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Abstract. We present a simple theory of crack propagation in viscoelastic solids. We calculate the energy
per unit area, G(v), to propagate a crack, as a function of the crack tip velocity v. Our study includes
the non-uniform temperature distribution (flash temperature) in the vicinity of the crack tip, which has a
profound influence on G(v). At very low crack tip velocities, the heat produced at the crack tip can diffuse
away, resulting in very small temperature increase: in this “low-speed” regime the flash temperature effect is
unimportant. However, because of the low heat conductivity of rubber-like materials, already at moderate
crack tip velocities a very large temperature increase (of order of 1000 K) can occur close to the crack tip.
We show that this will drastically affect the viscoelastic energy dissipation close to the crack tip, resulting
in a “hot-crack” propagation regime. The transition between the low-speed regime and the hot-crack regime
is very abrupt, which may result in unstable crack motion, e.g. stick-slip motion or catastrophic failure, as
observed in some experiments. In addition, the high crack tip temperature may result in significant thermal
decomposition within the heated region, resulting in a liquid-like region in the vicinity of the crack tip.
This may explain the change in surface morphology (from rough to smooth surfaces) which is observed as
the crack tip velocity is increased above the instability threshold.

PACS. 46.50.+a Fracture mechanics, fatigue and cracks – 83.60.Bc Linear viscoelasticity – 46.55.+d
Tribology and mechanical contacts

1 Introduction

The propagation of cracks in rubber is fundamental for
many important applications, e.g., rubber wear [1], for
pressure sensitive adhesives [2], and also for sliding or
rolling friction on smooth substrates [3]. The strength of
adhesion and cohesion of elastomers can be characterized
by the amount of energy G required to advance the crack
tip by one unit area. Experiments have shown that G de-
pends on the crack tip velocity v and on the temperature
T and that [4–6]

G(v, T ) = G0 [1 + f(v, T )] , (1)

where f → 0 as v → 0. Thus, G0 is a threshold value
below which no fracture occurs. The measured value of G
at extremely low crack velocities and high temperatures,
when viscous effects in the rubber are minimized, is of
order ∼ 1 eV/Å2 and can be identified as G0. For simple
hydrocarbon elastomers, the effect of temperature can be
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completely accounted for by applying a simple multiply-
ing factor, denoted by aT , to the crack velocity v, i.e.,
f(v, T ) = f(aT v). Moreover, values of aT determined ex-
perimentally are equal to the Williams-Landel-Ferry [7]
function determined from the temperature dependence of
the bulk viscoelastic modulus. This clearly proves that the
large effects of crack velocity and temperature on crack
propagation in rubber materials are due to viscoelastic
processes in the bulk.

In order to understand the physical origin of expres-
sion (1) it is necessary to know the general structure of
the viscoelastic modulus E(ω) of rubber-like materials. In
Figure 1 we show the real E1 = ReE and the imaginary
part E2 = ImE of E(ω) and also the loss tangent E2/E1.
At “low” frequencies the material is in the “rubbery” re-
gion, where ReE(ω) is relative small and approximately
constant. At very high frequencies the material is elasti-
cally very stiff (brittle-like). In this “glassy” region ReE
is again nearly constant but much larger (typically by 3
to 4 orders of magnitude) than in the rubbery region. In
the intermediate frequency range (the “transition” region)
the loss tangent is very large and it is mainly this region
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Fig. 1. (a) The viscoelastic modulus E(ω) = E1+iE2 of a typ-
ical rubber-like material, and (b) the loss tangent E2/E1. The
latter quantity is maximal at some frequency ω2. (Schematic.)

which determines, e.g., the friction when a tire is sliding
on a road surface [8]. In what follows we will refer to the
peak in the loss tangent curve (see Fig. 2(b)) as the vis-
coelastic loss peak.

The physical origin of the dynamical modulus E(ω) for
rubber-like materials is related to stress-aided, thermally
activated flipping of polymer segments between different
configurations. If τ denotes the typical flipping time, then
for ω À 1/τ there is no time for thermally activated re-
arrangement of the polymer chain segments to occur, and
the rubber response will be that of a hard glassy material.
However, when ω ¿ 1/τ , thermal activated rearrange-
ments of the rubber polymer chains will occur adiabati-
cally, resulting in a soft rubbery response. In fact, E(ω, T )
will be a function of the form E = E(ωτ), where τ de-
pends on temperature according to a thermally activated
process. Usually, one writes τ = τ0aT , where τ0 is temper-
ature independent, and where aT is (approximately) given
by the WLF function proposed by Williams, Landel and
Ferry [7]:

log aT =
C1(T − Tg)

C2 + T − Tg
,

where C1 and C2 are two constants and where Tg is the
glass transition temperature of the rubber.

The energy dissipation at a crack in a viscoelastic solid
has two contributions, see Figure 2. The first is associated
with the most inner region at the crack tip (the so-called
crack tip process zone; the dark area at the crack tip in
Fig. 2), and involves highly non-linear processes (e.g., cav-

f(v,T)

G
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bulk dissipation

crack tip

bond breaking

0

Fig. 2. The crack propagation energy G is a product of a term
G0 derived from the bond-breaking at the crack tip, and a term
f(v, T ) derived from the bulk viscoelastic energy dissipation in
front of the tip.

ity formation, stringing, chain pull-out (for polymers), and
bond-breaking) and is described phenomenologically via
the term G0 = 2γ0. (Note: for rubber-like materials γ0
is much larger than the surface energy γ.) This contribu-
tion to G(v) cannot be accurately calculated theoretically,
and is taken as an input (determined experimentally) in
the theory. The second contribution (described by the fac-
tor f(v, T )) comes from the viscoelastic dissipation in the
polymer in the linear viscoelastic region in front of the
tip. If the loss function Im[1/E(ω)] is maximal at some
characteristic frequency ω1, then this dissipative region
will be centered a distance r ∼ v/ω1 from the crack tip.
For a fast moving crack this may be very far away from
the crack tip. This contribution is calculated by the the-
ory [9–14], and it has recently been shown [14] that the
exact form of the crack tip process zone is not important
for the calculation of the viscoelastic contribution to G.
The strongest velocity dependence in (1) is derived from
the factor f(v, T ) which at high crack tip velocities may
enhance G by a factor 103 or more.

In this article we discuss the nature of G for viscoelas-
tic solids. The results presented below are based on the
energy-balance approach to crack propagation. In this ap-
proach one first calculates the viscoelastic energy dissipa-
tion in the vicinity of a crack tip, and then uses it to derive
a general expression for G(v) = 2γeff(v). This approach is
much simpler than the treatment presented in most ear-
lier studies, and under isothermal conditions it results in
a simple analytical formula for G(v) [14]. Furthermore, as
we will show in this paper, the theory can be generalized
to include the influence of the tip flash temperature on
the crack propagation.

The standard model used to describe the crack tip pro-
cess zone is due to Barenblatt [15]. He assumed that the
bond-breaking at the crack tip occurs by stretching the
bonds orthogonal to the crack surfaces until they break at
some characteristic stress level σc. The process zone ex-
tends a distance a in front of the crack tip. This model was
first applied to crack propagation in viscoelastic solids by
Schapery [10] and later by Greenwood and Johnson [11],
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Barber et al. [12], and by Hui et al. [13]. In reference [14] a
simpler treatment was presented, where the cut-off was in-
troduced in a more ad hoc manner, which may be roughly
interpreted as a blunting of the crack. It was also shown
that the exact way the cut-off is introduced is unimpor-
tant, and in reality the process zone is much more complex
than assumed in the theory. In general, the cut-off should
be introduced in such a way as to simplify the analyti-
cal calculations as much as possible, and for crack prop-
agation in viscoelastic solids we believe that the cut-off
procedure used in reference [14] and in the present paper
results in the simplest formalism.

Very recently it has been observed that propagating
cracks in viscoelastic materials, such as tyre rubber, some-
times exhibit unstable stick-slip behavior [16–18], or catas-
trophic fracture [16]. In this paper we show that unstable
crack propagation may result when the non-uniform tem-
perature distribution (flash temperature), which occurs
in the vicinity of the crack tip, is taken into account. The
strong dependence of the crack dynamics on the flash tem-
perature results from the extreme temperature sensitivity
of the viscoelastic modulus E(ω) for rubber-like materials.
We show that because of the flash temperature the func-
tion G (v) does not have a monotonic behavior, which may
result in unstable crack propagation when the (average)
crack propagation speed is in some well-defined velocity
range. This situation is very similar to rubber friction on
rough substrates, where the flash temperature gives rise to
a decreasing rubber friction coefficient for sliding veloci-
ties above ∼ 1 cm/s; this in turn may give rise to stick-slip
motion [19].

In a previous paper one of the authors (BP) has de-
veloped a simple theory for the energy G(v) per unit area
needed to propagate a crack in a viscoelastic solid [14].
This theory is in good agreement with experiments per-
formed at very low crack speed, where the temperature
increase in the rubber can be neglected, but the theory
cannot explain crack propagation instabilities, which we
believe are related to the non-uniform crack tip temper-
ature distribution. In this paper we extend the theory in
reference [14] to include the crack tip flash temperature
which, because of the low heat conductivity of rubber-like
materials, turns out to be extremely important already at
relative low crack propagation velocities.

This paper is organized as follows. In Section 2 we
present a simple estimate which shows the crucial role
of the crack tip flash temperature on crack propagation
in rubber-like materials. In Section 3 we briefly consider
crack propagation in elastic solids. In Section 4 we calcu-
late the (bulk) viscoelastic energy dissipation in front of
the crack tip for a linear viscoelastic solid, under isother-
mal condition. In Section 5 we present the basic theory for
the non-uniform crack tip temperature distribution and
the crack propagation energy G. Sections 6 and 7 present
numerical results for the Kelvin model and for a more
general viscoelastic model, respectively. In Section 8 we
discuss how the high temperature at the crack tip may
result in a thermally degraded layer at the crack tip, and
we study how this may influence the crack propagation en-

ergy G. In Section 9 we explain (qualitatively) how some
of the results of the calculations can be understood based
on a very simple model. In Section 10 we compare the the-
ory with experiments. The theory presented in this paper
assumes that inertia effects can be neglected. This is the
case for cracks which moves much slower than the sound
velocity in the solid. In Section 11 we briefly discuss how
the theory is modified at highly crack propagation veloc-
ities, where inertia effects becomes important. Section 12
presents a general discussion about different models used
for the crack tip process zone, and how it affects the crack
propagation energy G0. The conclusions are presented in
Section 13.

2 Crack tip flash temperature: Qualitative

discussion

In this paper we will demonstrate the fundamental impor-
tance of the non-uniform temperature distribution (flash
temperature) at the crack tip. It is easy to show that the
temperature increase at the crack tip may be very high.
The crack propagation energy per unit created surface
area, for a crack propagating in rubber at the velocity

∼ 10 cm/s, is typically G ≈ 104 J/m2 (≈ 103 eV/ Å
2
).

Most of the energy dissipation occurs at a typical dis-
tance from the crack tip given by r ∼ v/ω1, where v is
the crack tip velocity and ω1 is the frequency for which
Im[1/E(ω)] is maximal (which is related to the frequency
ω2 of the maximum of the loss tangent ImE(ω)/ReE(ω)
via ω1 ≈ (E0/E∞)

1/2ω2, where E0 and E∞ are the
zero-frequency and high-frequency elastic modulus, re-
spectively) (this result is only valid as long as v/ω1 > a(v),
where a(v) is the crack tip radius defined in Sect. 4).
For the styrene-butadiene copolymer at room tempera-
ture ω1 ≈ 104 s−1 and if v = 10 cm/s, we get r ≈ 10µm.
On the time scale ∼ τ = r/v ≈ 10−4 s and the length scale
∼ r, heat diffusion is negligible since Dτ/r2 ≈ 0.1 ¿ 1,
where the heat diffusivity D = λ/ρCV ≈ 10−7m2/s
(ρ ≈ 1200 kg/m3 is the mass density, λ ≈ 0.15W/mK the
heat conductivity and CV ≈ 1400 J/kgK the heat capac-
ity). Thus, the temperature increase at the crack tip can
be estimated using ρCV∆T ≈ G/r or ∆T ≈ G/(ρCV r) ≈
103K. Note also that for v ¿ vc the temperature increase
will be negligible, there vc is determined by the condi-
tion Dτ/r2 ≈ 1. Using that τ = 1/ω1 and r = vcτ gives
Dω1/v

2
c = 1 so that vc = (Dω1)

1/2 ≈ 3 cm/s.
The high temperatures at the crack tip when the crack

velocity v > vc will result in thermal degradation of the
rubber in the vicinity of the crack tip. Roughly speaking,
the rubber will “melt” in a small region at the crack tip.
We believe that this is the reason why smooth crack sur-
faces are observed for large crack tip velocities [18]. For
low crack tip velocities v ¿ vc the crack surfaces are in-
stead very rough, as is typically observed during fracture
of brittle solids.



264 The European Physical Journal E

Fig. 3. A crack in an infinitely long (in the x-direction) elastic
plate. The upper and lower surfaces are clamped in the per-
pendicular direction (but free to slip in the parallel direction),
and separated by a distance ∆h.

3 Crack in elastic solid

Consider an elastic slab with width h, and assume that
it contains a semi-infinite crack as illustrated in Figure 3.
Assume that the solid boundaries at y = ±h/2 are dis-
placed by a distance ∆h, while they are free to slip within
the xz-plane. This will result in a plain stress situation.
We can obtain the crack equilibrium condition for an ideal
elastic material by simply equating the gain of surface en-
ergy per unit thickness, due to a (forward) displacement
δx of the crack tip, to the change of the elastic energy per
unit thickness stored in the solid. We have

δUsurf = 2γδx, (2)

where the quantity γ is the surface energy and the factor
2 is necessary since two surfaces are created, and

−δUel =
1

2E
hσ20δx. (3)

The stress σ0 = Eε0, where the strain ε0 = ∆h/h, and
where E is the elastic modulus of the solid. Equating
δUsurf = −δUel gives

σ0 =

(

4Eγ

h

)1/2

, (4)

which is the classic Griffith criterion [20] for the equilib-
rium of a crack. For an ideal crack, the crack propagation
energy (per unit surface area) is G = 2γ. In an elastic solid
the stress tensor close to a crack tip takes the universal
form

σij ≈
K

(2πr)
1/2

fij(φ) ,

where r is the distance from the crack tip [21], and where
fij(φ) depends on the polar angle φ in the xy-plane. For
plane stress conditions the stress intensity factor K is re-
lated to G through the relation K2 = GE = 2γE. Using
this equation and (4) we can also write

σij ≈
σ0
2

(

h

πr

)1/2

fij(φ) .

4 Crack propagation in viscoelastic solids

In viscoelastic solids the energy balance equation must
include the energy dissipation in the solid. Let us now
calculate the energy dissipation per unit time and unit
thickness, P , when a crack propagates with constant ve-
locity v = (vx, 0) in a linear viscoelastic solid. Consider
first isothermal conditions. In Appendix A we calculate
the energy dissipation per unit time and unit thickness
for a linear viscoelastic solid subjected to a stress field
σij (x− vt) which moves with velocity v:

P = (2π)
2
∫

d2q (−iq · v)Cijkh (q · v)σij (−q)σkh (q) .

(5)
The tensor Cijkh (ω) is the complex compliance defined

as Cijkh (ω) = [Eijkh (ω)]
−1
, and Eijkh (ω) is the complex

elastic modulus of the material. In our case the stress ten-
sor close to the crack tip is independent of the detailed
relation between the stress and strain (i.e., also valid for
a viscoelastic material) and takes the universal form (see
App. B)

σ(x− vt) ≈ σ0
2

(

h

π|x− vt|

)1/2

. (6)

Here we have neglected the tensorial character of the stress
field which enters via a function fij(φ). However, later we
will correct for this. In this case we can write

σ (q, t) = e−iq·vtσ (q) , (7)

where

σ (q) =
1

(2π)
2

∫

d2x σ (x) e−iq·x =

h1/2σ0
4π
√
π
q−3/2

∫

∞

0

dw w1/2J0 (w) . (8)

Here
∫

∞

0

dw w1/2J0 (w) =
√
2
Γ (3/4)

Γ (1/4)
= α′ (9)

is a number of order unity (α′ ≈ 0.48) and Γ is the gamma
function. However, in the above calculations we have ne-
glected the angular dependence of the stress field. In order
to account for this angular dependence we replace α′ with
α1/2 and write

σ (q) =
α1/2h1/2σ0
4π
√
π

q−3/2 = σ (q) , (10)

where α is a number of order unity which we will deter-
mine below. Having determined σ (q), and neglecting the
tensorial character of the stress field, the energy dissipa-
tion per unit time and unit thickness can be calculated
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from (5):

P = (2π)
2
∫

d2q
−iq · v
E (q · v) |σ (q)|

2
=

(2π)
2
∫

dωd2q |σ (q)|2 δ (ω + q · v) iω

E (−ω) =

(2π)
2
∫

dω

∫

∞

0

dqq |σ (q)|2 iω

E (−ω)

×
∫ 2π

0

dφδ (ω + qv cosφ) . (11)

Now observe that

∫ 2π

0

dφδ (ω + qv cosφ) = 2
θ
(

q2v2 − ω2
)

[

(qv)
2 − ω2

]1/2
, (12)

where θ (x) is the Heaviside unit step function. Thus the
energy dissipation P can be written as

P = 8π2
∫

dω

∫

∞

0

dqq |σ (q)|2 iω

E (−ω)
θ
(

q2v2 − ω2
)

[

(qv)
2 − ω2

]1/2
=

16π2
∫

∞

0

dω Im

[

ω

E (ω)

]

×
∫

∞

ω/v

dqq |σ (q)|2
(

q2v2 − ω2
)−1/2

. (13)

Using (10) we finally obtain

P =
1

π
ασ20h

∫ ωc

0

dωω

∫ qc

ω/v

dqq−2
(

q2v2 − ω2
)−1/2

× Im 1

E (ω, T0)
. (14)

In (14) we have introduced the large cut-off wave vector
qc = 2π/a, and the corresponding large cut-off frequency
ωc = 2πv/a, where a is taken equal to the radius of the
crack tip. In (14) we also indicate explicitly that the vis-
coelastic modulus depends on the temperature T , which
in the analysis above was assumed to be constant, T = T0.

5 Non-uniform temperature distribution:

Basic theory

Until now we have neglected the fact that the viscoelastic
energy dissipation in front of the crack produces heating.
The resulting temperature increase can have a large in-
fluence on the energy dissipation because of the extreme
sensitivity of the viscoelastic modulus E(ω, T ) on the tem-
perature. The temperature distribution is not uniform,
and this must be taken into account when calculating the
viscoelastic energy dissipation. The simplest approach is
still to use (14), but replacing the viscoelastic modulus
E(ω, T0) with E(ω, Tq), where Tq is the temperature in
the spatial region in front of the crack tip probed by the

q-wave number contribution to the integral (14). Thus,
(14) is replaced by

P =
1

π
ασ20h

∫ ωc

0

dωω

∫ qc

ω/v

dqq−2
(

q2v2 − ω2
)−1/2

× Im 1

E (ω, Tq)
. (15)

5.1 Effective energy required to propagate the crack

In the present case the elastic energy stored in a vertical
slab in front of the crack tip is partially used to break the
bonds at the crack tip, described by G0 = 2γ0, and the
rest is dissipated via the internal friction in the rubber
according to (15). It follows that

−dUel
dt

=
dUsurf
dt

+ P. (16)

Observe that far form the crack tip the material is fully
relaxed and the elastic modulus is that corresponding to
the zero frequency E (0) = E0. Thus, the rate of change of
elastic energy per unit thickness is dUel/dt= −σ20hv/2E0,
whereas the rate of change of the adhesion or cohesion
energy is dUsurf/dt = 2γ0v. Substituting these results and
(15) into (16) gives

σ20h

2E0
v = 2γ0v +

1

π
ασ20h

∫ ωc

0

dωω

∫ qc

ω/v

dqq−2

×
(

q2v2 − ω2
)−1/2

Im
1

E (ω, Tq)
. (17)

We define the effective energy to propagate the crack

G = 2γeff =
σ20h

2E0
. (18)

Using this definition and defining q = yqc and ω = xωc,
we obtain from (17)

γeff
γ0

=

[

1− 2
π
α

∫ 1

0

dxx

∫ 1

x

dyy−2
(

y2 − x2
)−1/2

× Im E0
E (xωc, Ty)

]

−1

(19)

where Ty stands for Tq with q = yqc.
We can calculate the factor α by observing that for

very high crack velocities (see App. C, and also Refs. [9,
14, 22,23])

γeff
γ0

=
E∞

E0
. (20)

Equation (20) can be used to show that α = 1. First,
note the sum rule (see App. D):

1

E0
− 1

E∞

=
2

π

∫

∞

0

dω
1

ω
Im

1

E(ω)
. (21)
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Now, as v →∞ we have ωc →∞. Thus,
∫ 1

0

dxx

∫ 1

x

dyy−2
(

y2 − x2
)−1/2

Im
1

E (xωc)

→
∫

∞

0

dω
1

ω
Im

1

E (ω)
=
π

2

(

1

E0
− 1

E∞

)

. (22)

From equations (19), (20) and (22) we get α = 1 and

γeff
γ0

=

[

1− 2
π

∫ 1

0

dxx

∫ 1

x

dyy−2
(

y2 − x2
)−1/2

× Im E0
E (xωc, Ty)

]

−1

. (23)

5.2 Crack tip radius

The radius of curvature of the crack tip a can be calculated
by considering that in order for the crack to propagate the
stress at the crack tip must be equal to some characteristic
(material dependent) yield stress σc. Using (6), with σ
replaced by σc and |x− vt| by a, leads to the relation

4πσ2ca = σ20h. (24)

From (18) and (24) one obtains

σ2ca = E0γeff/π, (25)

which shows that the crack tip radius is proportional to
the effective energy γeff necessary to propagate the crack.
We define a reference radius a0 = E0γ0/

(

πσ2c
)

. This can
be interpreted as the crack tip radius for an arbitrary
slowly moving crack. Thomas [24] has suggested that a0
is of order the unstrained distance between the ends of a
representative network stand, which typically is of order
a0 ≈ 1–10 nm. Using (23) and (25) we get

a

a0
=

[

1− 2
π

∫ 1

0

dxx

∫ 1

x

dyy−2
(

y2 − x2
)−1/2

× Im E0
E (xωc, Ty)

]

−1

. (26)

Since ωc (and the temperature field Ty) depends on the
crack tip radius a, this is an implicit equation for a.

5.3 Temperature distribution

We determine Tq from the temperature field T (x, t) as fol-
lows [25]. The temperature field T (x, t) satisfies the diffu-
sion equation

∂T

∂t
−D∇2T = Q̇ (x, t)

ρCV
, (27)

where Q̇ is the energy production per unit volume and
unit time as a result of the internal friction of the rubber.
The heat diffusivity D = λ/ρCV , ρ is the mass density,

λ the heat conductivity, and CV the heat capacity per
unit mass. In the present paper we neglect the tempera-
ture dependence of the diffusivity D as it is much weaker
than for the viscoelastic modulus. Let Φq(x) be a function
normalized so that

∫

d2x Φq (x) = 1 . (28)

The function Φq is chosen to be “large” in the spatial
region where most of the energy dissipation occur when we
consider the q-wave number contribution to the integral
(26), and “small” elsewhere. We then define

Tq =

∫

d2x Φq (x)T (x) . (29)

The simplest possible Φq can be obtained by means of
dimensional arguments:

Φq (x) =
q

2π
δ

(

r − 1
q

)

, (30)

so that

Tq =
1

2π

∫

dφT

(

cosφ

q
,
sinφ

q

)

. (31)

Therefore, Tq is the angular average of T (x) calculated at
a distance r = 1/q.

It is not easy to estimate exactly how accurate the ap-
proximation (28–30) is. We have used a similar approxima-
tion before for rubber friction (unpublished), where good
agreement with experimental data was obtained. However,
the topic we study is extremely complex (which explains
why no earlier analytical studies of the temperature effects
has been published), and our treatment is a first analy-
sis aimed at getting some understanding of this problem.
Since the results presented below makes physical sense and
can be understood in a qualitative way (see Sect. 9), and
can be correlated with experimental data, we believe that
(28–30) represent a useful way of including a non-uniform
temperature distribution in the theory.

For a crack moving with a constant velocity v we have

Q̇(x, t) = f(x− vt) . (32)

Defining the Fourier transform

f(x) =

∫

d2q f(q)eiq·x , (33)

we get from (27)

T (x, t) = T0+
1

ρCV

∫

d2q
f(q)

−iq · v +Dq2
eiq·(x−vt) . (34)

Thus,

Tq = T0 +
(2π)2

ρCV

∫

d2p
f(p)Φq(−p)

−ip · v +Dp2
, (35)

where

Φq(p) =
1

(2π)2

∫

d2x Φq(x)e
−ip·x =

1

(2π)2
J0 (p/q) .

(36)
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In order to calculate Tq we must calculate the energy pro-
duction per unit volume and unit time f (x). We have

Q̇ (x, t) = f (x− vt) = ε̇σ =
∫

dωdω′ (−iω) σ (x, ω)σ (x, ω
′)

E (ω)
e−i(ω+ω

′)t (37)

and using that

σ (x, ω) =

∫

d2qδ (ω − q · v)σ (q) eiq·x , (38)

we get

Q̇ (x, t) = f (x− vt) =

∫

d2qd2q′ (−iq · v)

× σ (q)σ (q′)

E (q · v, Tq)
ei(q+q

′)·(x−vt) (39)

and

f (x) =

∫

d2qd2q′ (−iq′·v) σ (q)σ (q
′)

E (q′·v, Tq′)
ei(q+q

′)·x. (40)

Now, since σ (q) = σ (q) only depends on q = |q|, equa-
tion (40) can be rewritten as

f (x) = 2π

∫

dqd2q′q (−iq′·v) σ (q)σ (q′)

E (q′·v, Tq′)
eiq

′
·xJ0 (qr) .

(41)
The angular dependence of the stress field is neglected in
the paper, and also the weight function Φq(x) has been
chosen to be angular independent. Similarly, instead of
f (x) we can use its angular average:

f̄ (r) =
1

2π

∫ 2π

0

f (x) dφ =
1

2π

∫ 2π

0

f (r, φ) dφ =

2π

∫

dωdqdq′ qq′σ (q)σ (q′) J0 (qr) J0 (q
′r)

× iω

E (−ω, Tq′)

∫ 2π

0

dφ′δ (ω + q
′·v) . (42)

By means of (10) and (12) and using α = 1 we get

f̄ (r) =

√
2

(2π)
2

Γ (1/4)

Γ (3/4)
hσ20r

−1/2

∫ +∞

0

dω

∫ +∞

ω/v

dq q−1/2

×J0 (qr)
(

q2v2 − ω2
)−1/2

Im
ω

E (ω, Tq)
. (43)

To obtain Tq we need to calculate the Fourier transform
of f̄ (r):

f̄(p) =
1

(2π)
2

∫

d2x f̄(r)e−ip·x =
1

2π

∫

dr f̄(r)rJ0 (pr) .

(44)
Substituting (43) into (44) gives

f̄ (p) =
1

4π3
hσ20

∫

∞

0

dω

∫

∞

ω/v

dq′q′−1/2

×Im
[

ω

E (ω, Tq′)

]

(

q′2v2−ω2
)−1/2

H (p, q′), (45)

where we have used the Weber-Schafheitlin integral for-
mula
∫

∞

0

drr1/2J0 (q
′r) J0 (pr) =

√
2
Γ (3/4)

Γ (1/4)
H (p, q′) (46)

with

H (p, q) =

{

p−3/2
[

2F1
(

3/4, 3/4; 1; q2/p2
)]

, q < p ,

q−3/2
[

2F1
(

3/4, 3/4; 1; p2/q2
)]

, p < q .
(47)

In (47) the function 2F1 is the Gauss hypergeometric func-
tion. Substituting (45) and (36) in (35) gives

Tq = T0 +
1

(2π)
2

2hσ20
ρCV

∫ ωc

0

dω

∫ qc

ω/v

dq′q′−1/2

× Im
[

ω

E (ω, Tq′)

]

(

q′2v2 − ω2
)−1/2

×
∫ qc

0

dp
J0 (p/q)H (p, q

′)

(v2 +D2p2)
1/2

. (48)

Equation (48) can be rearranged to give

Ty = T0 +
1

π

4γ0
ρa0CV

∫ 1

0

dxx

∫ 1

x

dzz−1/2

× Im
[

E0
E (ωcx, Tz)

]

(

z2 − x2
)−1/2

×
∫ 1

0

dw
J0 (w/y)H (w, z)

(1 + ξ2w2)
1/2

, (49)

where we have used that hσ20 = 4E0γeff and a0γeff = aγ0.
Here

ξ = ξ0
a0v0
av

, (50)

where the dimensionless diffusivity ξ0 = 2πD/ (a0v0), and
where v0 is a reference velocity. We will assume that the
WLF transform is valid so that E(ω, T ) = E(ωaT ), where

aT = exp

[−8.86(T − Tg − 50)
51.5 + T − Tg

]

. (51)

In the calculations presented below we use Tg = −30 ◦C
for the glass transition temperature.

The set of equations (26, 47, 49, 50), and (51), allows
us to calculate the temperature distribution in the rubber,
the radius of the crack tip and the energy per unit area
needed to propagate the crack.

6 Numerical results: Kelvin model

In what follows we will assume that the rubber obeys the
very simple Kelvin rheological model. This is not a very
good constitutive model for rubber as it assumes that the
material is characterized by a single relaxation time. In
reality rubber-like materials have a very wide distribution
of relaxation times. However, this should not affect the
basic physics and the qualitative picture we present below.
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In the Kelvin model the complex elastic modulus of the
rubber is given by

1

E(ω)
=

1

E∞

+

(

1

E0
− 1

E∞

)

1

1− iωτ
, (52)

where typically E∞/E0 ≈ 1000 or more. Equation (52)
gives

Im

[

E0
E (ωcx, Tz)

]

= κ Im

[

1

1− iλxaz

]

= κ
λxaz

1 + λ2x2a2z
,

(53)
where we have introduced the quantities

κ = 1− E0
E∞

; λ = ωcτ =
v

v0

a0
a

(54)

and where az stands for aT for T = Tq with q = zqc. The
reference velocity is v0 = a0/ (2πτ). Substituting (53) in
(26) and (49) we get

(

γeff
γ0

)

−1

=

(

a

a0

)

−1

=

1− κ

∫ 1

0

dy
λay

1 + (λyay)
2
+
√

1 + (λyay)
2

(55)

and

Ty = T0

[

1 + 2Λκ

∫ 1

0

dz
λaz

1 + (λzaz)
2
+

√

1 + (λzaz)
2

×
∫ 1

0

dw
J0 (w/y) Ĥ (z/w)

(1 + ξ2w2)
1/2

]

, (56)

where

Ĥ(x) =

{

x3/2
[

2F1
(

3/4, 3/4; 1;x2
)]

, x < 1 ,

2F1
(

3/4, 3/4; 1; 1/x2
)

, x > 1 .
(57)

By studying the asymptotic behavior of 2F1 (3/4, 3/4; 1;x)
for x → 1, and using that 2F1 (3/4, 3/4; 1; 0) = 1, a very
good interpolation formula has been obtained over the
whole range 0 ≤ x < 1:

2F1 (3/4, 3/4; 1;x) ≈ 1 +
2

π
K

(

1

2

)

[

(1− x)
−1/2 − 1

]

(58)

≈ 1 + 1.1803
[

(1− x)
−1/2 − 1

]

,

where K (x) is the elliptic integral of the first kind. The
dimensionless parameter

Λ =
γ0

ρa0CV T0
. (59)

Within the Kelvin model, γeff/γ0 as a function of v/v0
depends only on the parameters Λ, E∞/E0, T0 − Tg and
ξ0. In all numerical calculations presented in this paper
we have used E∞/E0 = 1000, T0 − Tg = 50K, Λ = 10

Fig. 4. The effective energy γeff to propagate the crack as a
function of the crack velocity v for two different values of the
dimensionless diffusivity ξ0. The dashed line is obtained by ne-
glecting the flash temperature effect. The Kelvin rheological
model has been used in the calculation with E∞/E0 = 1000
and Λ = 100. The non-monotonic behavior of the γeff may
result in crack motion instability, e.g. stick slip motion, as in-
dicated by the black arrows in the picture.

or 100, and several values for ξ0. Since typically γ0 =
30 J/m

2
, a0 = 10

−9m, ρ = 1.2× 103 kg/m3
, CV = 1.4×

103 J/ (kg K) and T0 = 20
◦C we get from (59), Λ ≈ 60.

Figure 4 shows the effective energy γeff to propa-
gate the crack as a function of the crack propagation
speed for Λ = 100 and for two different values of ξ0 =
2πD/ (a0v0) = 2πDτ/a

2
0, corresponding to, e.g., different

values of the rubber relaxation time τ . Also shown is the
isothermal solution (T ≡ T0; dashed line). At low crack tip
velocities the influence of the flash temperature is negligi-
ble and all three curves overlap. At higher crack velocities
the effective energy γeff required to propagate the crack is
non-monotonic, exhibiting a local maximum and a local
minimum, which may give rise to crack propagation in-
stabilities. As the velocity is increased further, γeff finally
increases proportional to the crack speed.

Figure 5 shows the effective energy γeff to propagate
the crack as a function of the crack propagation speed
for Λ = 10 and for different values of ξ0. Three different
regimes are shown: i) the low-speed regime, where the in-
crease of temperature in the rubber is negligible; ii) the
hot-crack regime; and iii) the cold-crack regime. The cold-
crack regime prevails not only under isothermal condition
(corresponding to the heat diffusivity D = ∞ or, equiva-
lently ξ0 = ∞), but when D is above some critical value,
which in the present case corresponds to ξ0 ≈ 1018, the
hot-crack regime is absent and crack propagation will fol-
low the cold-crack γeff(v) branch.

Figure 5 shows that for small enough crack veloci-
ties (say v/v0 < 103) the increase of temperature due
to viscous dissipation is negligible and the curves can-
not be distinguished from the isothermal curve. Thus,
in the low-speed region all curves obey the scaling law
γeff/γ0 ≈ (v/v0)0.5. For v/v0 < 10−1, γeff is very close to
γ0, and we can smoothly interpolate between these two
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Fig. 5. The effective energy γeff to propagate the crack as
a function of the crack velocity v for different values of the
dimensionless diffusivity ξ0. The Kelvin rheological model has
been used in the calculations with E∞/E0 = 1000 and Λ =
10. In the transition region between the “low-speed” and the
“hot-crack” regimes the effective energy γeff is non-monotonic
which may produce crack motion instabilities. In the “low-
speed” regime γeff ∼ v0.5, whereas in the “hot-crack” regime
γeff ∼ v.

limits using [14]

γeff ≈ γ0

[

1 +

(

v

v0

)0.5
]

. (60)

The exponent of 0.5 is in substantial agreement with
the experimental value 0.6 obtained by Maugis and Bar-
quins [5] for polyurethane strips on glass, and also with
other theoretical calculations [11, 26]. However, the exact
value of the exponent depends on the rubber properties,
which are not accurately described by the Kelvin model.
Thus, for example, for the styrene-butadiene copolymer
rubber [6] the exponent is close to 0.28 [14]. Note also
that for the isothermal case the quantity γeff/γ0 = a/a0
goes asymptotically to E∞/E0 for very high crack tip ve-
locities (as expected, see App. C). Moreover, in this case
we can rewrite (55) as

2κ
v0
v

(

γeff
γ0

)3

+
(

1− 2κv0
v
− κ2

)

(

γeff
γ0

)2

−2
(

γeff
γ0

)

+ 1 = 0 , (61)

which is an algebraic equation of the third order that can
be solved analytically.

At high enough crack speed the temperature rise due
to the viscoelastic energy dissipation cannot be neglected.
The increase of temperature in front of the crack tip will
modify the rheological properties of the rubber, and cause
the crack propagation energy to change. Figure 5 shows
that for practical applications, where ξ0 rarely exceeds
1013, the system undergoes a transition from the low-speed
regime to the hot-crack regime: first the energy required
to propagate the crack rapidly increases, then reaches a
local maximum, after which it slightly decreases and then

Fig. 6. The crack tip temperature T (r = a) as a function of
the crack velocity v. At “low-speed” the temperature rise is
negligible. In the transition region the crack tip temperature
increases rapidly and becomes constant (and independent of
ξ0) in the “hot-crack” regime.

Fig. 7. The temperature profile in front of the crack tip for
ξ0 = 1011 and for three different values of crack tip velocity.
The temperature increase is significant for r . 100a.

enters the hot-crack region. In the hot-crack region the
log γeff − log v curve is a straight line with slope equal
to 1. This means that the deformation frequency at the
crack tip (ω = ωc = 2πv/a) no longer changes. Also the
temperature at the crack tip T (r = a) (see Fig. 6) in-
creases rapidly in the transition region, and then reaches
a constant value in the hot-crack region independent of
the parameter ξ0. In fact, for very large crack tip veloci-
ties the temperature distribution, as a function of r/a, is
velocity independent (see Fig. 7). In the hot-crack regime
the frequencies of the pulsating deformations at the crack
tip lie in the transition region between the rubbery and
the glassy regions of the viscoelastic rubber spectra. In
Figure 7 we show the temperature profile in the rubber,
as a function of the distance from the crack tip in units of
a, for different crack velocities. Notice that for large crack
tip velocities the distance region in front of the crack tip
where T À T0 is quite large, of order ∼ 10a. Because
of the non-uniform temperature distribution, in this large
volume element the perturbing frequency v/r will be in
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the transition region of the rubber viscoelastic spectra,
and a large viscous energy dissipation will occur.

7 Numerical results: Realistic viscoelastic

modulus

The complex frequency-dependent modulus of any linear
viscoelastic material can be written as

1

E(ω)
=

1

E∞

+

∫

∞

0

dτ
H(τ)

1− iωτ
, (62)

where the spectral density H(τ) is a real (positive) func-
tion of the relaxation time τ . In many cases E(ω) is well
approximated when the spectral density H(τ) = Aτ−s

for τ1 < τ < τ0, and zero elsewhere. For rubber com-
pounds used for pressure sensitive adhesives one typically
has τ0 ≈ 1 s and τ1 ≈ 10−6 s giving τ0/τ1 ≈ 106.

In Appendix E we show how it is possible to gener-
alize relations (55) and (56) in order to treat this more
general case. Figure 8 shows results for s = 0.6 (which
corresponds, e.g., to a styrene-butadiene copolymer rub-
ber), Λ = 100 and for two different values of the parameter
ξ0 = 2πD/ (a0v0). In this case we have defined the refer-
ence velocity v0 = a0/(2πτ1), which typically is in the
range v0 ≈ 10−2–100m/s. For relative small crack veloc-
ities, log (γeff/γ0) as a function of log(v/v0) is almost a
straight line with slope ' 0.28, in good agreement with
the experimental value obtained in reference [6] for the
styrene-butadiene rubber, and also in reference [14]. How-
ever, when the crack speed is increased above v ∼ 0.01v0,
the shape of the curve changes and a non-monotonic be-
havior is observed which may give rise to crack propaga-
tion instabilities. When the crack tip velocity is increased
further the crack enters the hot-crack regime. Note that
the flash temperature effect becomes important for crack
propagation velocities v > 1 cm/s in accordance with the
qualitative discussion in Section 2. We conclude that, inde-
pendent of the rubber viscoelastic model under consider-
ation, the flash temperature will always change the shape

Fig. 8. The effective energy γeff when the spectral density is
H (τ) = Aτ−s with s = 0.6. The frequency of the maximum of
the loss tangent of the rubber material is ω2 ≈ 106 s−1, and the
range of rubber relaxation times covers an interval of about six
decades.

of the log (γeff/γ0) curve in such a way that crack instabili-
ties may be observed. Moreover, for higher crack speed the
energy required to propagate the crack increases linearly
with the crack speed, and the temperature distribution
does no longer change when plotted as a function of r/a.
This means that at the crack tip the temperature is also
constant. However, the temperature rise at the crack tip
may be so high that thermal degradation of the rubber
occurs close to the crack tip. This effect was neglected in
the theory presented above. When thermal degradation is
taken into account (see next section), the maximal crack
tip temperature is reduced to more realistic values.

8 Thermal degradation: Stress-aided

thermally activated bond-breaking at the

crack tip

The viscoelastic properties of rubber is determined by
thermally activated processes involving flipping of poly-
mer segments between different positions. The activation
barriers separating the different configurations are typi-
cally of order ∼ 0.2 eV. These barriers are much smaller
than the energy barriers involved in breaking the chemi-
cal bonds at the crack tip, which are of order ∆E ∼ 1 eV
or more. Hence at not too high temperatures, the main
temperature dependence of crack propagation comes from
the bulk viscoelastic deformations of the rubber in front
of the crack tip. However, even if the temperature is not
high enough to generate thermal fluctuations which are
large enough to break the bonds at the crack tip, ther-
mal effects are still important for the bond-breaking pro-
cess for the following reason: during crack propagation, at
the crack tip the polymer chains are stretched until they
break. However, it is not necessary for the applied force to
break the bonds alone, but it is enough to stretch the bond
somewhat, i.e., to move the system some distance up to-
ward the top of the barrier ∆E; the remaining part of the
barrier can be overcome by a (large enough) thermal fluc-
tuation. At high temperature this stress-aided thermally
activated process will result in a strong reduction in the
stress σc at the crack tip during (slow) crack propagation.

A simple analysis of the temperature and velocity de-
pendency of bond-breaking process at the crack tip is
based on the following rate equation approach. Consider
a polymer chain in front of a crack and assume that the
crack tip arrive at the chain at time t = 0. The tensile
stress acting on the chain at time t (t < 0) is proportional
to (see App. F)

σ(t) ≈ σc

(

a

a− vt

)1/2

, (63)

where a is the crack tip radius and v the crack tip velocity.
Thus, the chain is stretched already before the crack tip
arrives to it, and the chain may break already for t < 0.
Let P (t) be the probability that the chain is not broken
at time t. Thus,

dP

dt
= −w(t)P, (64)
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where the rate coefficient

w(t) = νe−βU(t), (65)

where β = 1/kBT and where ν is a prefactor typically of
order ν ≈ 1014 s−1, and where the barrier height (note:
t < 0) (see App. F)

U(t) ≈ U0

[

1−
(

σc
σc0

)2
a

a− vt

]

,

where σc0 is the yield stress at zero temperature, and
where U0 = ∆E. The equations above give (see App. F)

(

σc
σc0

)2

= 1 +
kBT

∆E
ln

[

v

v1

a0
a

(

σc
σc0

)2
]

, (66)

where
v1 = a0νkBT/∆E .

Equation (66) is valid as long as kBT/∆E ¿ 1. The
weakest chemical bonds in rubber are usually multi-sulfur
crosslinks such as C-S-S-C, for which ∆E ≈ 1.2 eV. Sin-
gle sulfur crosslinks have larger ∆E, and the energy to
break a C-C bond in a hydrocarbon chain is much larger,
of order 4 eV. In a typical case, for a slowly moving
crack, v1 ≈ 100m/s. Thus, at room temperature with
the crack velocity v = 1µm/s, one finds from (66) (with
∆E = 1.2 eV) that σc ≈ 0.6σc0.

We have performed calculations using the theory de-
veloped in Section 5 but assuming that the rupture stress
σc depends on the temperature and the crack tip velocity
according to (66). Since γ0 ∼ σ2c this implies that

γ0
γ00

= 1 +
kBT

∆E
ln

(

v

v1

a0
a

γ0
γ00

)

, (67)

where γ00 = γ0(v, 0).
In Figure 9 we show how the thermal degradation

affects the crack propagation for a rubber obeying the
Kelvin rheological model, using the same parameter val-
ues as in Section 6 and with ∆E = 2 eV. The effective
energy γeff needed to propagate the crack (see Fig. 9(a))
exhibits the same trend as in Figure 4, except that it
is slightly smaller. The term γ0 initially grows with in-
creasing crack velocity because the force necessary to
break a bond at the crack tip increases with increas-
ing bond elongation rate. However, when the increase of
temperature becomes significant it decreases very fast,
and reaches a nearly constant value at high crack speed
(see Fig. 9(b)). The latter follows from the fact that the
crack tip temperature is nearly constant for large v. When
the thermally activated bond-breaking is taken into ac-
count, the increase of temperature at the crack edge is
much smaller than when this effect is neglected. Thus,
the maximal temperature increase in Figure 9(c) is in the
range 630–840 ◦C in good agreement with experimental
results [27]. Note that the asymptotic value of crack tip
temperature at high velocities depends on the parameter
ξ0 = 2πD/(a0v0) = 2πDτ/a20, i.e. on the rubber relax-
ation time τ , the low-velocity crack tip radius a0, and on
the rubber thermal diffusivity D.

Fig. 9. The influence of the stress-aided thermally activated
bond-breaking on crack propagation for a rubber obeying the
Kelvin rheological model. (a) The ratio γeff/γ00 as a function
of the crack propagation velocity (log-log scale). (b) The ratio
γ0/γ00 as a function of the crack propagation velocity. Note
the fast decrease of γ0 which occurs when the temperature
at the crack tip begins to increase significantly. (c) The crack
tip temperature T (r = a) as a function of the crack velocity
v. When the thermal degradation effect is considered at the
crack tip, the asymptotic value of T (r = a) depends on ξ0.
The maximum temperature is . 850 ◦C, in good agreement
with some experiments [27].

9 Discussion

The reason the crack propagation energy increases (for
large crack tip velocities) when the crack tip flash tem-
perature effect is taken into account can be understood
as follows. Consider a propagating crack and let us first
neglect the flash temperature effect, i.e., we assume that
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(a)

(b)

T(x) = T0

T(x) > T 0

glassy

transition

rubber y

region

without crack-tip flash temperature

with crack-tip flash temperature

Fig. 10. A qualitative picture of what happens when the flash
temperature effect is included in the theory. (a) For isothermal
conditions most of the viscoelastic energy dissipation occurs
in the transition region between the rubbery and glassy region
of the rubber viscoelastic spectra (dark area). (b) When the
flash temperature effect is included, because the temperature
increase is very large close to the crack tip, the transition re-
gion (dark area) extends closer to the crack tip than in (a).
On the other hand, the outer rim of the transition region in
(a) is converted into the rubbery region. However, since the
temperature decreases monotonically with the distance from
the crack tip the total energy dissipation increases.

the temperature everywhere equals the background tem-
perature T0 (Fig. 10(a)). At high crack tip velocity v, the
region close to the crack tip is effectively in the glassy
state, and contributes very little to the total viscoelas-
tic energy dissipation. Similarly, the region very far away
from the crack tip is effectively in the rubbery region of
the viscoelastic spectra, and contributes also very little to
the total energy dissipation. Most of the viscoelastic en-
ergy dissipation occurs in the transition region between
the rubbery and glassy region (dark gray area in Fig. 10).
Now, let us include the flash temperature effect. Because
the crack tip moves toward the region where the viscoelas-
tic energy dissipation occurs, the temperature increase is
highest close to the crack tip. Thus, part of what was the
glassy region when the temperature effect was neglected
will now correspond to the transition region and will con-
tribute strongly to the total viscoelastic energy dissipa-
tion. On the other hand, what was the outer rim of the
transition region when the flash temperature effect was ne-
glected will now be converted into the rubbery region, and

will contribute very little to the total energy dissipation.
However, since the temperature decreases monotonically
with the distance from the crack tip, the reduction in the
energy dissipation in the outer region is overcompensated
by the increases in the energy dissipation in the inner re-
gion closer to the crack tip. The net effect is that the total
energy dissipation increases when the flash temperature
effect is taken into account. However, a further increase
in the velocity increases the temperature even more and
shifts the region close to the crack tip toward the rubbery
side of the transition region in such a way that G(v) is now
nearly constant reaching the flat region of the diagram in
Figure 5. However, at very high velocities the region close
to the crack tip get shifted back towards the middle of
the transition region, and then it stays there for arbitrary
high crack tip velocity: when this happens the crack is
in the asymptotic hot-crack regime. Note, however, that
because of heat diffusion, for very low crack tip velocities
the temperature increase in the vicinity of the crack tip
is negligible, resulting in a negligible increase in the crack
propagation energy for small crack tip velocities.

The numerical calculations have shown that beside the
low-speed and hot-crack regimes, at high crack speed an-
other propagation regime can be attained that is what
we called the cold-crack regime. In this case the tempera-
ture increase is almost negligible, and the crack behavior
is very close to that one obtained for perfect isothermal
conditions. Numerical calculations have shown that the
cold-crack regime cannot occur below a certain velocity
threshold not depending on ξ0 provided ξ0 is not too large.
If, instead, ξ0 is very large, say ξ0 > 10

18, as would be the
case if the heat diffusivity D of the rubber would be very
large, then there is no possibility for the hot-crack regime
to occur. In this case, the thermal energy produced by the
viscous dissipation diffuses very quickly away from the
crack tip region, and since for very high crack tip veloci-
ties the energy dissipation occurs in a very large volume
very far away from the crack tip, a negligible temperature
increase is produced.

The analysis above has only considered the crack prop-
agation energy G(v) for stationary crack propagation (i.e.,
v constant). However, during stick-slip crack propagation
the crack tip velocity is changing in time. This will re-
sult in important modifications of the theory, as can be
understood by the following qualitative argument. The
transitions discussed above involves flipping between the
hot-crack and the low-velocity crack state. In order for
the temperature distribution to be fully built up in the
hot-crack state the crack must propagate some minimum
distance given by the effective radius within which most of
the energy dissipation occur in front of the crack tip. For
a fast moving crack this distance may be ∼ 100a ∼ 1mm.
Similarly, when the system flips from the hot crack state
to the low-velocity crack state some time will be needed
for the heat produced at the crack tip to diffuse away
from the tip region. In a dynamical situation, these ef-
fects may result in hysteresis in the transition between
the two states as schematically indicated in Figure 11. It
implies that the crack propagation energy will not just
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Fig. 11. During stick-slip crack propagation the crack tip
velocity is changing in time. This will result in hysteresis in
the transition between the low-speed regime and the hot-crack

regime and the crack propagation energy will not just depend
on the instantaneous crack tip velocity, but it will depend on
the crack tip velocity for all earlier times.

depend on the instantaneous crack tip velocity, but it
will depend on the crack tip velocity for all earlier times,
i.e., it will be a functional of the crack tip position x(t):
G = G(t) = F (x(t′); t′ ≤ t). This situation is analogous
to the case of rubber friction, where, because of the flash
temperature effect, the rubber friction coefficient is a func-
tional of the sliding history.

Finally, we note that it should be possible to study the
temperature rise in the vicinity of the crack tip using an
infrared camera with high spatial and temporal resolution.

10 Comparison with experiment

The theory presented above explains why unstable crack
propagation is observed in some cases, e.g. for tire rub-
ber [16–18]. In ref. [16] two crack propagation modes
have been analyzed with two different experimental se-
tups: i) the constrained tension specimen for mode-I load-
ing (Fig. 12(a)), and ii) the trouser specimen for mode-
III loading (Fig. 12(b)). Analogous experiments were car-
ried out in reference [17] with the double cantilever beam
test. In mode-I loading no stable crack growth is observed,
whereas in the trousers test (mode-III loading) stick-slip
motion is observed. Here intervals of increase of the load,
with no or negligible crack growth, are followed by a sud-
den decrease of load as the crack propagates fast. We be-
lieve that this unstable crack propagation can be explained
on the basis of the theory we developed above as follows.

In the transition region between the low-speed regime
and the hot-crack regime, a very rapid increase of crack
propagation energy is first observed (see Fig. 5), followed
by an almost flat region which is smoothly connected to
the hot-crack regime. The overall transition region cov-
ers a velocity range of about two orders of magnitude.
Thus, in a displacement-controlled test, as the system is
loaded the crack initially moves very slowly, and when it
reaches the transition region its velocity is still very small
(v < 10−4m/s) so that its propagation cannot be eas-

Fig. 12. Two experimental configurations used to study the
propagation of cracks in tire rubber. In both cases the experi-
mental tests are performed at controlled displacement: (a) the
constrained tension specimen for the mode-I propagation,
(b) the trouser specimen setup to analyze the mode-III crack
propagation.

ily detected. By increasing the displacement further a big
amount of energy is stored in the solid, and when the flat
area is reached the crack starts to propagate quite fast
v > 10−2m/s, giving rise to the observed instability. The
reason a stick-slip motion is observed in the trousers test
(Fig. 12(b)), whereas a catastrophic failure is observed in
mode-I loading (Fig. 12(a)) can be understood as follows.

In the trousers test, due to the particular constraint
conditions, the elastic energy release rate which is avail-
able to move the crack decreases very rapidly as the crack
propagates. Thus, as soon as the crack begins to grow
faster than the speed of separation, the energy release rate
will rapidly decrease and the crack will stop. Increasing
the displacement increases the energy available to move
the crack and allows the cycle to be repeated leading to
the observed stick-slip unstable behavior. In the case of
mode-I loading (Fig. 12(a)), the elastic energy release rate
is constant as the crack propagates. Thus energy is always
available to move the crack: once the instability threshold
is reached, the crack will propagate fast causing the catas-
trophic failure of the specimen.

The most detailed experimental study of stick-
slip crack propagation in rubber was presented in
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Fig. 13. The crack propagation energy as a function of the
crack speed for a styrene-butadiene copolymer rubber with
carbon-black filler. The characteristic stick-slip region, where
the crack velocity is oscillating in time, is shown as dotted lines
(adapted from Ref. [18]).

reference [18]. In Figure 13 we show the logarithm of the
crack propagation energy G = 2γeff as a function of the
logarithm of the crack tip velocity for a styrene-butadiene
copolymer rubber with carbon black filler. When the
(average) crack tip velocity is in the range ∼ 0.1–10 cm/s
unstable crack propagation occurs. In this velocity region
cracks grow at a slow or fast rate corresponding to the
data symbols on the left (low-velocity) and right (high-
velocity) branch of the G(v) curve in Figure 13. Note
also that the slope of the logG-logv curve is much higher
for the high-velocity branch. Both these facts are in good
qualitative agreement with our analytical results (see
Figs. 4 and 8). In reference [18] it was also found that the
crack surfaces during slow crack propagation (left branch
in Fig. 13) was very rough, while very smooth crack
surfaces resulted when the crack propagated fast (right
branch in Fig. 13). However, this change in surface mor-
phology is not the primary reason for the two G(v) crack
propagation branches, but rather a consequence of it.
The fundamental reason is instead the flash temperature,
and its influence on the viscoelastic energy dissipation
in front of the crack tip. We believe that at high crack
tip velocities, the high temperature at the crack tip will
result in a “liquid-like” region at the crack tip. This in
turn will results in the formation of thin uniform layers
of modified (degraded) rubber on the crack surfaces. It
is clear that information about the peak temperature
development during fracture of rubber-like materials can
be gained by observing the amount of decomposition
products formed by the propagation of the crack [28].

11 Fast cracks in rubber – role of inertia

Recent experiments [29] have detected fast crack propa-
gation in rubber, where the crack tip velocity ∼ 60m/s is

Fig. 14. The relation between the crack propagation energy
and the crack tip velocity when inertia effects are included
(qualitative diagram). If the crack tip velocity is increased very
slowly, the crack will follow the hot-crack branch. However, if
the crack tip is initially accelerating very fast, there is not
enough time for the full temperature distribution to develop,
and the system may follow the cold-crack branch. In the lat-
ter case, when the crack velocity becomes of order the sound
velocity c, the crack propagation energy will rapidly increase
(inertia regime).

of order the rubber sound velocity. We believe that this
motion is on the continuation of the cold-crack branch
to higher velocities than considered in our study. When
the crack velocity becomes of order the sound velocity,
inertia effects can no longer be neglected, and the analy-
sis presented above is no longer valid. Nevertheless, from
theory [30] one expects the crack propagation energy to
rapidly increase as the crack tip velocity approaches the
sound velocity c, and we therefore expect the complete
relation between the crack propagation energy and the
crack tip velocity to take the schematic form indicated in
Figure 14.

Slowly moving cracks in rubber have the typical shape
shown in Appendix F (see Fig. 17). However, cracks which
travel faster than the shear wave speed have wedge-like
shape resembling a shock, and recently Marder [31] has
developed a shock-wave theory for rapid crack propaga-
tion in rubber. The analysis of Marder was based on the
elastic free energy density due to Mooney and Rivin. This
model account for the non-linear properties of rubber but
does not take into account correctly the viscoelastic na-
ture of real rubber-like materials. Thus, the model study
of Marder does not account for the increase of the elastic
modulus by perhaps a factor of ∼ 1000 which will occur
close to the crack tip during the fast crack propagation,
and it is not clear to us how well the study of Marder is
able to describe the fast crack propagation in real rubber.

An important problem is to determine under what cir-
cumstances crack propagation will follow the hot-crack
branch and the cold-crack branch. If the crack tip veloc-
ity is increased very slowly so that the temperature field
around the crack tip can be fully developed, our calcula-
tions show (see also App. G) that for all physically rea-
sonable rubber parameters, the crack will always follow
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the hot-crack branch. However, if the crack tip is initially
accelerating very fast, there is not enough time for the full
temperature distribution to develop, and in this case the
system may follow the cold-crack branch. Thus, we believe
that the path the system takes depends on how the crack
is generated initially. For example, if a balloon is picked,
the resulting crack will accelerate, and in an extremely
short time reach a velocity of order the sound velocity,
and the system will follow the cold-crack branch. On the
other hand, if in trouser tests the legs are pulled with
a slowly increasing velocity, the temperature field will at
any moment in time be fully developed, and the system
will follow the hot-crack branch of the G(v)-relation. We
believe that this is the explanation why in reference [29]
very fast crack propagation was observed when a stretched
rubber sheet was picked, while the hot-crack branched was
observed in the trouser tests presented in reference [18].

The scenario described above is very similar to the
ductile-brittle transition often observed for metals. In
some specific temperature regime, if a metal block with
a crack is elongated slowly, the metal in the vicinity of
the crack edges will undergo very large plastic deforma-
tion resulting in a large crack tip radius (blunted tip),
and very slow crack growth; in this case the crack propa-
gation energy will be very high because of the large energy
involved in the plastic deformation. This crack propaga-
tion mode is similar to our hot-crack mode, where a lot
of energy is dissipated in front of the crack tip, but now
because of viscoelastic deformations rather than plastic
deformations. On the other hand, if the elongation is very
fast (fast loading) the crack may propagate very fast in
a brittle-like manner, involving very small plastic defor-
mation and a much lower crack propagation energy G(v).
This is similar to our cold-crack branch.

To summarize, the theory presented in this paper as-
sumes that the crack tip velocity is much smaller than the
sound velocity c in rubber. Since typically c > 10m/s this
is a good approximation as long as the crack tip veloc-
ity is not higher than a few meters per second. At higher
crack tip velocities inertia effects become important, and
the full G(v)-relation is expected to take the qualitative
form discussed above.

12 Comments on the crack tip process zone

Classical fracture mechanics, which is based on contin-
uum mechanics, predicts a stress singularity at a crack
tip, σ ∼ r−1/2, where r is the distance from the crack
tip. However, any real material will yield when the stress
becomes high enough. In an ideal brittle material such as
mica, the relation σ ∼ r−1/2 may hold until r ∼ a is of
order a lattice constant a. However, in most materials the
σ ∼ r−1/2 relation will break down at a much larger dis-
tance r. The spatial region in the vicinity of a crack tip,
where the relation σ ∼ r−1/2 is no longer valid is called
the crack tip process zone.

The crack propagation energy G = 2γeff will, in gen-
eral, depend on the exact nature of the processes occur-
ring in the crack tip process zone [32]. Since these bond-

Fig. 15. The crack tip process zone is very complex involving,
e.g., cavitation, stringing, chain pull-out (for polymers), and
bond-breaking.

breaking processes may be highly complex, e.g., involving
cavity formation and stringing, the crack propagation en-
ergy in general cannot be calculated accurately but must
be deduced from experimental data.

The standard model used to describe the crack tip pro-
cess zone is the Dugdale [33]-Barenblatt [15] model. In this
model it is assumed that the bond-breaking at the crack
tip occurs by stretching the bonds orthogonal to the crack
surfaces until they break at some characteristic stress level
σc. The process zone extends a distance a in front of the
crack tip. This model was first applied to crack propaga-
tion in viscoelastic solids by Schapery [10], and later by
Greenwood and Johnson [11], Barber et al. [12], and by
Hui et al. [13]. A different approach based on energy bal-
ance was used by Christensen [22, 23], and a very simple
treatment was presented by Persson and Brener [14]. All
these studies neglected the temperature increase at the
crack tip due to the viscoelastic energy dissipation. Un-
der the hypothesis of isothermal crack propagation, these
models gave results which agree with those obtained in the
present paper and in reference [14]. In particular, it has
been shown that during crack growth γeff may increase
by a factor of ∼ 103, or more, as the crack tip velocity
increases. It is also important to notice that during crack
closure γeff is instead smaller than γ0 [14]. This large hys-
teresis in the adhesion energy, γeff , during crack growth
and closure, has also been observed experimentally [34],
and may give an important contribution to the friction
force during sliding of a rubber block on a smooth asper-
ity, as the sliding process can be considered as resulting
from a closing crack at the front edge of the contact region,
and an opening crack at the trailing edge [3].

Following reference [14], the present treatment intro-
duces the cut-off length in a more ad hoc manner than
in most earlier treatments, which may be roughly inter-
preted as a blunting of the crack tip. This approach results
in much simpler equations than those obtained within the
Barenblatt model of the crack tip process zone. Further-
more, with some additional mathematical effort, it can
(approximately) account for the flash temperature effect
due to the viscoelastic energy dissipation in the solid. The
exact way the cut-off is introduced is unimportant [14],
and different models give almost the same results [11,12].
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In reality, the process zone is much more complex than
assumed in the theory, see Figure 15. Thus, the cut-off
should be introduced in such a way as to simplify the an-
alytical calculations as much as possible, and for crack
propagation in viscoelastic solids we believe that our cut-
off procedure results in the simplest formalism. Only the
factor G0 in equation (1) depends on the crack tip process
zone, but for polymers this quantity cannot be calculated
accurately at present. However, in the present paper we
have presented a simple model for G0 which can be used
to estimate the velocity and temperature dependence of
G0 for high temperatures.

When the flash temperature effect is negligible the
present theory agrees substantially with other theoreti-
cal studies and with experiment. However, compared to
other theories the formalism used is much simpler and,
as shown above, this makes it possible to account for the
flash temperature effect. The present theory predicts the
influence of the flash temperature on the crack propaga-
tion behavior, and it shows that the flash temperature
may result in unstable crack propagation, e.g. stick-slip
motion or catastrophic failure.

13 Conclusion

In this paper we have studied crack propagation in vis-
coelastic solids. We have calculated the dependence of the
fracture energy (per unit area) G = 2γeff on the crack
velocity v including the effect of the flash temperature.
Because of the low heat conductivity of rubber materials,
the crack tip flash temperature is extremely important
already at relative low crack tip velocities. The theory ex-
plains why unstable crack propagation is observed in many
experiments. The flash temperature modifies the function
γeff (v) in such a way that it becomes non-monotonic.
Thus, depending on the crack speed, unstable crackmotion
may occur, e.g. stick-slipmotion or catastrophic failure.

We note that it should be possible to study the tem-
perature rise in the vicinity of the crack tip using a
high-resolution infrared camera.

In isothermal conditions, when the temperature is
equal to the background temperature everywhere in the
rubber, the present theory gives results similar to those
based on the Dugdale-Barenblatt model in spite of the
very different treatment of the crack tip process zone. This
shows that the exact nature or shape of the crack tip pro-
cess zone is not important for the velocity dependence of
G(v), as long as the size a(v) of the process zone increases
with increasing crack tip velocity v in such a way that the
stress at the crack tip does not exceed the critical value
σc for bond-breaking.

In many applications the external driving stress is not
constant but is oscillating in time. This may result in slow
crack propagation even when the amplitude of the stress
is very small, sometimes causing fatigue failure. We think
that the temperature increase at the crack tip should sig-
nificantly affect the crack propagation under fatigue test
conditions, as already observed in some experiments [35].

We are at present studying this effect and will report on
the results elsewhere.

Appendix A. Energy dissipation per unit time

in a linear viscoelastic material

Consider first a viscoelastic solid subjected to a stress field
σij (x− vt) propagating with velocity v in the solid. Sup-
pose that σij (x) is square integrable, so that σij (x)→ 0
as |x| → +∞. In this case the total elastic energy stored
in the solid does not vary with time, and the work per
unit time done by the internal stresses is just the energy
dissipation per unit time

P =

∫

d3x ε̇ijσij . (A.1)

Under the given hypotheses the stress field may be repre-
sented by means of its Fourier transforms as

σij (x) =

∫

d2q σij (q) e
iq·x . (A.2)

Now in linear viscoelastic materials the time Fourier trans-
form of the strain field is related to the time Fourier trans-
form of the stress field by means of the relation σij (x, ω) =
Eijkh (ω) εkh (x, ω), where the tensor Eijkh (ω) is the com-
plex elastic modulus of the material. Thus, we can write

ε̇ij (x, t) =

∫

dω (−iω) εij (x, ω) e−iωt =
∫

dω (−iω)Cijkh (ω)σkh (x, ω) e−iωt , (A.3)

where the tensor Cijkh (ω) = [Eijkh (ω)]
−1
. Now observe

that

σij (q, t) =
1

(2π)
2

∫

d2x σij (x− vt) e−iq·x =

e−iq·vt
1

(2π)
2

∫

d2x σij (x) e
−iq·x

e−iq·vtσij (q) (A.4)

and that

σij (x, ω) =
1

2π

∫

dt σij (x, t) e
iωt =

∫

d2q σij (q) δ (ω − q · v) eiq·x . (A.5)

Therefore we can write ε̇ij as

ε̇ij (x, t) =

∫

d2q σkh (q) (−iq · v)Cijkh (q · v) eiq·(x−vt).

(A.6)
Substituting (A.6) in (A.1) gives

P = (2π)
2
∫

d2q (−iq · v)Cijkh (q · v)σij (−q)σkh (q) .

(A.7)
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Appendix B. Stress at the crack tip

In this appendix we explain the origin of the ∼ r1/2-
dependence of the stress field at the crack tip. Neglecting
inertia effects, the stress tensor satisfies the equilibrium
relation

σij,j = 0 . (B.1)

In addition, the stress tensor must satisfy certain compat-
ibility conditions, which, as long as the relation between
the stress and strain is linear, and the material homoge-
neous and isotropic, are independent of the constitutive
relation between the stress and the strain. For the plane
stress or strain case which is of interest here (where the
stress tensor is independent of z), the compatibility equa-
tion becomes

∇2(σxx + σyy) = 0 . (B.2)

Note that (B.1) and (B.2) constitute three independent
equations for three unknown quantities, namely σxx, σyy
and σxy. It follows that the stress distribution in the vicin-

ity of a crack tip has the universal form ∼ r−1/2 inde-
pendent of the detailed form of the constitutive relation
between stress and strain as long as the relation is linear
and the material homogeneous and isotropic, i.e., it is also
valid for a viscoelastic solid.

When a non-uniform temperature distribution occurs
at the crack tip, the arguments presented above for the
r−1/2 stress singularity, are not strictly valid. To illustrate
that this is not a trivial point let us note that even for a
constant temperature, the effective hardness of the rubber
will vary with the distance r from the crack tip, perhaps
from a hard glassy region close to the crack tip to a very
soft rubbery behavior far away, simply as a result of the
difference of the perturbing frequencies ω ∼ v/r. How-
ever, as is proved above, this difference in elastic hardness
has no influence on the stress singularity ∼ r−1/2. How-
ever, the temperature profile has a different influence on
the viscoelastic modulus than that which results from the
variation in the perturbing frequencies.

Appendix C. Asymptotic value of the crack

propagation energy

Let us prove that, when the temperature in the rubber is
constant, during crack opening at very high velocities the
following relation is obtained:

limv→∞γeff(v) = γ0E∞/E0 . (C.1)

This relation is not valid during crack closing. As shown
above the stress in the vicinity of the crack tip has the
universal form

σ = K(2πr)−1/2 , (C.2)

where the stress intensity factor K is proportional to the
external applied stress. Assume that the crack tip propa-
gates with a velocity v. The deformation rate of the vis-
coelastic solid at a distance r from the crack tip is charac-
terized by the frequency ω = v/r. Now, the smallest possi-
ble r is a molecular distance a. Hence, the highest possible

Eoo

E0

Fig. 16. When a crack propagates fast in viscoelastic solids
it is possible to distinguish between three separate regions:
a) an inner region where the perturbing frequencies ω = v/r
are in the hard glassy region of the rubber viscoelastic spec-
tra, characterized by the high-frequency elastic modulus E∞,
b) an outer region where the perturbing frequencies correspond
to the rubbery region characterized by the zero-frequency mod-
ulus E0, and c) an intermediate region where the full complex
viscoelastic modulus E (ω) enters, and where most of the en-
ergy dissipation occurs.

frequency will be v/a. For very low velocity this frequency
will be in the rubbery region of the viscoelastic spectra
E(ω) and in this case the solid will behave purely elasti-
cally everywhere with the elastic modulus E0 = E(0). In
this case no dissipation in the bulk occurs and the crack
propagation energy is G = 2γ0.

Next consider very high crack velocity v. Thus, for
small enough r the frequency ω will be so high that the
rubber response will correspond to the glassy region where
the elastic modulus is E(ω) ≈ E∞. On the other hand,
when r is large enough the frequency ω = v/r will corre-
spond to the rubbery region where E(ω) ≈ E0. At inter-
mediate distances E(ω) is complex and this “dissipative”
region is indicated by the dark-gray area in Figure 16.
Now, let us consider the crack propagation energyG which
for an elastic medium in plane stress conditions is related
to the stress intensity factor K via

G = K2/E. (C.3)

We first apply this formula to the inner region at the crack
tip. In this case G = G0 = 2γ0 and E = E∞ giving

2γ0 = K2/E∞ . (C.4)

When we study the system at a lower magnification we
do not observe the inner region and the dissipative region
but only the outer region. In this case we must include in
the crack propagation energy the energy dissipation in the
rubber in the transition region (dark-gray area in Fig. 16).
Thus, G will now be larger than 2γ0 and we write for the
outer region G = 2γeff . Since E = E0 in the outer region,
we get

2γeff = K2/E0 . (C.5)

Combining (C.4) and (C.5) gives (for v →∞)

γeff = γ0E∞/E0. (C.6)
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Appendix D. A sum rule for the viscoelastic

modulus E(ω)

Let us prove the sum rule given by equation (21). The vis-
coelastic modulus E(ω) and the inverse 1/E(ω) are causal
linear response functions. For example, causality implies
that the strain ε(t) in a solid at time t only depends on
the stress σ(t′) it was exposed to at earlier times t′ ≤ t,
i.e.,

ε(t) =

∫ t

−∞

dt′ C(t− t′)σ(t′) . (D.1)

Defining the Fourier transform

ε(ω) =
1

2π

∫

∞

−∞

dt ε(t)eiωt , (D.2)

we get from (D.1)

ε(ω) = σ(ω)/E(ω) , (D.3)

where
1

E(ω)
=

∫

∞

0

dt C(t)eiωt . (D.4)

Since Re (iωt) < 0 for t > 0 and Im (ω) > 0 it follows that
1/E(ω) is an analytical function of ω in the upper half of
the complex frequency plane. Thus all poles and branch
cuts of 1/E(ω) will occur in the lower part of the complex
ω-plane and we may write

1

E(ω)
=

1

E∞

+

∫

∞

0

dτ
H(τ)

1− iωτ
, (D.5)

where the spectral density H(τ) is real and positive. Using
(D.5) one can easily prove the sum rule

1

E(0)
− 1

E(∞) =
2

π

∫

∞

0

dω
1

ω
Im

1

E(ω)
. (D.6)

Appendix E. A more general viscoelastic

model

The Kelvin viscoelastic model is not a good description
of rubber-like materials because it depends on a single re-
laxation time while rubber-like materials have a wide dis-
tribution of relaxation times. A better description of the
rubber behavior can be achieved considering a discretized
version of the general formula (D.5). We assume that the
spectral density H (τ) is different from zero only in a finite
interval τ1 ≤ τ ≤ τ0. In this case, with the substitution
τ = τ1e

µ, we have

1

E(ω)
=

1

E∞

+

∫ µ0

0

dµ
τ1e

µH(τ1e
µ)

1− iωτ1eµ

≈ 1

E∞

+ τ1∆µ

n−1
∑

k=0

ek∆µHk

1− iωτ1ek∆µ
, (E.1)

where Hk = H(τ1e
k∆µ), n∆µ = µ0, and µ0 = log (τ0/τ1).

Putting ω = 0 in (E1) gives

τ1∆µ =
1

∑n−1
k=0 e

k∆µHk

(

1

E0
− 1

E∞

)

.

Thus, (E1) can be written as

E0
E(ω)

= (1− κ) + κ
1

∑n
k=0 e

k∆µHk

n
∑

k=0

ek∆µHk

1− iωτ1ek∆µ
,

(E.2)
where κ = 1 − E0/E∞. If the spectral density H (τ) =
Aτ−s, we get

E0
E(ω)

= (1− κ) + κ
1

∑n
k=0 e

k∆µ(1−s)

n
∑

k=0

ek∆µ(1−s)

1− iωτ1ek∆µ
.

(E.3)
Using this rheological model in (23) and (49) one obtain
the following expressions for the effective adhesion energy
γeff , and the temperature distribution:

(

γeff
γ0

)

−1

= 1− κ
∑n

k=0 e
k∆µ(1−s)

n
∑

k=0

ek∆µ(1−s)

×
∫ 1

0

dy
λaye

k∆µ

1 + (yλayek∆µ)
2
+

√

1 + (yλayek∆µ)
2
, (E.4)

Ty
T0
= 1 +

2Λκ
∑n

k=0 e
k∆µ(1−s)

n
∑

k=0

ek∆µ(1−s)

×
∫ 1

0

dz
λaze

k∆µ

1 + (λzazek∆µ)
2
+

√

1 + (λzazek∆µ)
2

×
∫ 1

0

dw
J0 (w/y) Ĥ (z/w)

(1 + ξ2w2)
1/2

. (E.5)

Here we have λ = ωcτ1 and v0 = a0/ (2πτ1).

Appendix F. Stress-aided thermally activated

bond-breaking at the crack tip

We assume the following basic picture for the bond-
breaking at the crack tip. To break the strong covalent
bonds in the hydrocarbon chains requires very high lo-
cal stress σ∗c . The crack tip yield or rupture stress σc in
the theory presented in this paper is typically of order
σc ∼ 10MPa, which is many orders of magnitude smaller
than the local stress σ∗c necessary to break the covalent
bonds. However, the stress σc is so high that the polymer
chains have been largely straighten out, and the rubber
(because of the non-linear elastic modulus) stiffened to
the extent that the rubber in the process zone has become
brittle-like. Thus, in the crack tip process zone, strong
stress concentration will occur close to any crack-like de-
fect which may result in local bond-breaking. This may
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Fig. 17. In the crack tip process zone crack-like defects occur.
The average stress in the crack tip process zone is of the order
of the rupture stress σc but the local stress σ∗

c
at the tips of

the crack-like defects may be high enough to break the strong
chemical bonds in the hydrocarbon chains. We assume that σ∗

c

is proportional to the average stress σc.

occur simultaneously at many places in the crack tip pro-
cess zone, resulting in a very inhomogeneous and defect-
rich (degraded) rubber which finally fails (see Fig. 17).
The following calculations will be based on the assump-
tion that the local stress σ∗c (at the tip of a crack-like de-
fect) necessary for bond-breaking, is proportional to the
yield or rupture stress σc.

Consider a polymer chain in front of the crack tip.
Let k be the spring constant of a bond in the chain. If a
force F elongates the chain, the bond length will increase
with u = F/k. If ∆E is the energy necessary to break
the bond, then we define the critical displacement uc so
that ∆E = ku2c/2. If the bond has been elongated by
the amount u the barrier which must be overcome by a
thermal fluctuation in order to break the bond will be

U =
1

2
k
(

u2c − u2
)

= ∆E

[

1−
(

u

uc

)2
]

.

Since the displacement u = F/k is proportional to the
stress σ, we can also write

U = ∆E

[

1−
(

σ

σc0

)2
]

, (F.1)

where σc0 is the rupture stress at zero temperature. Sub-
stituting (63) in this equation gives

U = ∆E

[

1−
(

σc
σc0

)2
a

a− vt

]

. (F.2)

The probability that the bond is not broken at time t (note
t ≤ 0) can be obtained by integrating (64) which gives

P (t) = exp

(

−
∫ t

−∞

dt′ w(t′)

)

, (F.3)

where we have used that P (t) = 1 for large (negative)
times. We can determine the rupture stress σc (which de-
pends on the temperature T and the crack tip velocity v)
by the requirement that with high probability the bond
is broken when the crack tip arrives to the polymer chain
(or segment) under consideration. The result for σc(v, T )
is very insensitive to the exact definition, and it is conve-
nient to use the condition P (0) = 1/e. Thus, using (F.3)
we get

P (0) = exp

(

−
∫ 0

−∞

dt′ w(t′)

)

= 1/e

or
∫ 0

−∞

dt w(t) = 1 . (F.4)

Substituting (65) in (F.4) gives

∫ 0

−∞

dt νexp [−βU(t)] = 1 . (F.5)

Substituting (F.2) in (F.5) and changing integration vari-
able to x = 1− vt/a gives

∫

∞

1

dx exp

(

−β∆E
[

1−
(

σc
σc0

)2
1

x

])

=
v

νa
. (F.6)

The integral in this expression diverges. This results from
the large x-contribution to the integral. However, this
divergence is of no physical significance and just corre-
sponds to the fact that at any finite temperature all bonds
break after a long enough time. In fact, for kBT/∆E ¿ 1
the only important contribution to the x-integral in (F.6)
comes from x ≈ 1 (i.e., from −vt/a < 1), and we may
replace x = 1 + ξ and expand 1/(1 + ξ) ≈ 1 − ξ to first
order in ξ. This gives

∫

∞

0

dξ exp

(

−β∆E
[

1−
(

σc
σc0

)2

(1− ξ)

])

=
v

νa
.

Performing the integral gives

exp

(

−β∆E
[

1−
(

σc
σc0

)2
])

=
β∆Ev

νa

(

σc
σc0

)2

or
(

σc
σc0

)2

= 1 +
kBT

∆E
ln

[

v

v1

a0
a

(

σc
σc0

)2
]

,

where
v1 = a0νkBT/∆E .

Appendix G. The fully calculated G(v) curve

As already stated in Section 11, here we show that depend-
ing on how the crack propagation process is initiated, quite
fast cracks may follow either the hot-crack branch or the
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Fig. 18. The effective energy to propagate the crack as a
function of the crack propagation speed for different values
of ξ0 (a). Some curves are also plotted for very high values of
(ξ0 > 1018), and in the limiting case of isothermal conditions
(ξ0 → ∞) (b). Note that for physically reasonable values of
ξ0 < 1013 and quite fast-moving cracks, say log

10
(v/v0) > 9,

both the cold-crack and the hot-crack regimes are permitted.

cold-crack branch of the G (v) diagram. In fact the numer-
ical calculations have shown that for all physically plau-
sible rubber parameters, the G (v) curve shows a branch
point (where the number of solutions changes from one
to two), which occurs when the crack velocity exceeds a
certain value dependent on the viscoelastic properties of
the rubber. Thus, depending on how the crack propaga-
tion process evolves, a significant increment of tempera-
ture may be produced or not. If the crack tip velocity is
increased very slowly (quasi-stationary process) then the
crack will always follow the hot-crack branch but if for
some reasons the increase of temperature is avoided then
the system may follow the cold-crack branch. Our calcula-
tions consider a steady-state crack propagation, therefore
our theory is not completely able to determine in which
conditions fast moving cracks will follow the cold branch,
but nevertheless it shows that this may happen because
of the occurrence of a branch point into the solution.

Figure 18(a) shows the effective energy γeff to prop-
agate the crack as a function of the crack propagation
speed for different values of ξ0 = 2πD/ (a0v0). In this
case the linear viscoelastic Kelvin model has been used.
Some curves are also plotted for very high values of ξ0
(ξ0 > 1018), and in the limiting case of isothermal con-
ditions (ξ0 → ∞) (see inset in Fig. 18(b)). In this case
the hot-crack regime is suppressed, i.e. the temperature is
always very close to the background temperature T0. Also
note that for physically reasonable values of ξ0 (say ξ0 <

1013) and quite fast-moving cracks, say (log10 (v/v0) > 9),
both the cold-crack and the hot-crack regimes are permit-
ted, whereas if ξ0 > 1018, i.e. for very high values of the
diffusivity D of the rubber, the G(v)-function is a single
valued function and no branch point occurs. Also observe
that the cold-crack regime actually represents an unstable
behavior of the system. On the cold-crack curve the en-
ergy required to propagate the crack decreases as the crack
speed is increased. Thus, a very small reduction of the
crack speed would increase the energy required to propa-
gate the crack, this in turn will cause a further reduction
of the crack speed until crack arrests. Vice versa, a small
increase of the crack velocity would cause a reduction of
the crack propagation energy. Therefore in the cold-crack
regime, if the energy available to propagate the crack is
enough, the crack will accelerate till to reach a new sta-
ble point located, this time, on the inertia regime curve
(see Fig. 14) with a propagation speed close to the sound
velocity.

Numerical calculations have shown that if ξ0 is very
large (ξ0 > 10

18), the thermal energy produced by the vis-
coelastic dissipation diffuses very quickly away from the
crack tip region, and since for very high crack tip veloci-
ties the energy dissipation occurs in a very large volume
very far away from the crack tip, a negligible temperature
increase is produced. Thus, as a function of the crack tip
velocity, we expect a temperature-induced peak-like struc-
ture in the crack propagation energy, as indeed observed
in the calculations (see Fig. 18(b)).
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