinite solid and (b) soft layer on top of a semi-infinite stiff
solid. The red curves are results for (a) a free elastic slab and (b) an
elastic slab on top of a rigid solid. In both cases the Poisson ratio
ν0 = ν1 = 0.5.

m = µ0/µ1 − 1

µ0/µ1 + 3− 4ν0
,

n = 1− 4(1− ν0)

1+ (µ0/µ1)(3− 4ν1)

where the shear modulus µ0 = E0/2(1 + ν0) and similar for

µ1. Note also that S is dimensionless and only depends on qd,

ν0, ν1 and E0/E1. Equation (76) agree with the result obtained

by Sullivan and King [12] using a very different method of

derivation limited to ω = 0.

4.3. Two important limiting cases

Two important limits of (76) are (a) a free elastic slab

(thickness d) and (b) an elastic slab in contact with a rigid flat

surface. The first case corresponds to E1 = 0 and the second

to E1 = ∞. For these two cases (67) reduces to [14, 15]

Sa =
sinh(2qd)+ 2qd

cosh(2qd)− 2 (qd)2−1
(77)

Sb =
(3− 4ν0)sinh(2qd)− 2qd

(3− 4ν0) cosh(2qd)+ 2 (qd)2−4ν0(3− 4ν0)+ 5
.

(78)

Figure 4. The logarithm of the surface roughness power spectrum
C as a function of the logarithm of the wavevector q for two
surfaces with the root-mean-square roughness 10 µm and the large
and small wavevector cutoff q1 = 3.9× 1010 m−1 and
q0 = 103 m−1. Curve b is with the roll-off wavevector
qr = 105 m−1 while in case a there is no roll-off. For qr < q < q1

the surface is self-affine fractal with the fractal dimension Df = 2.2
(corresponding to the Hurst exponent H = 0.8).

In figure 3 we shows the logarithm of the surface response

function S as a function of the logarithm of qd, where q is

the wavevector and d is the film thickness, for two different

cases: (a) stiff layer on top of a soft semi-infinite solid and

(b) soft layer on top of a semi-infinite stiff solid. The red

curves are the analytical results for (a) a free elastic slab and

(b) an elastic slab on top of a rigid solid. In both cases the

Poisson ratio ν0 = ν1 = 0.5. As expected, for qd ≪ 1 the M

response function is determined by the bulk properties of the

layered material so that S → E∗0/E
∗
1 as qd → 0. However,

when qd →∞ only the top layer determine the M function

so that S → 1 in this limiting case.

Note that bending effects are fully taken into account

in the theory presented above, since the derivation is based

on the Navier equation of motion of an elastic body, which

is the foundation of the theory of elasticity and therefore of

also, in particular, for the theory of the bending of plates.

As an example if one considers a free elastic plate described

by equation (77) it is clear that for small values of qd

one exactly gets the solution for pure bending of plates.

Thus if we assume qd ≪ 1 and expand both the numerator

and denominator in (77) to leading order in qd we get

Sa = 6/ (qd)3. Substituting this into the definition Mzz =
−2S(q)/(E∗q) gives Mzz = −12/(E∗q4d3). This is exactly

the result obtained from the theory of the bending of plates,

where the normal displacement u satisfies D∇2∇2u = −σ
or, after Fourier transformation, u(q) = −σ(q)/(Dq4), where

the bending stiffness D = E∗d3/12. This is identical to the

prediction of (77) for qd ≪ 1.

5. Numerical results

In what follows we will present numerical results for two

surfaces a and b, with the power spectra shown in figure 4.

Both surfaces have the root-mean-square roughness 10 µm

6
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Figure 5. The logarithm (with 10 as the base) of the (normalized)
contact area as a function of the logarithm of the magnification for
(a) a d = 10 µm thick rubber film (elastic modulus E0 = 106 Pa,
Poisson ratio ν0 = 0.5) on top of a semi-infinite Teflon solid (elastic
modulus E1 = 109 Pa, Poisson ratio ν1 = 0.5) and (b) for the
reversed system Teflon on rubber. The squeezing pressure
p = 1 MPa and the surface roughness power spectra given by curve
b in figure 4.

and the large and small wavevector cutoff q1 = 3.9 ×
1010 m−1 and q0 = 103 m−1. Curve b is with the roll-off

wavevector qr = 105 m−1 while in case a there is no roll-off.

For qr < q < q1 the surfaces are self-affine fractal with

the fractal dimension Df = 2.2 (corresponding to the Hurst

exponent H = 0.8). Note that the rms roughness hrms is

mainly determined by the longest wavelength roughness,

while the area of real contact is determined mainly by the

short-wavelength roughness. It is interesting to note that,

for q > qr, the power spectra C(q) for surface b is ∼1000

times larger than for surface a, in spite of the fact that the

two surfaces have the same rms roughness value. This has

important implications for the leak rate of seals (see below).

5.1. Contact area

In figure 5 we show for surface b the logarithm (with 10

as the base) of the (normalized) contact area as a function

of the logarithm of the magnification. Figure 5(a) is for a

d = 10 µm thick rubber film (elastic modulus E0 = 106 Pa,

Poisson ratio ν0 = 0.5) on top of a stiffer semi-infinite solid

(elastic modulus E1 = 109 Pa, Poisson ratio ν1 = 0.5), which

Figure 6. The logarithm (with 10 as the base) of the (normalized)
contact area as a function of the logarithm of the magnification for a
d = 10 µm thick Teflon film (elastic modulus E1 = 109 Pa, Poisson
ratio ν1 = 0.5) on top of a semi-infinite rubber solid (elastic
modulus E0 = 106 Pa, Poisson ratio ν0 = 0.5). The two curves a
and b are for the two power spectra a and b in figure 4. The
squeezing pressure p = 1 MPa.

we will refer to as Teflon, and (b) for the reversed system

with Teflon film on rubber. The vertical dashed line indicates

the magnification where q = ζq0 = 1/d. Also shown in the

figure is the result obtained with only rubber (blue curve) and

only Teflon (green curve). Note that for large magnification

the contact area is given by the properties of the top layer. In

what follows we will focus on case (b) with Teflon film on

rubber. Real Teflon has similar elastic properties as we use

above but a rather small penetration hardness (about 30 MPa)

and will yield plastically already at rather low contact stresses.

However, as we will argue below, this does not affect the leak

rate of Teflon-coated rubber seals (see section 5.2) and we will

neglect plastic yielding in most of the calculations in order to

more clearly exhibit the basic physics involved in the contact

mechanics for laminated systems.

In figure 6 we show the logarithm (with 10 as the base)

of the (normalized) contact area as a function of the logarithm

of the magnification for a d = 10 µm thick Teflon film on top

of a semi-infinite rubber solid. The two curves are for the two

power spectra a and b in figure 4. The leak rate is determined

mainly by the size of the critical junction observed (during

increasing magnification) at the magnification ζc, where the

first percolating channel appears, i.e. for A(ζc)/A0 ≈ 0.5. At

the squeezing pressure used in figure 6 (p = 1 MPa) we

get ζc ≈ 70 and ≈100 for surfaces b and a, respectively.

This correspond to the wavevectors q = ζcq0 ≈7 ×104 and

≈105 m−1. Figure 4 shows that for these wavevectors the

surface roughness power spectrum is much larger for surface

b than for surface a, and we therefore expect larger leakage

for surface b.

Teflon has a Poisson ratio ν ≈ 0.5 and polymers in

general have 0.3 < ν < 0.5. In figure 7 we show the logarithm

(with 10 as the base) of the (normalized) contact area as

a function of the logarithm of the magnification for two

d = 10 µm thick polymer films with the elastic modulus

7
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Figure 7. The logarithm (with 10 as the base) of the (normalized)
contact area as a function of the logarithm of the magnification for
two d = 10 µm thick polymer films with the elastic modulus
E1 = 109 Pa and the Poisson ratio ν1 = 0.5 and 0.3, on top of a
semi-infinite rubber solid (elastic modulus E0 = 106 Pa, Poisson
ratio ν0 = 0.5). The curves are for the power spectra b in figure 4.
The squeezing pressure p = 1 MPa.

E1 = 109 Pa and the Poisson ratio ν1 = 0.5 and 0.3, on top of a

semi-infinite rubber solid. In both cases we have assumed the

power spectra b in figure 4. Note that the contact area depends

only weakly on the Poisson ratio.

Figure 8 shows the logarithm of the (normalized) contact

area as a function of the logarithm of the magnification for

two d = 10 µm thick polymer films with the elastic modulus

E1 = 109 Pa and the Poisson ratio ν1 = 0.5, on top of

a semi-infinite rubber solid (elastic modulus E0 = 106 Pa,

Poisson ratio ν0 = 0.5). The dashed curve is for elastic contact

(from figure 6), while the blue and green curves are for

elastoplastic contact with the penetration hardness 30 MPa as

is typical for Teflon. The blue curve is the contact area which

has yielded plastically and the green curve the elastic contact

area. The curves are for the power spectra a in figure 4.

The horizontal dotted line in figure 8 correspond to

A/A0 = 0.5. The condition A(ζ )/A0 ≈ 0.5 determines the

point where the non-contact percolates which results in most

of the leak rate of seals (see section 5.2). Note that at

the magnification when the contact area equals A/A0 =
0.5 plastic deformation is negligible. Thus we can neglect

plastic deformation when studying the leak rate for surface

a squeezed against a flat surface at the (nominal) contact

pressure 1 MPa, which is typical for rubber seals.

5.2. Leak rate for laminated rubber seals

Rubber seals, e.g. rubber O-rings, is of great importance

in very many mechanical constructions. Because of its low

elastic modulus (E ≈ 1 MPa), already nominal contact

pressures of order ∼1 MPa may result in nearly complete

contact between a rubber body and the countersurface,

e.g. a polished steel surface, resulting in good sealing.

However, the friction between the rubber and an unlubricated

countersurface can be very high, e.g. the friction coefficient

for a rubber–steel contact is typically of order unity, and

sometimes even higher. In some applications the confined

Figure 8. The logarithm (with 10 as the base) of the (normalized)
contact area as a function of the logarithm of the magnification for
two d = 10 µm thick polymer films with the elastic modulus
E1 = 109 Pa and the Poisson ratio ν1 = 0.5, on top of a
semi-infinite rubber solid (elastic modulus E0 = 106 Pa, Poisson
ratio ν0 = 0.5). The dashed curve is for elastic contact (from
figure 6), while the blue and green curves are for elastoplastic
contact with the penetration hardness 30 MPa. The blue curve is the
contact area which has yielded plastically and the green curve the
elastic contact area. The horizontal dotted line corresponds to
A/A0 = 0.5. The curves are for the power spectra a in figure 4. The
squeezing pressure p = 1 MPa.

fluid has a very low viscosity, e.g. for water, and in this case

the friction may be very high for all relevant sliding velocities.

In such cases it may be useful to coat the rubber surface with

a low friction material like Teflon. However, Teflon, and other

coating materials, usually have a much higher elastic modulus

than rubber which may result in large non-contact (fluid leak)

channels at the interface for laminated rubber seals. Here we

will show how the theory developed above may be used to

study this problem in detail.

In earlier publications we have studied fluid flow at

interfaces using the so-called critical junction theory and

an effective medium theory [16, 17]. The critical junction

theory is accurate at high enough contact pressures, while the

effective medium theory holds (approximately) for all contact

pressures. Let us first briefly describe the critical junction

theory.

Consider the fluid leakage through a rubber seal, from

a high fluid pressure Pa region, to a low fluid pressure

Pb region. Assume for simplicity that the nominal contact

region between the rubber and the hard countersurface is

rectangular with area L × L. Now, let us study the contact

between the two solids as we change the magnification ζ . We

define ζ = L/λ, where λ is the resolution. We study how the

apparent contact area, A(ζ ), between the two solids depends

on the magnification ζ . At the lowest magnification we cannot

observe any surface roughness and the contact between the

solids appears to be complete i.e. A(1) = A0. As we increase

the magnification we will observe some interfacial roughness

and the (apparent) contact area will decrease. At high enough

magnification, say ζ = ζc, a percolating path of non-contact

area will be observed for the first time. The most narrow

constriction along the percolation path, which we denote as

8
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Figure 9. The logarithm (with 10 as the base) of the leak rate as a
function of the logarithm of the squeezing pressure for a d = 10 µm
thick Teflon film (elastic modulus E1 = 109 Pa, Poisson ratio
ν1 = 0.5) on top of a semi-infinite rubber solid (elastic modulus
E0 = 106 Pa, Poisson ratio ν0 = 0.5). The results are for the power
spectra a and b in figure 4 and for the (Teflon) laminated rubber
(solid lines) and for pure rubber (dashed lines). The fluid viscosity
η = 0.001 Pa s and the fluid pressure drop 1P = 0.1 MPa. We have
assumed the ratio Lx/Ly = 16.

the critical constriction, will have the lateral size λc = L/ζc

and the surface separation at this point is denoted by uc =
u1(ζc), and is given by the Persson contact mechanics theory.

As we continue to increase the magnification we will find

more percolating channels between the surfaces, but these will

have more narrow constrictions than the first channel which

appears at ζ = ζc, and as a first approximation we will neglect

the contribution to the leak rate from these channels.

In the critical junction theory the leak rate is obtained

by assuming that all the leakage occurs through the critical

percolation channel and that the whole pressure drop 1P =
Pa − Pb occurs over the critical constriction (of length (in the

fluid flow direction) λx and width λy, with λx = λy = λc ≈
L/ζc and height uc = u1(ζc)). Thus, for an incompressible

Newtonian fluid, the volume-flow per unit time through the

critical constriction will be (Poiseuille flow)

Q̇ ≈ u3
c

12η
1P, (79)

where η is the fluid viscosity. For a rectangular nominal

rubber-countersurface there is an additional factor Ly/Lx in

(79), where Lx is the length (in the direction of fluid flow)

and Ly is the width of the nominal contact region. Typically

Ly/Lx ≫ 1.

To complete the theory we must calculate the separation

uc of the surfaces at the critical constriction. We first

determine the critical magnification ζc by assuming that

the apparent relative contact area at this point (where the

non-contact area percolates) is given by the Bruggeman

effective medium theory: A(ζc)/A0 = 0.5. Knowing the

critical magnification ζc, the separation uc = u1(ζc) at the

critical junction can be obtained using the Persson contact

mechanics theory.

The leak rate can also be expressed in terms of the flow

factor φp. First note that the ensemble averaged current in the x

Figure 10. The pressure flow factor φp as a function of the average
interfacial separation for a d = 10 µm thick Teflon film (elastic
modulus E1 = 109 Pa, Poisson ratio ν1 = 0.5) on top of a
semi-infinite rubber block (elastic modulus E0 = 106 Pa, Poisson
ratio ν0 = 0.5). The results are for the power spectra a and b in
figure 4.

direction J̄x = −(ū3φp/12η) dp̄/dx or since dp̄/dx = −1P/L

we get the leak rate

Q̇ = J̄xL = ū3

12η
φp1P. (80)

Thus, φp can be determined from the leak rate Q̇ if the average

surface separation ū is known. In the calculations presented

below we have used the effective medium theory for the

leak rate of seals. For high squeezing pressures this latter

theory gives almost the same result as the critical junction

theory [18], but for small contact pressures the effective

medium theory is more accurate, and in fact for very small

contact pressures it gives the same result for φp(ū) (where ū

is the average interfacial separation) as predicted by the Tripp

theory (which is exact to order h2
rms/ū

2).

Figure 9 shows the logarithm (with 10 as the base) of

the leak rate as a function of the logarithm of the squeezing

pressured for a d = 10 µm thick Teflon film on top of a

semi-infinite rubber block. The results are again for the power

spectra a and b in figure 4 and for the (Teflon) laminated

rubber (solid lines) and for pure rubber (dashed lines). The

fluid viscosity η = 0.001 Pa s, the fluid pressure drop 1P =
0.1 MPa and the ratio Lx/Ly = 16. Note that the Teflon film

for most squeezing pressures increases the leak rate by many

orders of magnitude. Note also that, as the squeezing pressure

goes toward zero, the leak rate for the laminated and pure

rubber seals approach each other, which is expected because

for low contact pressure the long-wavelength λ roughness

will determine the leak rate and the contact mechanics at

large length scales (λ ≫ d) is not dependent on the stiff

coating.

The fluid flow factor φp(ū) for homogeneous bodies with

isotropic surface roughness is a monotonically increasing

function of ū. However, this is not always the case for layered

materials. Thus, in figure 10 we show the pressure flow factor

φp as a function of the average interfacial separation for a

9
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d = 10 µm thick Teflon film on top of a semi-infinite rubber

block. The results are for the power spectra a and b in figure 4.

The origin of the non-monotonic dependence of φp(ū) on ū for

surface a can be understood as follows.

For very large separation ū (or low nominal contact

pressures) the long-wavelength roughness will determine

the flow factor and, with respect to the long-wavelength

roughness, the layered material will deform as if the stiff top

layer would not exist, and φp(ū) will increase with increasing

ū/hrms as expected for a homogeneous solid with the bulk

(rubber) elastic properties. Note that the rms roughness hrms

is dominated by the long-wavelength contribution. As we

increase the applied stress, ū will decrease and the elastic

solid will deform and follow the long-wavelength roughness

down to a point where the wavelength becomes of the order of

the thickness of the Teflon coating. From here on the contact

area and the interfacial separation is mainly determined by

the Teflon film, but now the relevant surface roughness is only

the wavelength component smaller than the thickness of the

film. Thus, with respect to the contact mechanics for small ū

the surface roughness heff
rms appears much smaller than the full

roughness hrms. This implies that for small ū the flow factor

will increase with ū at a rate much higher than at large ū. This

explains the general form of curve a in figure 10. For surface

b there is almost no long-wavelength roughness and the flow

factor (and leak rate) is determined mainly by the Teflon layer

for all ū and this explains why the flow factor in this case takes

its usual form, being a monotonically increasing function of ū.

To summarize, the fluid flow factor for a homogeneous

and isotropic material is a monotonically increasing function

u/hrms. In the case of layered materials, below a certain

threshold of ū the flow factor will be depend on the ratio

ū/heff
rms and since heff

rms is much smaller than hhrm this means

that ū/heff
rms ≫ ū/hrms and therefore the flow factor will take

almost the same value that it would take in the case of a

homogeneous and isotropic material at much higher values

of ū/hrms. This explains the non-monotonic behavior of the

curve.

6. Summary and conclusion

We have applied the contact mechanics model of Persson

to layered materials. We have derived the M function,

which relates the surface stress to the surface displacement,

for a layered material, where the top layer (thickness d)

has different elastic properties than the semi-infinite solid

below. The formalism is valid for viscoelastic solids but

is applied in this paper only to elastic materials. We have

presented numerical results for the contact area as a function

of the magnification for several different cases. For small

magnifications, where only the long-wavelength roughness

is observed, the contact mechanics does not depend on the

thin-film coating. For very large magnification the contact

area is the same as if the coating film would be infinitely thick.

The transition from bulk to surface film dominance occurs

at the magnification where the roughness wavelength of the

order of the thickness of the film can first be observed.

We have also studied the dependence of the contact area

on the Poisson ratio and plastic yield stress. We find that

changing the Poisson ratio for the coating material from 0.5

(Teflon) to 0.3 (lower limit for polymer coatings) has a very

small influence on the contact area. When plastic yielding is

included in the analysis, the surfaces deform elastically with

respect to the long-wavelength roughness (low magnification)

but plastically at high enough magnification (involving shorter

wavelength roughness).

As an application, we have studied the fluid leak rate

for laminated rubber seals with Teflon-like coating. The large

stiffness of the coating film as compared to the rubber bulk

material underneath results in larger interfacial separation

and larger leak rate as compared to the uncoated rubber

seal. In most cases the critical junction, which determines

most of the leakage, is observed at a magnification where

negligible plastic deformation has occurred. As a result, in

most cases it is not necessary to include plastic deformation

when estimating the leak rate, even for coating materials

like Teflon with a relatively low yield stress or penetration

hardness. Finally, we have shown that for layered materials

the fluid pressure flow factor φp may be a non-monotonic

function of the average interfacial separation, in contrast to

homogeneous materials with isotropic roughness for which φp

increases monotonically with increasing ū.
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