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We study crack propagation in a viscoelastic solid. Using simple arguments, we derive equations for the
velocity dependence of the crack-tip radius,asvd, and for the energy per unit area to propagate the crack,Gsvd.
For a viscoelastic modulusEsvd which increases asv1−s s0,s,1d in the transition region between the
rubbery region and the glassy region, we find thatasvd,Gsvd,va with a=s1−sd / s2−sd. The theory is in
good agreement with experiment.
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I. INTRODUCTION

The propagation of cracks in rubber is fundamental for
many important applications—e.g., rubber wearf1g—and for
pressure-sensitive adhesivesf2g. The strength of the adhesion
and cohesion of elastomers can be characterized by the
amount of energyG required to advance a fracture plane by
one unit area. Experiments have shown thatG depends on
the crack-tip velocityv and on the temperatureT, and that
f3–5g

Gsv,Td = G0f1 + fsv,Tdg, s1d

where f →0 asv→0. Thus,G0 is a threshold value below
which no fracture occurs. The measured value ofG at ex-
tremely low crack velocities and high temperatures, when
viscous effects in the rubber are minimized, is of order
,1 eV/Å2 and can be identified asG0. At high crack veloci-
ties,G may be up to 104 times higher. For simple hydrocar-
bon elastomers, the effect of temperature can be accounted
for completely by applying a simple multiplying factoraT to
the crack velocityv—i.e., fsv ,Td= fsaTvd. Moreover, values
of aT determined experimentally are equal to the Williams-
Landel-Ferryf6g function determined from the temperature
dependence of the bulk viscoelastic modulus. This proves
that the large effects of crack velocity and temperature on
crack propagation in rubber materials are due to viscoelastic
processes in the bulk.

The energy dissipation at a crack in a viscoelastic solid
has two contributions. The first is associated with the inner-
most region at the crack tipsthe so-called crack tip process
zoned. It involves highly nonlinear processesfe.g., cavity
formation, stringing, chain pull-outsfor polymersd, and bond
breakingg and is described phenomenologically via the term
G0=2g0. sNote that for rubberlike materialsg0 is much
larger than the surface energyg.d This contribution toGsvd
cannot be calculated reliably and is taken as an inputsdeter-
mined experimentallyd in the theory. The second contribution
comes from the viscoelastic dissipation in the polymer in the
linear viscoelastic region in front of the tip. This contribution
is calculated here, and we argue below that the exact form of
the crack-tip process zone is not important for the calculation
of the viscoelastic contribution toG.

In Sec. II we review briefly the standard theory of cracks
in elastic solids. In Sec. III we calculate that the viscoelastic

energy dissipation in the vicinity of a crack tip which propa-
gates with the velocityv, and we derive a general expression
for Gsvd=2geffsvd. This quantity depends on a cutoff radius
a that we determine in Sec. IV. Section V presents analytical
and numerical results forgeff as a function of the crack-tip
velocity v. The theoretical results are compared to experi-
mental data in Sec. VI. In Sec. VII we comment on the more
complex case of crack closing. A lot of work has been pub-
lished on crack propagation in viscoelastic solids, and we
compare our results to earlier studies in Sec. VIII. The
energy-loss approach we use and the way we introduce the
crack-tip radiusa have several important advantages over the
Barenblatt crack-tip model used in most earlier studies:sad
the analysis is much simpler,sbd the analysis can be extended
to include the nonuniform temperature distribution at the
crack tip, andscd the analysis shows that the viscoelastic
contribution to the crack-tip propagation energyG does not
depend on the detailed processes which occur at the crack
tip. This is very important, since theseshighly complexd pro-
cesses cannot be described accurately at present. In addition,
sdd by using a simple sum rule for the viscoelastic modulus,
we are able to simplify the derivation by avoiding the need to
include thescomplicatedd angular dependence of the crack-
tip stress field. Finally,sed our treatment gives a simple
closed formula forGsvd.

II. CRACK IN AN ELASTIC SOLID

In this paper we focus on cracks loaded in tensionsmode
Id. We assume that the crack edge is parallel to thez axis; see
Fig. 1. In elastic continuum theory, the stress in the vicinity

FIG. 1. Crack in an elastic solid. The crack edge is along thez
axis.
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of the crack tip has the universal formf7g

si jsr,fd = Ks2prd−1/2f ijsfd, s2d

where the stress intensity factorK is proportional to the ap-
plied stress, but independent of the polar coordinatesr and
f. The angular factorf ijsfd takes a universal form. The
crack propagation energyG is given byf7g

G = lK2/E, s3d

whereE is the elastic modulus, andl=1 in plane stress and
l=1−n2 swheren is the Poisson ratiod in plane strain. The
crack propagation energyGsvd does not depend on how the
system is loaded, and in the following we focus on the sim-
plest case of plane stress.

III. CRACK IN A VISCOELASTIC SOLID

Consider a crack loaded in tensionsmode Id in a vis-
coelastic solid. We calculate the crack propagation energy
Gsvd, which is an intrinsic material quantity that does not
depend on the geometry of the sample. Let us first calculate
the energy dissipation per unit time and unit length of the
crack line, P, for the general case of a crack propagating
with velocity v in a linear viscoelastic solid. We have

P =E d2xėi jsi j , s4d

wheresi j is the stress tensor andėi j the strain rate tensor. In
continuum mechanics, for a homogeneous material, the gen-
eral form of the stress in the vicinity of a crack tip is inde-
pendent of the detailed relation between the stress and strain
si.e., also valid for a viscoelastic materiald and takes the uni-
versal formssee Appendix Ad f8g

ssx,td < Ks2pux − vtud−1/2. s5d

Here we have ignored the tensorial aspect of the stress tensor
which enters via a functionf ijsfd that depends on the polar
anglef in the xy plane. We correct for this later. We write

ssx,td =E d2qssq,tdeiq·x, s6d

where

ssq,td =
1

s2pd2 E d2xe−iq·xux − vtu−1/2K8

=
K

s2pd5/2e−iqxvtE d2x
e−iq·x

uxu1/2

=
K

s2pd5/2e−iqxvtq−3/2E d2w
e−iwx

uwu1/2.

We note that

UE d2w
e−iwx

uwu1/2U2

= 4p2UE
0

`

dww1/2J0swdU2

; 4p2a,

wherea is a number of order unity that also depends on the
angular factor in the crack-tip stress distribution which we
have neglected above. If we write

ssq,td = ssqde−iqxvt, s7d

then

ussqdu2 = aK2q−3/s2pd3. s8d

Substituting Eqs.s6d and s7d into Eq. s4d gives

P = s2pd2E d2q
− iqxv

Es− qxvd
ussqdu2

= s2pd2E dvd2qdsv + qxvdIm
v

Esvd
ussqdu2, s9d

whereEsvd is the viscoelastic modulus of the solid. Substi-
tuting Eq.s8d into Eq. s9d gives

P = aK2 1

2p
E dvd2qdsv + qxvdIm

v

Esvd
q−3

= aK2 1

p
E

0

`

dv Im
v

EsvdE0

`

dqq−2E
0

2p

dfdsv + qv cosfd.

s10d

Since

E
0

2p

dfdsv + qv cosfd =
2usqv − vd

sq2v2 − v2d1/2,

substituting into Eq.s10d gives

P = aK2 2

p
E

0

`

dv Im
v

EsvdEv/v

2p/a

dqq−2sq2v2 − v2d−1/2,

s11d

where we have introduced a large wave vector cutoff 2p /a,
wherea may be a molecular distancesthe distance between
cross-linksd or largerssee belowd. Theq integral in Eq.s11d
is easy to perform, yieldingsv=2pvx/ad

P = aK2v
2

p
E

0

1

dx
s1 − x2d1/2

x
Im

1

Esxvcd
, s12d

wherevc=2pv /a. Now, let us consider the energy conser-
vation condition relevant to the crack propagation. In the
present case, the elastic energy stored in the solid in front of
the crack tip is dissipated at the crack tip. The flow of elastic
energy into the crack is given byGv, which must equal the
fracture energy termG0v plus the bulk viscoelastic dissipa-
tion termP given by Eq.s12d. Energy conservation gives

Gv = G0v + P. s13d

Substituting Eq.s12d into Eq. s13d gives

G = G0 + aK2 2

p
E

0

1

dx
s1 − x2d1/2

x
Im

1

Esxvcd
. s14d

Using G=K2/Es0d in Eq. s14d we obtain

G =
G0

1 − s2a/pdEs0dE
0

1

dx
s1 − x2d1/2

x
Im

1

Esxvcd

. s15d
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We can determinea by consideringgeff for very large
crack velocities; one can show thatsAppendix Ad f9g

G = G0
Es`d
Es0d

. s16d

We can use this result to show thata=1. In Appendix B we
prove thesum rule

1

Es0d
−

1

Es`d
=

2

p
E

0

`

dv
1

v
Im

1

Esvd
. s17d

Whenv→`, we havevc→` and

E0
2

p
E

0

1

dx
s1 − x2d1/2

x
Im

1

Esxvcd
→ E0

2

p
E

0

`

dv
1

v
Im

1

Esvd

= 1 −
Es0d
Es`d

; k. s18d

If we substitute this result in Eq.s14d and choosea=1, Eq.
s16d is satisfied.

IV. TIP BLUNTING

Equations14d depends on the cutoff lengtha, and Eq.s14d
is of limited practical importance unless we have a way of
determining this length. We determinea as follows. Experi-
ments have shown that the crack-tip radius in polymers in-
creases with increasing speed of the crack tipssee belowd.
We choosea equal to the radius of the crack tip, which we
determine as follows. The stress at the crack tip must be
equal to the stress necessary to break the atomic bonds at the
tip in order for the tip to propagate. Ifsc denotes this stress,
which is a characteristic property of the material in question,
we obtain, from Eq.s5d,

sc = K/s2pad1/2, s19d

wherea depends on the crack-tip velocity. Combining this
result with

G = K2/Es0d

yields

G =
2pasc

2

Es0d
. s20d

Combining Eqs.s14d and s20d leads to

a =
a0

1 − E0
2

p
E

0

1

dx
s1 − x2d1/2

x
Im

1

Esxvcd

, s21d

wherevc=2pv /a and wherea0=Es0dG0/ s2psc
2d. Sincevc

depends ona, this is an implicit equation fora=asvd. Thus
the present theory gives both thesvelocity-dependentd radius
of the crack tip,asvd, and the crack propagation energy
Gsvd=G0asvd /a0.

For high crack-tip velocities, because of the high defor-
mation frequencies at the crack tipsof orderv /ad, the rubber

close to the tip is in an effectively hard glassy state. This is
included in our treatment. The appearance of the zero-
frequency elastic modulusEs0d in the definition of the crack-
tip radiusa0 follows from the fact that, in limit of zero crack
propagation velocity, the perturbing frequencyv /a0 vanishes
and onlyEs0d, and not the elastic modulus at some higher
frequency, can enter ina0.

Let us consider a general case where

1

Esvd
=

1

E`

+E
0

`

dt
Hstd

1 − ivt
, s22d

where thespectral density Hstd is real and positive. As
shown in Appendix B, any causal linear response function
can be represented in the forms22d. Note that

1

E0
−

1

E`

=E
0

`

dtHstd s23d

and

Im
1

Esvd
=E

0

`

dt
Hstdvt

1 + svtd2 . s24d

Substitution into Eq.s21d leads to

a

a0
=

1

1 − kE
0

`

dtĤstdhf1 + b−2stdg1/2 − b−1stdj
, s25d

whereb=vct=2pvt /a=s2pvt /a0dsa0/ad and

Ĥstd =
Hstd

E
0

`

dt8Hst8d
. s26d

Note thata/a0=G/G0=geff /g0. This result and Eq.s25d are
the main results of this paper.

Let us now consider the limit of large crack-tip velocity.
Whenv→`, a/a0→`, but slower than the velocityv. Thus,
for a fixedt, b→` asv→`. If we introduce a cutoff time
t=t* via the conditionbst*d=1 or t* =a/ s2pvd, we find, for
largev,

E
0

`

dtĤstdfs1 + b−2d1/2 − b−1g < 1 −E
t*

`

dtĤstd
1

b
.

s27d

Equations25d then takes the form

S G

G0
D2

= S a

a0
D2

= S a0

2pv
E

t*

`

dt
Ĥstd

t
D−1

. s28d

Here we have putk=1 stypically E0/E`<0.001 so thatk
<0.999d; the deviation ofk from unity becomes important
only for very high velocitiesssee belowd.

V. ANALYTICAL AND NUMERICAL RESULTS FOR
REALISTIC RUBBER MODELS

We assume thatHstd=At−1/2, which follows in the Rouse
model f12g when 1/t1.v.1/t0 st0 is the so-called en-
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tanglement timed. For rubber compounds used for pressure-
sensitive adhesives one has typicallyt0<1 s and t1
<10−6 s, giving t0/t1<106. For t,t1 and t.t0 we take
Hstd=0. Now, since

E
0

`

dtHstd =E
t1

t0

dtAt−1/2 < 2At0
1/2,

for t.t1 we get

Ĥ <
1

2t0
S t0

t
D1/2

.

Substituting this result in Eq.s28d gives

a

a0
= S v

v0
D1/3

,

where v0=a0/ s2pt0d. The effective interfacial energy for
largev is

geff = g0
a

a0
= g0S v

v0
D1/3

.

Sincegeff→g0 asv→0, we can write the interpolation for-
mula

geff = g0S1 +
v
v0
D1/3

, s29d

which has the correct limiting behavior for large and small
crack velocities. Equations29d is valid only if v is below
some valuev1, which can be determined by the fact that the
maximum possiblegeff is g0Es`d /Es0d. This gives

g0Sv1

v0
D1/3

= g0
Es`d
Es0d

or

v1 < v0SEs`d
Es0d D

3

.

In a typical case,Es`d /Es0d equals 103–104, so that v1

,s109–1012dv0 in good agreement with experimentf5g. The
relaxation timet0 can be identified with the so-called en-
tanglement time, which for polymers used for pressure-
sensitive adhesives typicallysat room temperatured is of or-
der,1 s. Thus, the velocityv0=a0/ s2pt0d is typically of the
order 10−10 m/s, which again agrees with rubber tear or peel
experiments.

In Fig. 2 we compare the predictions for the velocity de-
pendence of the effective surface energygeff using the ap-
proximate equations29d sdashed curved with the full theory,
Eq. s25d ssolid curved.

Let us consider a more general viscoelastic modulus
whereHstd=At−s and 0,s,1. For s=1/2 this reduces to
the case studied above. For many rubber compounds a good
description of the viscoelastic properties in the transition re-
gion, between the rubbery and glassy regions, is obtained ifs
is slightly larger than 0.5, typically in the range from 0.5 to
0.7. As an example, we show in Fig. 3son a log-log scaled
the Fourier transformEstd of the viscoelastic modulusEsvd

for a styrene-butadiene rubber compound filled with carbon
black. The data are fitted well by a power lawEstd, t−1.4

corresponding tos=0.6 ssince the exponent is given bys
−2d. We obtain

Ĥ =
s1 − sd

t0
S t0

t
Ds

.

Substituting this in Eq.s28d gives, after some simplifications,

a

a0
= S v

v0
DaS s

1 − s
Db

, s30d

wherea=s1−sd / s2−sd andb=1/s2−sd. Thus, for example,
if s=0.6, a,geff,v2/7.

Finally, in Appendix C we study crack propagation in a
viscoelastic material described by the so-called Kelvin
model. This is not realistic for real rubber, but is often used
in model calculations.

FIG. 2. The dependence of the effective surface energygeff on
the crack velocityv for a rubber characterized by the spectral den-
sity Hstd,t−1/2 for t1,t,t0 and zero otherwise. The solid line is
the result of the full theory, Eq.s25d, while the dashed line is the
approximations29d. We have assumedt0/t1=106 andE` /E0=103.
The reference velocityv0=a0/ s2pt0d, wherea0 is the cutoff dis-
tance in the limit of arbitrary slowly moving crack. The logarithm is
with 10 as the basis.

FIG. 3. The logarithm of the Fourier transform of the viscoelas-
tic modulus as a function of the logarithm of time for a styrene-
butadiene rubber compound.
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VI. COMPARISON WITH EXPERIMENT

Figure 4 shows the fracture energyG for a styrene-
butadiene copolymer rubber as a function of the crack tip
velocity f5g. The results have been obtained using the
Williams-Landel-Ferryf6g velocity-temperature shifting pro-
cedure, where the original data were obtained for crack ve-
locities below 1 cm/s in order to reduce the influence of the
crack-tip flash temperature. On the log-log scale the experi-
mental data exhibit a straight line corresponding to a velocity
dependenceG,va with a<0.27, in good agreement with
the theory presented aboveffor s=0.6 we havea=s1
−sd / s2−sd<0.28g. Figure 4 also presents results obtained
when rubber is torn apart while a sharp razor blade is pushed
into the crack tip. Cutting resistance at low speeds is rather
independent of speed, although at high speeds it increases
markedly. In this case the crack-tip diameter is presumably
given by the blade-tip diametersabout 1000 nmd, which may
explain the approximate independence of the fracture energy
on crack velocity for small velocities.

VII. COMMENT ON CLOSING CRACKS IN
VISCOELASTIC SOLIDS

The problem of crack growth studied above has many
direct applications, including wear and adhesives. The oppo-
site situation of crack closure in a viscoelastic media is im-
portant during the formation of contacts between a viscoelas-
tic solid and another solid, as in standard adhesion tests
where a rubber ball is brought into contact with a hard flat
surface. However, in many practical situations, irreversible
surface processes occur so that, even when crack propagation

occurs very slowly, the energysper unit aread 2g0 for bond
breaking during crack opening differs from the energy gain
sper unit aread 2g08 due to bond formation during crack clos-
ing, with g0ùg08. However, when only the weak van der
Waals interaction occurs between the crack planes, as is the
case when a rubber ball is in contact with a glass surface, one
may expectg0<g08, and we will assumeg0=g08 in the fol-
lowing.

For a closing crack, the interfacial binding energysor sur-
face energyd 2g0 is converted partly into elastic energy and
partly dissipated in the rubber bulk, so that the energy con-
servation condition takes the form

dUsurf

dt
=

dUel

dt
+ P,

and it is clear from energy conservation thatgefføg0. Thus,
while geff may increase during crack growth by a factor of
,104 as the velocity increases,gefføg0 during crack clo-
sure. This large hysteresis in the adhesion energy,geff, has
been observed experimentallyf10g and may give an impor-
tant contribution to the friction force during the sliding of a
rubber block on a smooth asperity, as the process can be
viewed as the contribution of a closing crack at the front
edge of the contact region and a opening crack at the trailing
edgef11g.

VIII. DISCUSSION AND COMPARISON
WITH OTHER STUDIES

Classical fracture mechanics is based on continuum me-
chanics and predicts a stress singularity at a crack tip,s
, r−1/2, wherer is the distance from the tip. However, any
real material will yield when the stress becomes sufficiently
high. In an ideal brittle material, such as mica, the relation
s, r−1/2 may hold until r ,a is of the order of a lattice
constanta. However, in most materials thes, r−1/2 relation
will break down at much larger distancesr. The spatial re-
gion in the vicinity of a crack tip where the relations
, r−1/2 is no longer valid is called thecrack-tip process zone.

The crack propagation energyG=2geff will generally de-
pend on the exact nature of the processes occurring in the
crack-tip process zone. Since these bond-breaking processes
may be highly complex—e.g., involving cavity formation
and stringing—the crack propagation energy cannot in gen-
eral be calculated theoretically but must be deduced from
experimental data. Only in the limiting case of ideal brittle
solids se.g., micad will the crack propagation energyG<2g
besnearlyd equal to the energy per unit area required to break
the atomic bonds at thesatomically sharpd crack tip. The
surface energyg is known for many solids and can some-
times can be calculated using electronic structure methods.

The standard model used to describe the crack tip process
zone is due to Barenblattf13g, who assumed that the bond
breaking at the crack tip occurs by stretching the bonds or-
thogonal to the crack surfaces until they break at some char-
acteristic stress levelsc. The process zone extends a distance
a in front of the crack tip as indicated by the horizontal white
line in Fig. 5sbd. This model was first applied to crack propa-
gation in viscoelastic solids by Schaperyf14g and later by

FIG. 4. Fracture energyG for styrene-butadiene rubber at vari-
ous cutting or tearing speeds atT=25 °C. Adopted from Ref.f5g.
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Greenwood and Johnsonf15g, Barberet al. f16g, and Hui and
co-workersf17g. The present treatment introduces the cutoff
in a moread hocmanner, which may be roughly interpreted
as a blunting of the crack tip as in Fig. 5sad. However, the
exact way of introducing the cutoff is unimportant, and in
reality the process zone is much more complex than assumed
in the theory; see Fig. 6. In general, the cutoff should be
introduced to simplify the analytical calculations as much as
possible, and for crack propagation in viscoelastic solids we
believe that our procedure results in the simplest formalism.

Barber, Donley, and Langerf16g studied crack propaga-
tion in viscoelastic solids using the Barenblatt model, which
resulted in a very complex set of equations. The authors
where nevertheless able to extract the high-velocity behavior
of G, which agrees exactly with our limiting behavior given
by Eq. s30d. This limiting behavior was also obtained by
Greenwood and Johnsonf15g, enforcing that the exact way
the short-distance cutoff is introduced is unimportant. Only
the factorG0 in Eq. s1d depends on the crack-tip process
zone. For polymers this quantity cannot be calculated accu-
rately at present, andG0 must be deduced directly from ex-
perimental data.

In reality, G0 will also depend on the crack-tip velocity
sand the temperatured, although more weakly than the factor
fsv ,Td. This is because cavity formation, stringing, chain
pull-out, and bond breaking all depend on the speed with
which the surfaces are separated at the crack tip and on the
temperature.

Our theoretical study shows that the crack propagation
energy G indeed has the form given by Eq.s1d, and we
determine the functionfsv ,Td. The prefactorG0 corresponds
to the energy per unit area to pull-out and break the polymer
chains at the crack tip. This energy is much larger than the

surface energy of normal rubber, which is only a few
meV/Å2. In general,G0 increases with increasing chain
length, and in experiments probing the adhesive strength of
partly cross-linked rubber sheets,G0 appears to be directly
proportional to the density of interfacial bonds. These results
are both expected and supported by simple model calcula-
tions; see Ref.f18g.

The treatment presented above neglects the influence of
the inhomogeneous temperature distribution, which occurs in
the vicinity of the crack tip as a result of the inhomogeneous
energy dissipation. This temperature effect should be ex-
tremely important for fast-moving cracks, but the measure-
ments of Gent and others consider only relatively slowly
moving cracks,v,1 cm/s. However, detailed theoretical
calculations are necessary in order to determine under ex-
actly which conditions temperature effects become impor-
tant. In the context of tires sliding on road surfaces, flash
temperature effects in the rubber may already be important
for sliding velocities.0.1 cm/sf19g.

IX. SUMMARY AND CONCLUSION

In this paper we have studied crack propagation in linear
viscoelastic solids. We have focused mainly on crack open-
ing, but we also considered the more complexsbut less im-
portantd case of crack closing. We have calculated the depen-
dence of the fracture energysper unit aread G=2geff on the
crack velocityv. Our approach is based on energy conserva-
tion and is much simpler than the standard approach based
on the Barenblatt model of the crack-tip process zone. Nev-
ertheless, the two models give similar results in spite of the
very different treatment of the crack-tip process zone. This
suggests that the exact nature or shape of the crack-tip pro-
cess zone is not important for the velocity dependence of
Gsvd, provided that the size of the process zoneasvd in-
creases with increasing tip velocityv in such a way that the
stress at the crack tip does not exceed the critical valuesc for
bond breaking. This is an important result, since neither
model treats the crack-tip process zone accuratelysvery com-
plex processes will occur at the crack tip involving, e.g.,
cavity formation, stringing, chain pull-out, and bond
breakingd.

The treatment of crack propagation in viscoelastic solids
presented in this paper can be extended to include the crack-
tip flash temperature, which, because of the low heat conduc-
tivity of rubber materials, is likely to be of extreme impor-
tance already at relative low crack-tip velocities. We shall
report on this study in another publication.
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APPENDIX A

In this appendix we explain the origin of two facts we
have made use of in Sec. III. Neglecting inertia effects, the
stress tensor satisfies

FIG. 5. The singular stress region at a crack tip in continuum
mechanics can be removed either bysad tip bluntingstip diameterad
or sbd by introducing a lateral regionslinear sizead over which the
bond breaking occurs. The latter is the so-called Barenblatt process
zone.

FIG. 6. The crack-tip process zone in most materials is very
complex, involving cavity formation, stringing, chain pull-outsfor
polymersd, and bond breaking.
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si j ,j = 0. sA1d

In addition, the stress tensor must satisfy certain compatibil-
ity conditions, which, as long as the relation between the
stress and strain is linear and the material homogeneous and
isotropic, are independent of the constitutive relation be-
tween the stress and strain. For the plane stress or strain case
which interests us hereswhere the stress tensor is indepen-
dent ofzd, the compatibility equation becomes

¹2ssxx + syyd = 0. sA2d

Note that Eqs.sA1d and sA2d constitute three independent
equations for three unknown quantities: namelysxx, syy, and
sxy. It follows that the stress distribution in the vicinity of a
crack tip has the universal form,r−1/2 independent of the
detailed form of the constitutive relation between stress and
strain as long as the relation is linear and the material homo-
geneous and isotropic; i.e., it is also valid for a viscoelastic
solid.

We now prove that during crack opening,

lim
v→`

geffsvd = g0E`/E0. sA3d

This relation is not valid during crack closing. The stress in
the vicinity of the crack tip is of the form

s = Ks2prd−1/2, sA4d

where the stress intensity factorK is proportional to the ex-
ternal applied stress. Assume that the crack tip propagates
with a velocity v. The deformation rate of the viscoelastic
solid a distancer from the crack tip is characterized by the
frequencyv=v / r. The smallest possibler is a lattice con-
stanta, so that the highest possible frequency will bev /a.
For very low velocities this frequency will be in the rubbery
region of the viscoelastic spectraEsvd, and in this case the
solid will behave purely elastically everywhere with the elas-
tic modulusE0=Es0d. In this case there will be no dissipa-
tion in the bulk, and the crack propagation energyG=2g0.

Next consider very high crack velocitiesv. For small
enoughr, the frequencyv will be so high that the rubber
response will correspond to the glassy region where the elas-
tic modulus isEsvd<E`. On the other hand, whenr is large
enough the frequencyv=v / r will correspond to the rubbery
region whereEsvd<E0. At intermediate distancesEsvd is
complex and this “dissipative” region is indicated by the
dark gray area in Fig. 7. The crack propagation energyG for
an elastic medium is related to the stress intensity factorK
via

G = K2/E.

We first apply this formula to the inner region at the crack
tip. In this caseG=2g0 andE=E`, giving

2g0 = K2/E`. sA5d

When we study the system at a lower magnification we do
not observe the inner region and the dissipative region but
only the outer region. In this case we must include in the
crack propagation energy the energy dissipation in the rubber
in the transition regionsdark gray area in Fig. 7d. Thus,G

will now be larger than 2g0, and we write for the outer re-
gion G=2geff. SinceE=E0 in the outer region, we get

2geff = K2/E0. sA6d

Combining Eqs.sA5d and sA6d gives sfor v→`d

geff = g0E`/E0.

APPENDIX B

The viscoelastic modulusEsvd and the inverse 1/Esvd
are causal linear response functions. Causality implies, for
example, that the strainestd in a solid at timet only depends
on the stresssst8d it was exposed to at earlier times
t8ø t—i.e.,

estd =E
−`

t

dt8Cst − t8dsst8d. sB1d

Defining the Fourier transform

esvd =
1

2p
E

−`

`

dtestdeivt,

we get, from Eq.sB1d,

esvd = ssvd/Esvd,

where

1

Esvd
=E

0

`

dtCstdeivt.

Since Refivtg,0 for t.0 and Imv.0, it follows that
1/Esvd is an analytical function ofv in the upper half of the
complex frequency plane. Thus all poles and branch cuts of
1/Esvd will occur in the lower part of the complexv plane
and we may write

FIG. 7. When a crack propagates fast in a viscoelastic solid, one
can distinguish between three separate spatial regions:sad an inner
region where the perturbing frequenciesv=v / r swhere r is the
distance from the crack tipd are so high that the rubber response
corresponds to the hard glassy region characterized by theshigh-
frequencyd elastic modulusE`, sbd an outer region where the per-
turbing frequencies are so small that the rubber responds with its
zero-frequency modulusE0, and scd an intermediate region where
the full complex viscoelastic modulusEsvd enters and where the
bulk viscoelastic energy dissipation occursschematicd.
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1

Esvd
=

1

E`

+E
0

`

dt
Hstd

1 − ivt
, sB2d

where thespectral density Hstd is real and positive. Using
Eq. sB2d one can easily prove thesum rule

1

Es0d
−

1

Es`d
=

2

p
E

0

`

dv
1

v
Im

1

Esvd
. sB3d

One can also derive Kramers-Kronig relations, relating the
real part of 1/Esvd to the imaginary part of 1/Esvd, but they
are not needed in the present paper.

APPENDIX C

In this appendix we consider a very simple viscoelastic
model where the “rubber” is characterized by a single relax-
ation timet0. Real rubber has instead a wide distribution of
relaxation times, so the present model is not a good descrip-
tion of real rubber materials, but is nevertheless often used in
model calculations. We assume

Hstd = S 1

E0
−

1

E`
Ddst − t0d,

so that

Ĥstd = dst − t0d.

Substituting this result in Eq.s25d gives

a =
a0

1 − khf1 + b−2st0dg1/2 − b−1st0dj
, sC1d

where bst0d=sa0/ads2pvt0/a0d=sa0/adsv /v0d where v0

=a0/ s2pt0d. In Fig. 8 we showgeff /g0=a/a0 as a function of
v /v0 as obtained from Eq.sC1d. Note that for intermediate
crack velocities 10v0,v,105v0, geff,a,v1/2.
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FIG. 8. The dependence of the effective surface energygeff on
the crack velocityv for a case where the rubber is characterized by
a single relaxation timet=t0. The reference velocityv0

=a0/ s2pt0d, wherea0 is the cutoff distance in the limit of an arbi-
trary slowly moving crack.
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