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Contact mechanics with adhesion: Interfacial separation
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Abstract – We study the adhesive contact between elastic solids with randomly rough, self-affine
fractal surfaces. We present molecular-dynamics (MD) simulation results for the interfacial stress
distribution and the wall-wall separation. We compare the MD results for the relative contact
area and the average interfacial separation, with the prediction of the contact mechanics theory of
Persson. We find good agreement between theory and the simulation results. We apply the theory
to the system studied by Benz et al. (J. Phys. Chem. B, 110 (2006) 11884) involving polymer
in contact with polymer, but in this case the adhesion gives only a small modification of the
interfacial separation as a function of the squeezing pressure.
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With the rapid development of micro/nano electro-
mechanical devices in the last decade, surface forces play a
more and more important role in modern technology. This
is due to the increase of the ratio between the number
of atoms on the surface and that in the volume. When
we bring two surfaces together, attractive (and repulsive)
forces act between them, and a non-zero force is often
required to separate two solid bodies placed in intimate
contact [1,2], a phenomenon referred to as adhesion.
Adhesion manifests itself in many ways. Thus adhesion
on one hand makes it possible for a Gecko to walk on the
ceilings or run on a vertical wall [3,4]. On the other hand,
adhesion can lead to the failure of micro or nano devices,
e.g. micro-sized cantilever beams [5]. Thus, if it is too long
or too thin, the free-energy minimum state corresponds
to the cantilever beam partly bound to the substrate,
which leads to the failure of the device. However, if the
surface roughness is increased, the non-bonded cantilever
state may be stabilized due to the decrease of cantilever-
substrate binding energy.
In reality most surfaces are not atomically flat. Even if
a surface appears flat at low magnification, when we study
the surface at higher magnification we usually observe
surface roughness on small length-scale. Similarly, when
two solids with nominally smooth surfaces are brought into

(a)E-mail: c.yang@fz-juelich.de

contact, generally they do not make contact everywhere,
but at high enough magnification one usually observes
many non-contact regions. The study of the interfacial
separation is essential for describing, e.g., sealing [6],
capillary adhesion [7] or optical interference.
Contact mechanics between solid surfaces is the basis
for understanding many tribology processes [8–11] such
as friction, adhesion, wear and sealing. The two most
important properties in contact mechanics are the area
of real contact and the interfacial separation between
the solid surfaces. For non-adhesive contact and small
squeezing pressure, the average interfacial separation
depends logarithmically on the squeezing pressure [12,13],
and the (projected) contact area depends linearly on the
squeezing pressure [14–16]. For adhesive contact, however,
no numerical results have been presented in the literatures
to test the contact mechanics theory with adhesion. In this
letter, we study the relation between the average inter-
facial separation and the squeezing pressure when adhe-
sion is included. We assume perfect (linear) elasticity and
that the interfacial binding energy is independent of the
separation speed, i.e., we assume negligible hysteresis, as
would be a good approximation for, e.g., silicon rubber in
contact with hard inert surfaces. We compare the result of
MD simulations with a recently developed contact
mechanics theory [13,14,17,18]. We find good agreement
with the theory, which represents the first test of the
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theory when the adhesive interaction is included in the
analysis.
We review the contact mechanics theory of Persson

briefly. It can be used to calculate the stress distribution
at the interface, the area of real contact and the average
interfacial separation between the solid walls [13,14]. In
this theory, the interface is studied at different magnifica-
tions ζ =L/λ where L is the linear size of the system and
λ the resolution. The wave vectors are defined as q= 2π/λ
and qL = 2π/L so that ζ = q/qL.
Consider an elastic block with a flat surface in adhesive
contact with a hard substrate with a randomly rough
surface. Let σ(x, ζ) denote the (fluctuating) stress at the
interface between the solids when the system is studied
at the magnification ζ. The distribution of interfacial
stress

P (σ, ζ) = 〈δ(σ−σ(x, ζ))〉. (1)

In this definition we do not include the δ(σ)-contribution
from the non-contact area.
For perfect (or complete) contact it is easy to show that

P (σ, ζ) satisfies [14]

∂P

∂ζ
= f(ζ)

∂2P

∂σ2
, (2)

where

f(ζ) =
π

4
E∗2qLq

3C(q).

Here E∗ =E/(1− ν2) is the effective elastic modulus. The
surface roughness power spectrum

C(q) =
1

(2π)2

∫

d2x 〈h(x)h(0)〉e−iq·x,

where z = h(x) is the surface height at the point x= (x, y)
and where 〈..〉 stands for ensemble average. The basic idea
is now to assume that (2) holds locally also for incomplete
contact.
To solve (2), one needs boundary conditions. If we
assume that, when studying the system at the lowest
magnification ζ = 1 (where no surface roughness can be
observed, i.e., the surfaces appear perfectly smooth),
the stress at the interface is constant and equal to p=
FN/A0, where FN is the load and A0 the nominal contact
area, then P (σ, 1) = δ(σ− p). In addition to this “initial
condition” we need two boundary conditions along the
σ-axis. Since there can be no infinitely large stress at the
interface, we require P (σ, ζ)→ 0 as σ→∞. For adhesive
contact, which interests us here, tensile stress occurs at the
interface close to the boundary lines of the contact regions.
In this case we have the boundary condition P (−σa, ζ) = 0,
where σa > 0 is the largest tensile stress possible. The
detachment stress σa(ζ) depends on the magnification and
can be related to the effective interfacial energy (per unit
area) γeff(ζ) using the theory of cracks [18]

σa(ζ)≈
(

γeff(ζ)Eq

1− ν2
)1/2

,

where

γeff(ζ)A
∗(ζ) =∆γA∗(ζ1)−Uel(ζ),

where A∗(ζ) denotes the total contact area at the magni-
fication ζ, which is larger than the projected contact area
A(ζ). Uel(ζ) is the elastic energy stored at the interface
due to the elastic deformation of the solids on a length
scale shorter than λ=L/ζ, necessary in order to bring
the solids into adhesive contact (see below).
From (2) it follows that the area of apparent contact
(projected on the xy-plane) at the magnification ζ, A(ζ),
normalized by the nominal contact area A0, can be
obtained from

A(ζ)

A0
=

∫

∞

−σa(ζ)

dσ P (σ, ζ). (3)

We denote A(ζ)/A0 = Pp(q), where the index p indicates
that A(ζ)/A0 depends on the applied squeezing pressure
p. The area of (apparent) contact at the highest magni-
fication ζ = ζ1 gives the real contact area. For the elastic
energy Uel we use [19]

Uel ≈A0E∗
π

2

∫ q1

qL

dq q2W (q, p)C(q), (4)

where qL and q1 are the smallest and the largest surface
roughness wave vectors, and [19]

W (q, p) = Pp(q)
[

β+(1−β)P 2p (q)
]

,

where β = 0.4. The equations given above are solved as
described in ref. [17].
Let us now consider the (average) interfacial separation
ū as a function of the squeezing pressure p= FN/A0. Note
that as p increases, ū decreases and we can consider
p= p(ū) as a function of ū. Energy conservation gives [18]

∫

∞

ū

du p(u)A0 =U, (5)

where U =Uel+Uad is the sum of the elastic energy Uel
stored at the interface and given by (4), and the adhesional
energy Uad =−∆γA∗(ζ1). From (5) we get

p(ū) =− 1
A0

dU(ū)

dū
.

We can also consider U as a function of p and write

p(ū) =− 1
A0

dU

dp

dp

dū
,

or

dū=− 1

A0p

dU

dp
dp.
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Integrating from u= 0 (corresponding to p=∞) to u
(corresponding to the pressure p) gives

ū=
1

A0

∫

∞

p

dp
1

p

dU

dp
, (6)

which is very convenient for numerical calculations.
Let us provide some details about the numerical

simulations. The molecular-dynamics system has lateral
dimension Lx =Nxa and Ly =Nya, where a is the lattice
spacing of the block. In order to accurately study contact
mechanics between elastic solids, it is necessary to consider
that the thickness of the block is (at least) of the same
order of the lateral size of the longest-wavelength rough-
ness on the substrate. We have developed a multiscale
MD approach to study contact mechanics [20]. Periodic
boundary condition has been used in the xy-plane. For
the block Nx =Ny = 400, while the lattice space of the
substrate b≈ a/φ, where φ= (1+

√
5)/2 is the golden

mean, in order to avoid the formation of commensurate
structures at the interface. The mass of the block atoms
is 197 a.m.u. and a= 2.6 Å. The elastic modulus and
Poisson ratio of the block are E = 77.2GPa and ν = 0.42.
For self-affine fractal surfaces, the power spectrum has
power law behavior C(q)∼ q−2(H+1), where the Hurst
exponent H is related to the fractal dimension Df of the
surface via H = 3−Df . For real surfaces this relation
holds only for a finite wave vector region q0 < q < q1.
Note that in many cases, there is a roll-off wave vector
q0 below which C(q) is approximately constant. Here we
use qL = 2π/L, q0 = 3qL, q1 = 12qL. q0 is named as roll-off
wave vector. The physical meaning is that by choosing
q0 = 3qL one can obtain a self-average equivalent to an
average over 9 independent samples. In MD simulations,
the substrate is rigid and fractal with fractal dimension
Df = 2.2 and root-mean-square roughness hrms = 10 Å.
The calculations are carried out under the temperature
0K. The contact in the present study has been generated
by increasing pressure stepwisely from non-contact to
large contact condition [21]. It can be also done in the
opposite way by retracting the block from the substrate,
that is the contact will be generated from large contact
to non-contact. These two situations will in general
give different results, especially when the material is
non-elastic, as is what we called “contact hysteresis”. It
will be our further study and will be reported elsewhere.
The atoms at the interface between block and substrate
interact with the potential

V (r) = 4ǫ

[

(r0
r

)12

−
(r0
r

)6
]

,

where r is the distance between the pair of atoms. The
parameter ǫ is the binding energy between two atoms at
separation r= 21/6r0. In the calculations presented below
we have used the r0 = 3.28 Å and ǫ= ǫ0, 4ǫ0 and 8ǫ0,
where ǫ0 = 18.6meV. By comparing the total energy for
the surfaces separated with the case where the surfaces
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Fig. 1: The logarithm (with 10 as basis) of the probability
distribution of normal stress σ (where σ is in units of E∗)
for (a) three different adhesion parameters ǫ= 8ǫ0, 4ǫ0 and ǫ0,
referred to as a, b and c, respectively, and (b) with 8ǫ0 for three
different pressures p/E∗ =−0.00532, 0.00832, 0.06265 denoted
by a,b, and c, respectively.

are in contact at equilibrium (at zero external load) we
obtain ∆γ = 0.69 J/m2 for the case ǫ= ǫ0, and 4 and 8
times higher interfacial binding energy for the other two
cases, respectively.
Now, let us discuss how to define contact on the atomic

scale when adhesion is included. In the absence of adhesion
we have found that the interfacial stress distribution
gives the most accurate way of deducing the area of
real contact [20]. When adhesion is included we use a
cut-off length dc to define contact. It is clear from the
force-distance curve that the only distinctive point is the
maximum tensile stress [22]. Thus the solids are regarded
as in contact when the stress increases with separation,
and separated when the stress decreases with separation.
In our case, the critical wall-wall distance is dc = 3.68 Å.
When the interfacial separation d< dc, it is defined as
contact. Otherwise it is non-contact. More discussions
about dc can be found in ref. [23].
The probability distribution of (perpendicular) stress σ

at the interface is shown in fig. 1 for (a) the adhesion
parameter ǫ= ǫ0, 4ǫ0 and 8ǫ0, and (b) for ǫ= 8ǫ0 for three
different values of the applied stress p (p/E∗ =−0.00532,
0.00832 and 0.06265). Note that when ǫ increases, the
maximum σc of the tensile stress increases roughly propor-
tional to ǫ. In fact, we expect σc ∝ ǫ/a, where a is of order
a bond length. At the same time the maximum repulsive
pressure increases but weaker than linear. The increase in
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Fig. 2: The logarithm (with 10 as basis) of the probability
distribution of interfacial separations u (where u is in units of
the root-mean-square roughness amplitude hrms) for (a) three
different adhesion parameters ǫ= 8ǫ0, 4ǫ0 and ǫ0, referred to
as a, b and c, respectively, and (b) with 8ǫ0 for three different
pressures p/E∗ =−0.00532, 0.00832, 0.06265 denoted by a, b,
and c, respectively.

repulsive stress is, of course, due to the additionally adhe-
sional load which acts on the block.
When the applied load or pressure increases, the

maximal tensile stress is unchanged, see fig. 1(b). This is
the expected result since the maximum tensile stress is
associated with breaking the atomic bonds at the edges
of the contact regions (which can be considered as crack
tips), and this stress is of course independent of the load.
However, the maximum repulsive stress increases with
load, but the effect is quite small considering the large
change in the load.
The probability distribution of interfacial separations is

shown in fig. 2. In fig. 2(a) we vary the adhesion parameter
ǫ and in (b) the applied stress p as in fig. 1. When
the adhesion increases, the surfaces are pulled closer to
each other and the distribution of separations becomes
narrower. Similarly, when the applied pressure increases,
the separation between the walls decreases.
The MD simulations (square symbols) are compared

with the theory (solid lines) for the relative contact area
A/A0 as a function of the squeezing pressure p (see
fig. 3). In fig. 4 we show the (natural) logarithm of
the squeezing pressure p (in units of E∗) as a function
of the average interfacial separation ū in units of the

Fig. 3: Molecular-dynamics (square symbols) and theoretical
(solid lines) results for the relative contact area A/A0 as a
function of the squeezing pressure (in GPa) In the calculation
(solid lines) we have used ∆γ = 0.7, 2.8 and 5.6 J/m2 for
the curves indicated by ǫ0, 4ǫ0 and 8ǫ0, respectively. The
theoretical results are obtained from eq. (3).

Fig. 4: Molecular-dynamics (square symbols) and theoreti-
cal (solid lines) results for the (natural) logarithm of the
squeezing pressure p (in units of E∗) as a function of the aver-
age interfacial separation ū in units of the root-mean-square
roughness amplitude hrms. The theoretical results are obtained
from eq. (6).

root-mean-square roughness amplitude hrms. The theoret-
ical results (solid lines) agree very well with the molecular-
dynamics calculations (square symbols).
Benz et al. [12] have studied the contact mechanics for

polymer surfaces. They studied the interfacial separation
as a function of the squeezing pressure, and found an
absolute (average) slope bigger than the one obtained from
finite element calculations [24] for non-adhesive contact
between the interfacial separation and the log-scale
pressure. For adhesive contact, both theory and MD
simulations predict a bigger absolute (average) slope than
the one for non-adhesive contact (see fig. 4). However for
the system studied by Benz et al. [12] we find that the
adhesional interaction gives only a very small (≈ 20%)
increase in the absolute (average) slope, which cannot
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explain the experimental results by Benz et al. [12]. In
ref. [25] we present a critical analysis of this point. For
non-adhesive contact, a recent experimental study (using
silicon rubber) by Lorenz and Persson [26] finds nearly
perfect agreement between experiment and theory for the
interfacial separation as a function of load.
To summarize, we have presented a molecular-dynamics
(MD) study of the adhesive contact between elastic solids
with randomly rough surfaces. We have calculated the
contact area and the interfacial separation between the
elastic solids, and compared the results with the predic-
tions of a recently developed contact mechanics model,
which is based on continuum mechanics. Considering the
uncertainty in how to define the contact area and the inter-
facial separation at the atomistic level, and the small size
of our MD system, the agreement between the theory and
the MD results is very good.
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