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Crack propagation in viscoelastic solids
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We study crack propagation in a viscoelastic solid. Using simple arguments, we derive equations for the
velocity dependence of the crack-tip radia&;), and for the energy per unit area to propagate the ca@k,
For a viscoelastic moduluE(w) which increases as'™ (0<s<1) in the transition region between the
rubbery region and the glassy region, we find that) ~G(v) ~v® with a=(1-s)/(2-s). The theory is in
good agreement with experiment.
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I. INTRODUCTION energy dissipation in the vicinity of a crack tip which propa-
. . . ates with the velocity, and we derive a general expression
The_ propagation .Of qracks in rubber is fgdamental for?or G(v)=2e4(v) Thiyé quantity dependsgon a cuto?f radius
many important applications—e.g., rubber wgb—and for Lo . .
pressure-sensitive adhesiy@$ The strength of the adhesion arfza;l\jvrﬁe?g;rrpe'ga ,['2 %;C' 2,/5' iefitr']?;'i%p(;ﬁﬁgtirgzﬁmgcal
and cohesion of elastomers can be characterized by th\E/%elocit The theoretica?ﬁresults are compared to experi-
amount of energys required to advance a fracture plane by yv. P P

one unit area. Experiments have shown tBatlepends on ?o?t?égit:slg ?fegr'a\c/;:% LF;OSS?nC. \Qllmeo?mnelqggnb;gimgﬁ
the crack-tip velocityy and on the temperaturg and that P 9. P

[3-5] lished on crack propagation _in visco_elas_tic solids, and we
compare our results to earlier studies in Sec. VIIl. The
G, T) =Gy[1 +f(v,T], (1)  energy-loss approach we use and the way we introduce the
crack-tip radius have several important advantages over the
wheref—0 asv—0. Thus,G, is a threshold value below Barenblatt crack-tip model used in most earlier studias:
which no fracture occurs. The measured valueGoht ex-  the analysis is much simpleh) the analysis can be extended
tremely low crack velocities and high temperatures, wheno include the nonuniform temperature distribution at the
viscous effects in the rubber are minimized, is of ordercrack tip, and(c) the analysis shows that the viscoelastic
~1 eV/A? and can be identified &,. At high crack veloci-  contribution to the crack-tip propagation enei@ydoes not
ties, G may be up to 18times higher. For simple hydrocar- depend on the detailed processes which occur at the crack
bon elastomers, the effect of temperature can be accounteigph. This is very important, since thegeighly complex pro-
for completely by applying a simple multiplying factaf to  cesses cannot be described accurately at present. In addition,
the crack velocitw—i.e., f(v, T)=f(a;v). Moreover, values (d) by using a simple sum rule for the viscoelastic modulus,
of ar determined experimentally are equal to the Williams-we are able to simplify the derivation by avoiding the need to
Landel-Ferry[6] function determined from the temperature include the(complicated angular dependence of the crack-
dependence of the bulk viscoelastic modulus. This provesip stress field. Finally,(e) our treatment gives a simple
that the large effects of crack velocity and temperature ortlosed formula foiG(v).
crack propagation in rubber materials are due to viscoelastic
processes in the bulk.
The energy dissipation at a crack in a viscoelastic solid Il. CRACK IN AN ELASTIC SOLID
has two contributions. The first is associated with the inner-
most region at the crack tifthe so-called crack tip process
zone. It involves highly nonlinear processé¢s.g., cavity
formation, stringing, chain pull-oufor polymers, and bond
breakind and is described phenomenologically via the term
Gop=27y,. (Note that for rubberlike materialgy is much
larger than the surface energy) This contribution toG(v)
cannot be calculated reliably and is taken as an igeter-
mined experimentallyin the theory. The second contribution
comes from the viscoelastic dissipation in the polymer in the
linear viscoelastic region in front of the tip. This contribution
is calculated here, and we argue below that the exact form of
the crack-tip process zone is not important for the calculation
of the viscoelastic contribution tG.
In Sec. Il we review briefly the standard theory of cracks FIG. 1. Crack in an elastic solid. The crack edge is alongzthe
in elastic solids. In Sec. Il we calculate that the viscoelasticaxis.

In this paper we focus on cracks loaded in tendimode
I). We assume that the crack edge is parallel tazthgis; see
Fig. 1. In elastic continuum theory, the stress in the vicinity
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of the crack tip has the universal forfi] o(q,t) = o(g)e (7)
o (r, ) = K(2m1) ™ *f; (), (2)  then
where the stress intensity factkiris proportional to the ap- lo()|? = aK?q%(2m)3. (8)

plied stress, but independent of the polar coordinatead o ) )
¢. The angular factorf;j(4) takes a universal form. The Substituting Eqs(6) and(7) into Eq. (4) gives

crack propagation enerd$ is given by[7] —igw
P:(Zw)zf dzq%|a(q)|z
X

G=\KZE, (3) E(-
whereE is the elastic modulus, and=1 in plane stress and _ 2 2 w )
N=1-12 (wherev is the Poisson ratjoin plane strain. The = (2m) fd“’d qé(w + gyo)Im E(w)|(’(q)| )

crack propagation energg(v) does not depend on how the ) ) _ _ )

plest case of plane stress. tuting Eq.(8) into Eq. (9) gives

1
Ill. CRACK IN A VISCOELASTIC SOLID p= aKzz_ f dwdzqﬁ(w+ Q)M 0
T

3
q
Consider a crack loaded in tensigmode ) in a vis- E(w)

coelastic solid. We calculate the crack propagation energy .1 [~ o (7 2m

G(v), which is an intrinsic material quantity that does not =aK pu dew Im % dqg dépS(w + quv cosgh).
depend on the geometry of the sample. Let us first calculate 0 0 0

the energy dissipation per unit time and unit length of the (10)
crack line, P, for the general case of a crack propagatingg;,ce

with velocity v in a linear viscoelastic solid. We have

dodl =,
. $(w +qu cos¢) (2% - D)2

sz 26(qu — )
P:fd2XéijUij! (4)

whereoy; is the stress tensor argj the strain rate tensor. In substituting into Eq(10) gives
continuum mechanics, for a homogeneous material, the gen- sz 2mla

eral form of the stress in the vicinity of a crack tip is inde- P= aKZ; , dw Im Ew) ), daq A(q?v? - w?) 2,

pendent of the detailed relation between the stress and strain
(i.e., also valid for a viscoelastic matepiaind takes the uni- (11

versal form(see Appendix A 8] where we have introduced a large wave vector cutaff &,

a(x,t) = K(2m|x — vt|) "2, (5) wherea may be a molecular distanéthe distance between
cross-linkg or larger(see below Theq integral in Eq.(11)

Here we have ignored the tensorial aspect of the stress tensigreasy to perform, yieldingw=2mvx/a)

which enters via a functiofy;(¢) that depends on the polar

: : : 1 2\1/2
angle ¢ in the xy plane. We correct for this later. We write p= aKZvEf d;\(l X°) Im 1 ’ (12)
A 7Jo X E(xwe)
a(x,t) = f d’qo(q,)e?*, (6) .
where w,=2mv/a. Now, let us consider the energy conser-
where vation condition relevant to the crack propagation. In the
present case, the elastic energy stored in the solid in front of
B 2 —iqx 1o the crack tip is dissipated at the crack tip. The flow of elastic
o(q,t) = (2m)? d*xeT|x = vt 7K energy into the crack is given b@v, which must equal the
, fracture energy ternGgyv plus the bulk viscoelastic dissipa-
__ K Utf ) €'9% tion term P given by Eq.(12). Energy conservation gives
= 52€ | A%
(2m) x| Gu =G + P. (13)
_ e Wy . i .
- (27)5/26 idtg3/2 f d2W|w|1’2' Substituting Eq(12) into lEq.(13) gzl\l/ZS
G=G +aK23f d'(l_x) — (14
We note that 0 7o A E(xoy) |
—iw, | 2 ke 2
fdzwﬁvT,z :47T2‘f dwwt2Jo(w) | = 47%a, Using G=K?/E(0) in Eq. (14) we obtain
0
G
wherea is a number of order unity that also depends on the G= 1 (01 ERNTE 1 (15)
angular factor in the crack-tip stress distribution which we 1 _(2a/77)E(0)J dx Im
have neglected above. If we write 0 X E(xwe)

036123-2
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We can determinex by consideringy. for very large
crack velocities; one can show th@ppendix A) [9]

_o E®)
G=Cor g

We can use this result to show that 1. In Appendix B we
prove thesum rule

11 2J°° 11
— =2 do=Im——.
EO0) E(®) =),

(16)

(17)

Whenv — o, we havew,— % and

PHYSICAL REVIEW E1, 036123(2009

close to the tip is in an effectively hard glassy state. This is
included in our treatment. The appearance of the zero-
frequency elastic modulus(0) in the definition of the crack-

tip radiusa, follows from the fact that, in limit of zero crack
propagation velocity, the perturbing frequendiay vanishes
and onlyE(0), and not the elastic modulus at some higher
frequency, can enter ia.

Let us consider a general case where

1 1 fx H(7)
E(w E. J; l-iwt

where thespectral density ) is real and positive. As

(22)

2 (1 (1-x)12 1 2 1 1 shown in Appendix B, any causal linear response function
Eo; . dx » Im Exay) - Eo; . dw; Im E(a) can be represented in the for®2). Note that
1 1 s
E(0) - - :J drH(7) (23
E) (18) Eo E. Jo
If we substitute this result in Eq14) and chooser=1, Eq.  @nd
(16) is satisfied. 1 * H
Im —— :J dTL‘”Z. (24)
E(w) o 1+(w7)
IV. TIP BLUNTING Substitution into Eq(21) leads to
Equation(14) depends on the cutoff lengéh and Eq.(14) a 1
is of limited practical importance unless we have a way of a_o = w , (29
determining this length. We determimeas follows. Experi- 1- Kf dH(D{1+bX(D]M2-b (D}
ments have shown that the crack-tip radius in polymers in- 0
creases with increasing speed of the crack(sige below. L _
We choosea equal to the radius of the crack tip, which we whereb=wer=2mv/a=(2mv/ag)(ap/a) and
determine as follows. The stress at the crack tip must be |3|( ) H(7) 26)
T =

equal to the stress necessary to break the atomic bonds at the
tip in order for the tip to propagate. f; denotes this stress,
which is a characteristic property of the material in question,

we obtain, from Eq(5),

o= Kl(2ma)'?, (19

f ‘dT’H(T,)

0

Note thata/ay=G/Gy=yes/ yo. This result and Eq(25) are
the main results of this paper.
Let us now consider the limit of large crack-tip velocity.

wherea depends on the crack-tip velocity. Combining this Wheny — o, a/ay,— o, but slower than the velocity. Thus,

result with
G =K?E(0)
yields
2778.0'5
=—. 20
£0) (20)
Combining Eqgs(14) and (20) leads to
a
a= , 21
2 1 (l _X2)1/2 1 ( )
1-E;— | dx Im
7)o X E(xw,)

where w,=2mv/a and whereay=E(0)Gy/ (2ma?). Since w
depends ora, this is an implicit equation foa=a(v). Thus
the present theory gives both theslocity-dependentradius

of the crack tip,a(v), and the crack propagation energy

G(v)=Gpa(v)/ ay.

For high crack-tip velocities, because of the high defor-
mation frequencies at the crack fipf orderv/a), the rubber

for a fixed 7, b— % asv —<. If we introduce a cutoff time
=7 via the conditionb(7")=1 or 7 =a/(2mv), we find, for
largev,

oo N o] . 1
f dH(D[(L+b)2-p 1]~ 1~ f drH(7) .

0 T
(27)
Equation(25) then takes the form

G\2_(a)? LG
(EF=(2)-(2 [ e") o
Go ag 2mv ) T
Here we have puk=1 (typically Eo/E,.~0.001 so that

~0.999; the deviation ofx from unity becomes important
only for very high velocitiegsee below.

V. ANALYTICAL AND NUMERICAL RESULTS FOR
REALISTIC RUBBER MODELS

We assume that(7)=A7 Y2 which follows in the Rouse
model [12] when 1/ >w>1/7 (7, is the so-called en-
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tanglement timg For rubber compounds used for pressure- 3
sensitive adhesives one has typically=1s and 7; //
~10°s, giving 7/ 7y~ 10°. For r<r; and > 7, we take P
H(7)=0. Now, since =2 //
o TO 0 7
f drH(7) = f drA7 2~ 2A72, 2 Y
0 71 - 1 /
/
for 7> m we get 7
. 1/2 0 ; . . . . .
0~ i(@) _ 0 4 8 12
20\ T log (v/vg)

Substituting this result in Eq28) gives FIG. 2. The dependence of the effective surface eneggyon

a v \13 the crack velocity for a rubber characterized by the spectral den-
—=\— , sity H(n) ~ 7 Y2for 7 < r< 7y and zero otherwise. The solid line is
% Yo the result of the full theory, Eq25), while the dashed line is the

where vo=a,/(277). The effective interfacial energy for approximation(29). We have assumeth/ 7, =10° andE../Eq=10%
The reference velocityy=ay/(277p), Whereay is the cutoff dis-

largev is
, tance in the limit of arbitrary slowly moving crack. The logarithm is
_oa ( v )1 3 with 10 as the basis.
Yeft = Yo~ Yol
Qo Vo
. : . - _ for a styrene-butadiene rubber compound filled with carbon
?Slcae Yett = Yp @Sv—0, we can write the interpolation for black. The data are fitted well by a power ld&t) ~t 14
s corresponding ts=0.6 (since the exponent is given by
v —-2). We obtain
Yeft = 70(1 + —> : (29)
Vo
_ s

which has the correct limiting behavior for large and small H= M(E) )
crack velocities. Equatiori29) is valid only if v is below 70 T
some valuey;, which can be determined by the fact that the
maximum possibleye is yE(2)/E(0). This gives Substituting this in Eq(28) gives, after some simplifications,

(Ul)1/3 E(x) ,

Yo\ ) =Yoo A a
oo/ ~°EO) a_ <_) (11> | (30
-s
or v
_ E()\3 wherea=(1-s)/(2-s) and 8=1/(2-s). Thus, for example,
v1= P\ k) ) if s=0.6,a~ ye~v?/".

_ Finally, in Appendix C we study crack propagation in a
In a typical caseF(»)/E(0) equals 16‘104’.50 thatvy  yiscoelastic material described by the so-called Kelvin
~(10°-10")v, in good agreement with experimel®. The  model. This is not realistic for real rubber, but is often used
relaxation timer, can be identified with the so-called en- iy model calculations.
tanglement time, which for polymers used for pressure-
sensitive adhesives typicallat room temperatujds of or-

der~1 s. Thus, the velocityg=ay/ (277) is typically of the 14
order 10%° m/s, which again agrees with rubber tear or peel
experiments. )

In Fig. 2 we compare the predictions for the velocity de- S12
pendence of the effective surface energy using the ap- 5
proximate equatiori29) (dashed curvewith the full theory, '-';)10
Eq. (25) (solid curve. 9

Let us consider a more general viscoelastic modulus
whereH(7)=A7° and 0<s<1. Fors=1/2 this reduces to 8

the case studied above. For many rubber compounds a good 5 ) o
description of the viscoelastic properties in the transition re- log t (s)

gion, between the rubbery and glassy regions, is obtainged if

is slightly larger than 0.5, typically in the range from 0.5 t0  FIG. 3. The logarithm of the Fourier transform of the viscoelas-
0.7. As an example, we show in Fig.(8n a log-log scale tic modulus as a function of the logarithm of time for a styrene-
the Fourier transforni(t) of the viscoelastic moduluB(w) butadiene rubber compound.

036123-4



CRACK PROPAGATION IN VISCOELASTIC SOLIDS

log G (J/m2 )

tearing gg

2

-

ist

—b—

PHYSICAL REVIEW E1, 036123(2009

occurs very slowly, the energyper unit area 2y, for bond
breaking during crack opening differs from the energy gain
(per unit arefa 27y, due to bond formation during crack clos-
ing, with yo=v,. However, when only the weak van der
Waals interaction occurs between the crack planes, as is the
case when a rubber ball is in contact with a glass surface, one
may expecty,= vy,, and we will assumey,=, in the fol-
lowing.

For a closing crack, the interfacial binding enefgy sur-
face energy 2y, is converted partly into elastic energy and
partly dissipated in the rubber bulk, so that the energy con-
servation condition takes the form

dUsurf — %

+P,
dt dt

éﬁ 5}_ --%Ai

-—h A

2| cutting .
§§ and tearing

and it is clear from energy conservation that=< v,. Thus,
while vy, may increase during crack growth by a factor of
~10* as the velocity increaseg,s= 7y, during crack clo-
sure. This large hysteresis in the adhesion eneygy, has
been observed experimentall¥0] and may give an impor-
tant contribution to the friction force during the sliding of a
rubber block on a smooth asperity, as the process can be
viewed as the contribution of a closing crack at the front

FIG. 4. Fracture energ for styrene-butadiene rubber at vari- 2332[22]the contact region and a opening crack at the trailing

ous cutting or tearing speeds Bt 25 °C. Adopted from Ref5].

-10 -8
logv (m/s)

VIIl. DISCUSSION AND COMPARISON

VI. COMPARISON WITH EXPERIMENT WITH OTHER STUDIES

Flglure 4 shows the fracture energ_‘y_r for a styrene- . Classical fracture mechanics is based on continuum me-
butadpne copolymer rubber as a function .Of the c.rack t'pchanics and predicts a stress singularity at a crackdip,
ve]quty [5]. The results ha\{e been obtamed. using the~r‘1’2 wherer is the distance from the tip. However, any
W|(IJ|ams-Lr?nde!{-hFerr3_[§] vlelgc:ty-temperbe;tu_re ghflftmg prl?- real material will yield when the stress becomes sufficiently
cedure, where the original data were obtained for crac Veﬁigh. In an ideal brittle material, such as mica, the relation
locities below 1 cm/s in order to reduce the influence of the ~r12 may hold untilr~a is of the order of a lattice
crack-tip flash temperature. On the log-log scale the eXperiéonstanla However. in most materials the— r-'2 relation
mental data exhibit a straight line corresponding to avelOCitXNill break. down at ll“nuch larger distancesThe spatial re-
dependenc& ~uv® with «=~0.27, in good agreement with .~ . L : -
the theory presented abovdor s=0.6 we havea=(1 gion in the vicinity of a crack tip where the relatiom

)  ~r"Y2is no longer valid is called therack-tip process zone
-s)/(2-s)=0.28). Figure 4 also presents results obtained The crack propagation energy= 2y will generally de-

when rubber is torn apart while a sharp razor blade is pushe'gend on the exact nature of the processes occurring in the
into the crack tip. Cutting resistance at low speeds is ratheérack-tip process zone. Since these bond-breaking processes
independent of speed, although at high speeds it increas%y be highly complex—e.g., involving cavity formation
markedly. In this case Fhe crack-tip diameter is _presumabl)énd stringing—the crack propagation energy cannot in gen-
given by the blade-tip diameteabout 1000 ny which may o5 e calculated theoretically but must be deduced from
explain the approximate independence of the fracture energyyperimental data. Only in the limiting case of ideal brittle
on crack velocity for small velocities. solids (e.g., mica will the crack propagation energg=~ 2y
be (nearly equal to the energy per unit area required to break
the atomic bonds at théatomically sharp crack tip. The
surface energyy is known for many solids and can some-
times can be calculated using electronic structure methods.
The problem of crack growth studied above has many The standard model used to describe the crack tip process
direct applications, including wear and adhesives. The oppazone is due to Barenblafi3], who assumed that the bond
site situation of crack closure in a viscoelastic media is im-breaking at the crack tip occurs by stretching the bonds or-
portant during the formation of contacts between a viscoelaghogonal to the crack surfaces until they break at some char-
tic solid and another solid, as in standard adhesion testacteristic stress levet.. The process zone extends a distance
where a rubber ball is brought into contact with a hard flata in front of the crack tip as indicated by the horizontal white
surface. However, in many practical situations, irreversibldine in Fig. 5b). This model was first applied to crack propa-
surface processes occur so that, even when crack propagatigation in viscoelastic solids by Schapdi4]| and later by

VIl. COMMENT ON CLOSING CRACKS IN
VISCOELASTIC SOLIDS
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2) (b) surface energy of normal rubber, which is only a few
meV/A2 In general,G, increases with increasing chain
length, and in experiments probing the adhesive strength of
aI partly cross-linked rubber sheetsy appears to be directly
proportional to the density of interfacial bonds. These results
are both expected and supported by simple model calcula-
_ , o _ tions; see Ref[18].

FIG. 5. The singular stress region at a crack tip in continuum  The treatment presented above neglects the influence of
mechanics can be removed either(Bytip blunting(tip diameter) 4 inhomogeneous temperature distribution, which occurs in
or (b) by introducing a lateral regiofiinear sizea) over which the the vicinity of the crack tip as a result of the i,nhomogeneous
bond breaking occurs. The latter is the so-called Barenblatt procesesnergy dissipation. This temperature effect should be ex-
zone. tremely important for fast-moving cracks, but the measure-
ments of Gent and others consider only relatively slowly
moving cracks,uv <1 cm/s. However, detailed theoretical
calculations are necessary in order to determine under ex-
actly which conditions temperature effects become impor-
tant. In the context of tires sliding on road surfaces, flash
(amperature effects in the rubber may already be important
or sliding velocities>0.1 cm/s[19].

Greenwood and Johnsgh5], Barberet al.[16], and Hui and
co-workers[17]. The present treatment introduces the cutoff
in a moread hocmanner, which may be roughly interpreted
as a blunting of the crack tip as in Fig(a. However, the
exact way of introducing the cutoff is unimportant, and in
reality the process zone is much more complex than assume}
in the theory; see Fig. 6. In general, the cutoff should be
introduced to simplify the analytical calculations as much as IX. SUMMARY AND CONCLUSION
possible, and for crack propagation in viscoelastic solids we ) . L
believe that our procedure results in the simplest formalism. . I this paper we have studied crack propagation in linear
Barber, Donley, and Langdfi6] studied crack propaga- viscoelastic solids. We have focused mainly on crack open-

tion in viscoelastic solids using the Barenblatt model, whiching. but we also considergd the more compibut less im-
resulted in a very complex set of equations. The author?ortanh case of crack closing. We have calculated the depen-

where nevertheless able to extract the high-velocity behavidi€"ce Of the fracture enerdper unit area G=2ye on the
of G, which agrees exactly with our limiting behavior given Crack velocityv. Our approach is based on energy conserva-
by Eq. (30). This limiting behavior was also obtained by tion and is much simpler than the standard approach based

Greenwood and Johnsdi5], enforcing that the exact way on the Barenblatt model of t.he craqk—tip process zone. Nev-
the short-distance cutoff is introduced is unimportant. Onlye'theless, the two models give similar results in spite of the
the factorG, in Eq. (1) depends on the crack-tip process very different treatment of the crack-tip process zone. This
zone. For polymers this quantity cannot be calculated acci2U99€sts that the exact nature or shape of the crack-tip pro-

rately at present, anG, must be deduced directly from ex- cess zone is not important for the velocity dependence of
perimental data. G(v), provided that the size of the process zae) in-

In reality, G, will also depend on the crack-tip velocity Cr€ases with increa_sing tip velocityin such a way that the
(and the temperatuyealthough more weakly than the factor Stress atthe crack tip does not exceed the critical valder
f(v,T). This is because cavity formation, stringing, chain bond breaking. This is an important result, since neither
pull-out, and bond breaking all depend on the speed witfn0de! treats the Cr_ﬁCk't'p proceﬁs ZO”eka‘?C”Tmfé/_ com-
which the surfaces are separated at the crack tip and on tA€X processes will occur at the crack tip involving, e.g.,
temperature. caV|ty_ formation, stringing, chain pull-out, and bond

Our theoretical study shows that the crack propagatior?™€aKing. L o
energy G indeed has the form given by E¢l), and we The treatment of crack propagation in viscoelastic solids

determine the functiofi(v, T). The prefactoG, corresponds presented in this paper can be extended to include the crack-

to the energy per unit area to pull-out and break the polymep_p_ flash temperature,_whlc_h, t_)ecause of the low heat_ conduc-
ivity of rubber materials, is likely to be of extreme impor-

chains at the crack tip. This energy is much larger than th i ) -
P %y 9 tance already at relative low crack-tip velocities. We shall
report on this study in another publication.
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APPENDIX A

FIG. 6. The crack-tip process zone in most materials is very In this appendix we explain the origin of two facts we
complex, involving cavity formation, stringing, chain pull-ogior ~ have made use of in Sec. Ill. Neglecting inertia effects, the
polymers, and bond breaking. stress tensor satisfies
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0, = 0. (A1)

In addition, the stress tensor must satisfy certain compatibil-
ity conditions, which, as long as the relation between the
stress and strain is linear and the material homogeneous and
isotropic, are independent of the constitutive relation be-
tween the stress and strain. For the plane stress or strain case
which interests us her@vhere the stress tensor is indepen-
dent ofz), the compatibility equation becomes

V(0 t+ ayy) = 0. (A2)

Note that Egs(Al) and (A2) constitute three independent

equations for three unknown quantities: namejy, o, and FIG. 7. When a crack propagates fast in a viscoelastic solid, one
oy, It follows that the stress distribution in the vicinity of a can distinguish between three separate spatial regienan inner
crack tip has the universal formr~2 independent of the region where the perturbing frequencies-v/r (wherer is the
detailed form of the constitutive relation between stress andistance from the crack tipare so high that the rubber response
strain as long as the relation is linear and the material homagorresponds to the hard glassy region characterized byhige-

geneous and isotropic; i.e., it is also valid for a viscoelastidrequency elastic modulus.., (b) an outer region where the per-
solid. turbing frequencies are so small that the rubber responds with its
We now prove that during crack opening, zero-frequency modulug,, and(c) an intermediate region where
the full complex viscoelastic modulus(w) enters and where the
M ver(v) = YoE/Ep. (A3) bulk viscoelastic energy dissipation ocdschematis.

v—®©

This relation is not valid during crack closing. The stress inwill now be larger than 2,, and we write for the outer re-
the vicinity of the crack tip is of the form gion G=2y.4. SinceE=E, in the outer region, we get

o=K@2mr) 2, (A4) 27et = K% E. (AB)

where the stress intensity factiris proportional to the ex- Combining Eqs(A5) and (A6) gives (for v — )
ternal applied stress. Assume that the crack tip propagates

with a velocityv. The deformation rate of the viscoelastic Yeit = YoE/Eo-
solid a distance from the crack tip is characterized by the
frequencyw=v/r. The smallest possible is a lattice con- APPENDIX B

stanta, so that the highest possible frequency will d&a.
For very low velocities this frequency will be in the rubbery ~ The viscoelastic modulug(w) and the inverse H(w)
region of the viscoelastic spectB{w), and in this case the are causal linear response functions. Causality implies, for
solid will behave purely elastically everywhere with the elas-€xample, that the straie(t) in a solid at timet only depends
tic modulusE,=E(0). In this case there will be no dissipa- on the stresso(t’) it was exposed to at earlier times
tion in the bulk, and the crack propagation ene€y21y,. t'<t—i.e,

Next consider very high crack velocitias For small t
enoughr, the frequencyw will be so high that the rubber e(t) =f dt'C(t -t")a(t’). (B1)
response will correspond to the glassy region where the elas- —
tic modulus isE(w) =E... On the other hand, whenis large
enough the frequency=v/r will correspond to the rubbery
region whereE(w)=E,. At intermediate distanceB(w) is 1 (* _
complex and this “dissipative” region is indicated by the E(w)zz—f dte(t)e”,
dark gray area in Fig. 7. The crack propagation en&dpr Tl
an elastic medium is related to the stress intensity fator e get, from Eq(B1),

Defining the Fourier transform

via
G=KE. e(w) = o(w)/E(w),
) ) ) . where
We first apply this formula to the inner region at the crack
tip. In this caseG=2y, andE=E,, giving 1 :J dtCHe.
2v0= KZE.,. (A5) E(w) Jo

When we study the system at a lower magnification we ddSince Réiwt]<0 for t>0 and Imw>0, it follows that

not observe the inner region and the dissipative region but/E(w) is an analytical function o in the upper half of the
only the outer region. In this case we must include in thecomplex frequency plane. Thus all poles and branch cuts of
crack propagation energy the energy dissipation in the rubbek/E(w) will occur in the lower part of the complex plane

in the transition regior(dark gray area in Fig.)7 Thus,G  and we may write
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1 1 ([, H 3
_=—+J LG (B2)
E(w E. Jo l-ior -
where thespectral density k) is real and positive. Using = 2t
Eq. (B2) one can easily prove theum rule 5
1 1 2 1 1 g
————=—| do—Im——. B3 = 1}
E0)  EC) wfo “oMEw
One can also derive Kramers-Kronig relations, relating the
real part of 1E(w) to the imaginary part of 1#(w), but they 0 (') ' 4 : é
are not needed in the present paper. log (v/vg)

APPENDIX € FIG. 8. The dependence of the effective surface eneggyon
In this appendix we consider a very simple viscoelasticthe crack velocity for a case where the rubber is characterized by
model where the “rubber” is characterized by a single relaxa single relaxation timer=7. The reference velocityvg
ation time7,. Real rubber has instead a wide distribution of =ao/ (2770), wherea, is the cutoff distance in the limit of an arbi-
relaxation times, so the present model is not a good descrigtary slowly moving crack.
tion of real rubber materials, but is nevertheless often used in

model calculations. We assume 2
L1 L A )
H(D=|=-—|dr- ),
E, E.
o hat where b(7o)=(ap/a)(2mv 1o/ ag) =(ag/@)(v/ve) Where vg

I:|(T) = S(r- 1)) =ay/ (27 7p). In Fig. 8 we showy.x/ yp=alay as a function of
B o vlvg as obtained from Eq.C1). Note that for intermediate

Substituting this result in Eq25) gives crack velocities 10,<v <10, Yo~ a~v2
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