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Abstract
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We present accurate numerical results for the friction force and the contact area for a
viscoelastic solid (rubber) in sliding contact with hard, randomly rough substrates. The rough
surfaces are self-affine fractal with roughness over several decades in length scales. We
calculate the contribution to the friction from the pulsating deformations induced by the
substrate asperities. We also calculate how the area of real contact, A(v, p), depends on the
sliding speed v and on the nominal contact pressure p, and we show how the contact area for
any sliding speed can be obtained from a universal master curve A(p). The numerical results
are found to be in good agreement with the predictions of an analytical contact mechanics

theory.
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1. Introduction

Viscoelastic solids, such as rubber or gel, have many important
applications in science and technology. Rubber friction, for
example, is a topic of great practical importance e.g. for
tires, syringes, wiper blades or rubber seals, and it results
from dissipative processes involving multiple (coupled) nano-
to micro- (or more) length scales, which are related to the
relaxation and diffusion dynamics of the confined polymers
[1-4] as well as to the random interaction process [5] occurring
in real interfaces. Due to the (numerical) complexity of
the underlying contact mechanics problem [6-9], involving
multiple length and time scales, the friction force as well
as the real contact area between viscoelastic solids under
realistic contact conditions has so far only been predicted
using mean field formulations of the contact mechanics,
such as the one by Persson [5] or Kluppel and Heinrich
[10]. Comparing theory with experimental results is an
important benchmark for any theory validation process, but the
superposition of coupled dissipation mechanisms encountered
in rubber friction makes it very hard to test separately the
different contributions to the rubber friction. Hence, in this
context any numerically-exact calculations under well defined
contact characteristics, even if only possible for relatively-

0953-8984/15/105102+07$33.00

small systems under idealized conditions, can furnish very
useful insights into the processes occurring in rubber sliding
contacts, and test analytical theories.

In this work we make an attempt to shed light on
the mechanisms of micro-rolling friction and contact area
formation in the interaction between randomly rough surfaces
of viscoelastic solids. In particular, we will compare the
numerical results with the predictions of the (more general)
Persson’s contact mechanics theory. We use a recently
developed residuals molecular dynamics (RMD [11,12])
scheme, adapted to the rubber viscoelastic rheology. The
RMD method has so far has been successfully applied to
the investigation of adhesive contacts between elastic solids
with random roughness [12], and here we extend the study
to the case of sliding contact between linear viscoelastic
solids with random surface roughness (see appendix A).
The RMD numerical model is based on a (finite element)
formulation in wavevector space, together with a molecular
dynamics modeling of the interfacial separation in real space,
the latter driven by the residuals of the discretized contact
mechanics equations. This (general-purpose) approach allows
for an equally efficient computation of the contact dynamics
from very small values of contact areas up to full contact
interactions.
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The paper is outlined as follows. In section 2 we
summarise the mean field theory of viscoelastic contact
mechanics. In section 3 the analytical friction and contact area
predictions are compared with the results of RMD simulations,
and the existence of an universal contact area law is presented
and discussed. Finally, in appendix A the RMD model is briefly
described, whereas in appendix B the role of finite size effects
on the reported friction and contact mechanics is discussed.

2. Theory

One of us [5] has derived a set of equations describing the
friction force acting on a rubber block sliding at the velocity
v(t) in contact with a hard substrate with randomly rough
surface. For a rubber in dry contact with a hard solid with
a rough surface there are two main contributions to rubber
friction, namely (i) a contribution derived from the energy
dissipation inside the rubber due to the pulsating deformations
it is exposed to during sliding (it could be named micro-
rolling friction, as it shares the dissipation mechanism with
the classical rolling friction), and (ii) a contribution from
the shearing processes occurring in the area of real contact.
For sliding at a constant velocity v, and neglecting frictional
heating (constant bulk temperature), the friction coefficient due
to process (i) is:

q1

1
e E/dq 7> C(@)S(@)P(q)

q0
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x/dqbcosqblm

0
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where oy is the nominal contact stress, C(g) the surface
roughness power spectrum and E (w) the rubber viscoelastic
modulus. The function P(q) = A({)/Ap is the relative
contact area when the interface is observed at the magnification
¢ = q/qo, where qq is the smallest (relevant) roughness wave
vector. We have
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The factor S(g) in (1) is a correction factor which takes
into account that the asperity-induced deformations of the
rubber are smaller than would be in the case if complete
contact would occur in the (apparent) contact areas observed
at the magnification ¢. For contact between elastic solids this
factor reduces the elastic asperity-induced deformation energy,
and including this factor gives a distribution of interfacial
separation in good agreement with experiment and numerical
studies [13]. The interfacial separation describes how an
elastic (or viscoelastic) solid deforms and penetrates into the

roughness valleys, and it is stressed here that these (time-
dependent) deformations cause the viscoelastic contribution to
rubber friction. We assume that the same S(g) reduction factor
as found for elastic contact is valid also for sliding contact
involving viscoelastic solids. For elastic solids it has been
found that S(g) is well approximated by

S(q) =y + (1 —y)P(q),

where y ~ 1/2, and here we use the same expression for
viscoelastic solids, being in nature a geometrical parameter.
Note that S — 1 as P — 1 which is an exact result for
complete contact. In fact, for complete contact the expression
(1) is exact (see below). Note finally that in the original rubber
friction theory [5] the correction factor S(g) was not included.

The second contribution (ii) to the rubber friction force,
associated with the area of (apparent) contact observed at the
magnification §; = ¢q;/qo, is given by tA;. Here, 7;(v)
is the (weakly) velocity-dependent effective frictional shear
stress acting in the contact area A| = A(¢) = P(q1)Ao. In
this study we only consider the viscoelastic contribution to
the rubber friction, but we also study the area of real contact
which is needed when calculating the second contribution to
the rubber friction.

Note that the surface mean square slope is given by

q1
(Vi) =27 f dg ¢°C (q)
q0

SO we can write
u

((vhy?)

“)

qu q3C (@) S(q) P (g) f d¢) cos ¢ Im E((lqvvgg)):f))

40

~

4 f dg ¢3C (¢)
40
For complete contact S(g) = P(g) = 1 and if ImFE(w)
would be weakly dependent on w, the integral over ¢ in (4)
would be weakly dependent on ¢, and in this limiting case the
viscoelastic friction coefficient would be nearly proportional
to the mean square slope. However, these assumptions never
hold in practice and the friction coefficient cannot be simply
related to the mean surface slope [14].

3. Results and discussion

We now present numerical simulations results for the
viscoelastic contribution to the friction for a wide range
of contact conditions, including nominal contact pressure,
sliding velocity, and the large frequency cut-off g; (which
determines the length scales over which the surface exhibits
roughness). The RMD numerical results will be compared
with the predictions of the rubber friction theory presented
above.

In the calculations we use the viscoelastic modulus £ (w)
measured for a tread rubber compound [15], and the substrate
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Figure 1. Surface roughness power spectra used in the present
study. The power spectra have a low frequency cut-off for

go = 0.25 x 10 m~!, and a roll-off for ¢, = 4qy. For ¢ > g, the
power spectra correspond to a self-affine fractal surface with the
Hurst exponent H = 0.8. We consider 4 cases where the large
frequency cut-off is g; = 32qo, 64490, 128¢ and 256¢,; we refer to
g1 = 32qo and 2564 as the small and large system, respectively. In
the numerical calculations, a null power spectrum region is added
between ¢, and g, = 8¢, to improve convergence.

is assumed rigid with a randomly rough surface with isotropic
statistical properties. Figure 1 shows the surface roughness
power spectra used in the present study. The power spectra
have a low frequency cut-off for gg = 0.25 x 10°m~!, and
a roll-off for ¢, = 4q¢o. For g > g, the power spectra
correspond to a self-affine fractal surfaces with the Hurst
exponent H = 0.8. We consider four cases where the large
frequency cut-off is g; = 32qq, 64qp, 128qy and 256q¢; we
refer to q; = 32¢y and 256¢ as the small and large system,
respectively. The root mean square roughness is determined
mainly by the long-wavelength roughness and is therefore
nearly the same for all the different cases, with A, ~ 27 nm.

Figures 2(a) and (b) show the friction coefficients (divided
by the mean square (ms) slope), as a function of the
(normalized) area of contact A/A, for the large and small
systems, respectively, and for several sliding speeds: v = 0.01,
0.1, 1, 10ms~!. The solid lines are the predictions of the
Persson’s rubber friction theory, whereas the dashed lines are
from the numerical study. Note that because of the Hertzian-
like contact for small load, the numerical friction curves
show a non-monotonic behavior, where friction increases at
small increasing values of contact areas (see appendix B for
a detailed discussion of finite size effects). For high enough
loads the friction coefficient decreases with increasing load
(corresponding to increasing contact area) and the numerical
results smoothly converge to the mean field predictions. Note
that at A/Ay ~ 0.05, the small system is still in the
Hertzian friction regime [16], whereas the large system is
experiencing the transition. Figure 3(a) and (b) show the
contact morphology for A/Ag = 0.05 for both the large and
small systems, respectively, at sliding speed v9 = 10ms~!.
For the large system the contact is split in a huge number
of smaller patches (compared to the small system). When
the surface exhibits roughness at shorter and shorter length
scales (i.e. when the cut-off g; increases) the Hertzian-like
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Figure 2. The friction coefficient, divided by the ms slope, as a
function of the (normalized) area of contact A/A,, for several
sliding speeds: v = 0.01, 0.1, 1, 10ms~'. The solid lines are the
theory predictions, while the dotted lines are from the numerical
simulations. For (a) large system, and (b) small system.

contact will prevail only at lower and lower nominal contact
pressure, i.e. the finite size effect will be confined at smaller
nominal contact areas and the system will move toward the
thermodynamic limit, where a remarkably good agreement
with the mean field theory exists (the interested reader is
remanded to [17] for a detailed study of finite size effects
on the elastic roughness contact mechanics).

Figure 4 shows the (normalized) area of real contact as
a function of the applied pressure py [divided by the root
mean square (rms) slope], for several values of roughness
cut-off frequencies (g1 = 32qo, 64qo, 128¢y and 256¢,) and
sliding velocities (v = 1, 10ms~"). In particular, the solid
lines are the theory results and the dotted lines are from the
numerical simulations. The agreement is very good, even
at small contact areas (see appendix B). It is observed that
when the sliding velocity increases, the asperity deformation
frequencies increase and the rubber becomes elastically stiffer,
resulting in the decrease of the contact area with increasing
sliding speed. Moreover, this local stiffening depends on
the perturbing frequencies which increases when more short-
wavelength roughness is added to the surface profile, i.e. when
q1 increases. Therefore, for viscoelastic contacts one cannot
expect the area of real contact to be proportional to the inverse
of the the root-mean-square roughness as observed for elastic
contacts. This is confirmed by figure 4 which shows that for
each velocity value, the numerically-predicted curves are not
superposing, in agreement with the analytical results (2).



J. Phys.: Condens. Matter 27 (2015) 105102

M Scaraggi and B N J Persson

'1
] “

SR N z
! . .'p.f p ¢« ;‘;' “‘. “ v:‘A
¥ .‘ Bl - 3 P!-
. # ﬂ -* ‘;:l W ).‘)
PSR AN
Aaogr 7 o
’; f‘a.‘ C’ " 2 . - - ":'J"' \-:\'
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Figure 3. The contact morphology for the sliding speed v = 10ms~!

(b)

and for such a normal load that A/A, ~ 0.05. (a) large system, (b)

small system. Black domains correspond to the true contact area. The sliding direction is from left to right.
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Figure 4. The normalized area of contact A/A, as a function of the
contact pressure py (divided by the rms slope), for several large
cut-off frequencies g;. The reported values correspond to sliding
velocities occurring in the rubbery-to-glassy rubber transition
regime.

However, the analytical theory (2) and (3) suggests a
possible mechanism to interpret the contact area results. As
shown in equation (3), this local (scale dependent) rubber
stiffening is equivalent to an apparent increase (with respect to

the static contact) of the roughness power spectral content by
a factor

E (qv cosQ) ‘ 5)

S(CI,UO)=* d¢ ‘
0

where Ej is the low frequency rubber elastic modulus [Ey =

E(w — 0)]. Hence, it is now easy to define a new
(viscoelastic-dependent) effective mean square slope as
q1
(Vh)?), = 2m f dg 4*C ()5 (q.v). ©6)

40

which is depending on the sliding velocity v via the dependency
of E(w) on w = qucosg. In figure 5 we shown the normalized
contact area as a function of the contact pressure scaled by
the effective root mean square slope, for several values of
roughness cut-off frequencies (q; = 32qo, 64q9, 128qo and
256q) and sliding velocities (v = 0.01, 0.1, 1, 10ms™).
Remarkably, the theory-suggested scaling allows to obtain an
unique contact mastercurve similar to the case of purely elastic
interactions, with a slope close to two as also observed for
elastic contact. Hence, it is recognizable that an universal
scaling rules the asperity mediated multiscale interaction of
randomly rough surfaces, which is insensitive to the particular
rheological description of the bulk dynamics.

4. Conclusions

We have performed numerically-exact calculations for the
viscoelastic contribution to rubber friction, and compared the
results with the prediction of an analytical theory. Both the
friction coefficient and the area of contact are rather well
described by the theory, in particular for large contact pressure
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Figure 5. The numerically-calculated nominal contact area A/A as
a function of the contact pressure py/ [((Vh)z)z-/ 2 E] [where

((Vh)z)lE/ % is an effective mean-square surface slope defined in (6)],
for several values of roughness cut-off frequencies (g, = 32q,
6449, 128g0 and 256¢,) and sliding velocities (v = 0.01, 0.1, 1,
10ms~1). All the curves appear superposed to an unique
mastercurve. The red line has a slope of 2.

(in the limit of complete contact, the analytical theory is exact).
Viscoelasticity will introduce some anisotropy in the contact
morphology, but this effect seems to be rather unimportant for
the variation of the rubber friction and contact area with sliding
speed. In the numerical calculations we have neglected the
effect of frictional heating and strain softening, which are likely
to be important in most practical applications. These effects
can be approximately included in the analytical theory, but
including the same effects in the numerically exact treatment
seams highly non-trivial.
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Appendix A. Numerical model

Here we summarize the numerical model discussed in detail
in [11]. We consider the case of two viscoelastic solids
patterned with random or deterministic roughness. We
assume the generic roughness to be characterized by a small
wavelength cut-off gy = 27/Ly with Ly < L, where L is the
representative size of the macroscopic contact region between
the two solids. Given such a large difference of length scales,
we can easily identify a representative elementary volume
(RVE) of interface of length scale Lryg, with Ly << Lrvg <
L, over which we can average out the contact mechanics
occurring at smaller length scales (say, at A << Lryg).

80j“““““““j
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60 — Rough rigid surface (gliding to right)
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Figure A1. Description of the gap [see equation (A.1)] resulting
from a generic cross section of the contact interface. vy is the sliding
velocity.

In figure A1 we show a schematic of the contact geometry.
We assume the contact to occur under isothermal conditions,
and the roughness to be characterized by a small mean square
slope, in order to make use of the well-known half-space theory.
Moreover, the roughness is assumed to be periodic with period
Ly in both x- and y-direction. The local separation between
the mating interfaces u (x) is shown in figure A1, and it can be
immediately agreed to be:

UuX)=u+w(x)—hx), (A.1)

where u is the average interfacial separation, w (x) the surface
out-of-average-plane displacement and % (x) the surface
roughness, with (w (x)) = (h (x)) = 0. By defining

w(q) = (2n)—2/d2xw(x) e X

and

o(q) = Q2m)~? / d*x o (x) eI,

where o (x) is the distribution of interfacial pressures, it is
(relatively) easy to show that w (x) can be related to o (x)
through a very simple equation in the Fourier space:

w(q) = F(q) My (q)o (q), (A2)

where M,, (q) = —2/[lql E, (q - vo)] for the viscoelastic
half space [M,; (q) is also known analytically for layered
materials], E, (w) is the frequency-dependent (complex)
reduced Young’s modulus, vo is the sliding velocity and
F (q) is the Fourier transform of the real space linear shape
function [11]. The viscoelastic modulus can be measured
recurring to standard techniques [18], and its real and
imaginary part fitted by Prony series [19], obtaining e.g.:

N
H,(t,)

+ 7’
Z 1 —iwT,

n=1

11
E (@)  E.(c0)

where N is the number of relaxation times, H, (t,) the discrete
creep function, and t, the relaxation time. E,(0o) is the
(asymptotic) reduced elastic modulus in the rubber glassy



J. Phys.: Condens. Matter 27 (2015) 105102

M Scaraggi and B N J Persson

region. We stress that the distribution of relaxation times
(describing real rubber rheologies) is very wide, and cannot
be characterized by a simple single relaxation time as often
assumed in the literature.

Finally, the relation between separation u (x) and
interaction pressure o (x) is calculated within the Derjaguin’s
approximation [12], and it can be written in term of a generic
interaction law

o) =f(u).

f () will be repulsive for u [J u,, and attractive otherwise,
where u,, is a separation threshold describing the ideal
equilibrium separation. In this work we have only adopted
the repulsive term of the L-J potential, but one can equally
make use of the entire law, as well as of different interaction
laws (e.g. the Morse potential, for chemical bonds).

Equations (A.1) and (A.3) are discretized on a regular
square mesh of grid size 8, resulting in the following set of
equations:

(A3)

Lij =—I/tij+(l/_t+ll),'j —hl]) (A4)
oij = f (uij) (AS5)
o (xi;) = Ao (g) = F~'M'w (q) — w (xij),  (A6)

where L;; is the generic residual (related to the generic
iterative solution u;;). In order to solve equations (A.4)—(A.6),
we rephrase equation (A.4) in terms of the following ideal
molecular dynamics process

iiij + 2&1",'(1),']'1,'{1']' = a)isz,-j, (A7)
which we solve with a velocity Verlet integration scheme. &;;
and w;; are, respectively, the generic damping factor and modal
frequency of the residuals molecular dynamics system (RMD),
which can be used to damp the error dynamics. Therefore,
at equilibrium (ii;; = u;; = 0), equation (A.7) returns the
solution of equations (A.4)—(A.6) at zero residuals. The
solution accuracy is set by requiring

12
()" < e[ o

where both errors are typically of order 1074,

N 1/2
_u;j—l) /u;*j—‘] > <en  (AS8)

Appendix B. Finite size effects on friction

It is interesting to note that while we observe a negligible
finite-size effect for the contact area, the numerically obtained
friction coefficient rapidly drops as the nominal contact
pressure approaches to zero. We can explain this as
follows: Finite size effects are important when the long-
wavelength roughness strongly influences the quantity under
consideration. The long-wavelength roughness is different
in the analytical and numerical model. Thus, while in the
wavevector region where C(g) is non-vanishing the analytical
model has the same (finite) power spectrum as in the numerical
model, the latter is for a small system of linear size 27 /gy,
whereas the former is for an infinite system. This implies that

in the analytical model, beyond the roll-off (or cut-off) region,
the power spectrum has a region with C(g) = 0 extending
down to g = 0 (which correspond to an infinite system as
the lower cut-off frequency ¢ = 2x/L, where L = o0 is
the linear size of the system). For an infinite system with
Gaussian random roughness, as assumed in the analytical (and
approximated in the numerical) model, there will be infinite
high asperities, and contact between two solids will occur
for any arbitrary large separation. However, the numerical
model is for a finite sized system, and all asperities will be
of a finite height. Clearly in this case the contact mechanics
involving the long-wavelength roughness components may be
rather different in the analytical and numerical models. Only
by adding a large enough wavelength region for g < ¢o
(where C(g) = 0) in the numerical model the latter will
approach the corresponding system used in the analytical
study.

Moreover, we stress that (in the analytical contact
mechanics theory [5]) the contact area depends on the function
G(q), the integrand of which scales as ¢g°C(q) ~ ¢'~*. If
we use a logarithmic g-scale, u = log(g/qo), the integrand
scales as g2/, Thus if H = 1 all decades in length scale
are equally important for the contact area, and since the small
wavevector part of the p-integral, which is influenced by the
system finite size (e.g. the size of the roll-off region) is a small
fraction of the total p-integration interval, the contact area will
exhibit very small finite size behaviours as indeed observed.
Now in the friction integral, in addition to the same g-factor
[¢3C(g)] as in the integral for the contact area, two additional
g-dependent factors enter, namely from the E-modulus and
from P(g). For small nominal contact pressures P(g) very
rapidly drops from=~ l atg = gp (or{ = lorpu =0),toa
very small value for ¢ > ¢o. This implies that the rubber
friction for very small nominal contact pressures depends
strongly on the very long-wavelength roughness, and this
results in the observed finite size effects. Similar arguments
can be given for the contact stiffness, which for small nominal
contact pressures also depends mainly on the long-wavelength
roughness.

We finally observe that the fact that the rubber friction
for very small nominal contact pressures mainly depends on
the very long-wavelength roughness implies that, for a small
system, the contact can be considered to occur between one
or a few high asperities with smooth surfaces. For a Hertzian-
like contact one can show that the friction coefficient vanishes
linearly with the average pressure 0 = Fy/A acting in
the contact region3, therefore (for a Hertzian contact where
A ~ F?/3) the friction coefficient vanishes as ~ F'/3 ~ A1/2
as A — 0. The analytical theory is for an infinite system and
in this case there will always be infinite many contact regions
and the area of real contact will be proportional to the normal
force, resulting in a friction coefficient independent of the load
(or contact area) as the load goes to zero.

3 See, e.g. equation (19) in Persson [20]. This reference is for rolling friction
but the same result prevails for the sliding friction when no frictional shear
stress acts in the contact regions, as assumed in this study.
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