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Abstract

We study fluid dynamics at the interface between elastic solids with randomly rough surfaces.

The contact mechanics model of Persson is used to take into account the elastic interaction

between the solid walls, and the Bruggeman effective medium theory to account for the

influence of the disorder on the fluid flow. We calculated the flow tensor which determines the

pressure flow factor and, for example, the leak rate of static seals. It is shown how the

perturbation treatment of Tripp can be extended to arbitrary order in the ratio between the

root-mean-square roughness amplitude and the average interfacial surface separation. We

introduce a matrix D(ζ ), determined by the surface roughness power spectrum, which can be

used to describe the anisotropy of the surface at any magnification ζ . Results are presented for

the asymmetry factor γ (ζ ) (generalized Peklenik number) for grinded steel and sandblasted

PMMA surfaces.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The influence of surface roughness on fluid flow at the interface

between solids in stationary or sliding contact is a topic of

great importance both in nature and technology. Technological

applications includes leakage of seals, mixed lubrication and

removal of water from the tire-road footprint. In nature,

fluid removal (squeeze-out) is important for adhesion and grip

between the tree frog or Gecko adhesive toe pads and the

countersurface during rain, and for cell adhesion.

Almost all surfaces in nature and most surfaces of interest

in tribology have roughness on many different length scales,

sometimes extending from atomic distances (∼1 nm) to the
macroscopic size of the system which could be of the order

∼1 cm. Often the roughness is fractal-like so that when a small
region is magnified (in general with different magnification in

the parallel and orthogonal directions) it ‘looks the same’ as

the unmagnified surface.

Most objects produced in engineering have some

particular macroscopic shape characterized by a radius of

curvature (which may vary over the surface of the solid), e.g.

the radius R of a cylinder in an engine. In this case the

surface may appear perfectly smooth to the naked eye but at

short enough length scale, in general much smaller than R, the

surface will exhibit strong irregularities (surface roughness).

The surface roughness power spectrum C(q) of such a surface

will exhibit a roll-off wavelength λ0 ≪ R (related to the roll-

off wavevector q0 = 2π/λ0) and will appear smooth (except

for the macroscopic curvature R) on length scales much longer

than λ0. In this case, when studying the fluid flow between

two macroscopic solids, one may replace the microscopic

equations of fluid dynamics with effective equations describing

the average fluid flow on length scales much larger than λ0,

and which can be used to study, for example, the lubrication

of the cylinder in an engine. This approach of eliminating or

integrating out short length scale degrees of freedom to obtain

effective equations of motion which describe the long distance

(or slow) behavior is a very general and powerful concept often

used in physics.

In the context of fluid flow at the interface between

closely spaced solids with surface roughness, Patir and

Cheng [1, 2] have shown how the Navier–Stokes equations

of fluid dynamics can be reduced to effective equations of

motion involving locally averaged fluid pressure and flow

velocities. In the effective equation occur so-called flow

factors, which are functions of the locally averaged interfacial

surface separation ū. They showed how the flow factors

can be determined by solving numerically the fluid flow
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in small rectangular units with linear sizes of the order of

(or larger than) the roll-off wavelength λ0 introduced above.

However, with the present speed (and memory) limitations

of computers fully converged solutions using this approach

can only take into account roughness over two, or at most

three, decades in length scale. In addition, Patir and Cheng

did not include the long-range elastic deformations of the

solid walls in the analysis. Later studies have attempted

to include elastic deformation using the contact mechanics

model of Greenwood–Williamson (GW) [3], but it is now

known that this theory (and other asperity contact models [4])

does not correctly describe contact mechanics because of

the neglect of the long-range elastic coupling between the

asperity contact regions [5, 6]. In particular, the relation

between the average interfacial separation ū and the squeezing

pressure p, which is very important for the fluid flow problem,

is incorrectly described by the GW model (the GW model

predicts asymptotically (for large ū) p ∼ exp(−aū2), while

the exact result [7–9] for randomly rough surfaces is p ∼
exp(−bū), where a and b are constants determined by the

nature of the surface roughness).

The paper by Patir and Cheng was followed by many

other studies of how to eliminate or integrate out the surface

roughness in fluid flow problems (see, e.g., the work by Sahlin

et al [10]). Most of these theories involve solving numerically

for the fluid flow in rectangular interfacial units and, just as

in the Patir and Cheng approach, cannot include roughness

on more than ∼2 decades in length scale. In addition, in

some of the studies the measured roughness topography must

be ‘processed’ in a non-trivial way in order to obey periodic

boundary conditions (which is necessary for the fast Fourier

transform method used in some of these studies).

Tripp [11] has presented an analytical derivation of the

flow factors for the case where the separation between the

surfaces is so large that no direct solid–solid contact occurs.

He obtained the flow factors to first order in 〈h2〉/ū2, where
〈h2〉 is the ensemble average of the square of the roughness
amplitude and ū the average surface separation. This result

is of great conceptual importance, but of minor practical

importance, as the influence of the surface roughness on the

fluid flow becomes important only when direct solid–solid

contact occurs.

Many surfaces of practical importance have roughness

with isotropic statistical properties, e.g. sandblasted surfaces

or surfaces coated with particles typically bound by a resin to

an otherwise flat surface, e.g. sandpaper surfaces. However,

some surfaces of engineering interest have surface roughness

with anisotropic statistical properties, e.g. surfaces which

have been polished or grinded in one direction. The theories

of Patir and Chen [1, 2] and of Tripp [11] can be applied

also to surfaces with anisotropic statistical properties. The

surface anisotropy is usually characterized by a single number,

the so-called Peklenik number γ , which is the ratio between

the decay length of the height–height correlation function

〈h(x, y)h(0, 0)〉 along the x and y directions, i.e. γ =
ξx/ξy , where 〈h(ξx , 0)h(0, 0)〉 = 〈h(0, 0)h(0, 0)〉/2 and
〈h(0, ξy)h(0, 0)〉 = 〈h(0, 0)h(0, 0)〉/2. Here it has been

assumed that the x axis is oriented along one of the principal

directions of the anisotropic surface roughness. However, the

anisotropy properties of a surface may depend on the resolution

(or magnification) which is not taken into account in this

picture.

In this paper we present a new approach to calculate the

fluid flow at the interface between two elastic solids with

randomly rough surfaces. The present treatment is based on

a recently developed theory for calculating the leak rate of

stationary seals [12]. The theory uses the contact mechanics

theory of Persson [13, 14] in combination with the Bruggeman

effective medium theory to calculate the fluid conductivity

tensor. In this paper we will generalize the treatment presented

in [12] to surfaces with random roughness with anisotropic

statistical properties. We also introduce a generalized Peklenik

number γ (ζ ) which depends on the magnification γ . Thus

the theory takes into account that the anisotropy properties of

the surface roughness may depend on the magnification under

which the surface is observed. We present results for how γ (ζ )

depends on ζ for a grinded steel surface studied using atomic

force microscopy and scanning tunnelingmicroscopy, and for a

sandblasted PMMA surface studied using an optical technique.

As an illustration we calculate the pressure flow factor for

surfaces with anisotropic properties. We emphasize that the

present treatment accurately accounts for surface roughness

on the arbitrary number of decades in length scale, and a full

calculation typically takes less than a minute on a normal PC.

In particular, the presented theory should be very useful for

gaining a quick insight into what are the most important length

scales in the problem under study.

This paper is organized as follows: in section 2 we briefly

review the basic equations of fluid dynamics and describe some

simplifications which are valid in the present case. In section 3

and the appendix we show how the perturbation treatment of

Tripp can be extended to arbitrary order in 〈h2〉/ū2. This

treatment may not be so important for the fluid flow problem

we consider as it is necessary to take into account that asperity

contact occurs already for relatively small values of 〈h2〉/ū2,
but the approach may find applications in other contexts. In

addition, the solution we present in wavevector space differs

from the treatment of Tripp and leads directly to a matrix

D(ζ ) which we used to describe the anisotropy of the surface

at any magnification ζ . In section 4 we define D(ζ ) and

present results for how the asymmetry factor γ (ζ ) (generalized

Peklenik number) depends on the magnification ζ . In section 5

we briefly review the contact mechanics model we use. In

section 6 we describe the critical-junction theory for the flow

factor, and in sections 7 and 8 we show how the Bruggeman

effective medium theory can be used in combination with the

contact mechanics theory to calculate the fluid flow tensor

which determines the pressure flow factor and, for example, the

leak rate of stationary seals. Section 9 contains the summary.

2. Fluid flow between solids with random surface
roughness

Consider two elastic solids with randomly rough surfaces.

Even if the solids are squeezed in contact, because of the
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surface roughness there will, in general, be non-contact regions

at the interface and, if the squeezing force is not too large, there

will exist non-contact channels from one side to the other side

of the nominal contact region. We now consider fluid flow at

the interface between the solids. We assume that the fluid is

Newtonian and that the fluid velocity field v(x, t) satisfies the

Navier–Stokes equation:

∂v

∂ t
+ v ·∇v = − 1

ρ
∇ p + ν∇2v

where ν = η/ρ is the kinetic viscosity and ρ the mass density.
For simplicity we will also assume an incompressible fluid so

that

∇ · v = 0.

We assume that the nonlinear term v · ∇v can be neglected

(which corresponds to small inertia and small Reynolds

number), which is usually the case in fluid flow between

narrowly spaced solid walls. For simplicity we assume the

lower solid to be rigid with a flat surface, while the upper solid

is elastic with a rough surface. We introduce a coordinate

system xyz with the xy plane in the surface of the lower

solid and the z axis pointing towards the upper solid, see

figure 1. The upper solid moves with velocity v0 parallel to

the lower solid. Let u(x, y, t) be the separation between the

solid walls and assume that the slope |∇u| ≪ 1. We also

assume that u/L ≪ 1, where L is the linear size of the nominal

contact region. In this case one expects that the fluid velocity

varies slowly with the coordinates x and y as compared to the

variation in the orthogonal direction z. Assuming a slow time

dependence the Navier–Stokes equation reduces to

η
∂2v

∂z2
= ∇ p.

Here and in what follows v = (vx , vy), x = (x, y) and

∇ = (∂x, ∂y) are two-dimensional vectors. Note that vz ≈ 0

and that p(x) is independent of z to a good approximation. The

solution to the above equations can be written as

v = 1

2η
z(z − u(x))∇ p + z

u(x)
v0

so that v = 0 on the solid wall z = 0 and v = v0 for z = u(x).

Integrating over z (from z = 0 to u(x)) gives the fluid flow

vector

J = −u3(x)

12η
∇ p + 1

2
u(x)v0. (1)

Mass conservation demands that

∂u(x, t)

∂ t
+∇ · J = 0

where the interfacial separation u(x, t) is the volume of fluid

per unit area. In this last equation we have allowed for a slow

time dependence of u(x, t) as would be the case, for example,

during fluid squeeze-out from the interfacial region between

two solids. However, in this paper we will only focus on the

case where u is time-independent so that ∇ · J = 0. This case
is relevant, for example, for fluid leakage in stationary seals.

z

x

u(x)

elastic solid

rigid solid

Figure 1. An elastic solid with a rough surface in contact with a rigid
solid with a flat surface.

3. Perturbation treatment

Here we show how one can obtain an effective flow equation

by integrating out the short-wavelength roughness. We first re-

derive the (first-order) expansion result of Tripp in wavevector

space. After that, we present the results of a renormalization

group type of treatment (the derivation is presented in the

appendix). The treatment presented here does not take into

account the elastic interaction between the solid walls and is

therefore strictly valid only for large enough average wall–wall

separation.

Let u(x) = ū + h(x) denote the local surface separation,

where ū = 〈u〉 is the average separation (〈· · ·〉 stands for
ensemble averaging) and h(x) is the contribution from the

surface roughness with 〈h〉 = 0. In this section we assume

h/ū ≪ 1 and perform a perturbation expansion in the small

parameter h/ū. Let us write the fluid pressure as

p = p0 + p1 + p2 + · · ·

where p0 is the pressure to zero order in h (so that p0 = 〈p0〉),
p1 to first order in h and so on. The fluid flow current is given

by

J = − u3

12η
∇ p + 1

2
uv.

Thus to second order in h we get

J = − ū3

12η
∇(p0 + p1 + p2)

− 3ū2h

12η
∇(p0 + p1)−

3ūh2

12η
∇ p0 +

1

2
(ū + h)v. (2)

The ensemble average of this equation gives

〈J〉 = − ū3

12η
∇〈p0 + p1 + p2〉

− 3ū2

12η
〈h∇ p1〉 −

3ū〈h2〉
12η

∇ p0 +
1

2
ūv (3)

where we have used that 〈h〉 = 0. Using that

∇ · J = 0

we get from (2) to zero order in h:

∇2 p0 = 0.

3
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The first-order contribution gives

− ū3

12η
∇2 p1 −

3ū2

12η
∇ · (h∇ p0)+

1

2
v ·∇h = 0. (4)

We define

p1(q) =
1

(2π)2

∫

d2x p1(x)e
−iq·x

p1(x) =
∫

d2q p1(q)e
iq·x

and similar for h(x). Substituting these results in (4) gives

ū3

12η
q2 p1(q)−

3ū2

12η
h(q)(iq) ·∇ p0 +

1

2
v · (iq)h(q) = 0 (5)

or

p1(q) =
3

ūq2
h(q)(iq) ·∇ p0 −

6η

ū3q2
v · (iq)h(q). (6)

Next, note that

〈h(q)h(q′)〉 = 1

(2π)4

∫

d2x d2x ′ 〈h(x)h(x′)〉eiq·x+iq′·x′

= 1

(2π)4

∫

d2x d2x ′ 〈h(x− x′)h(0)〉eiq·x+iq′·x′

= 1

(2π)4

∫

d2x d2x ′ 〈h(x− x′)h(0)〉eiq·(x−x′)+i(q′+q)·x′

= 1

(2π)4

∫

d2x d2x ′ 〈h(x)h(0)〉eiq·x+i(q′+q)·x′

= 1

(2π)2

∫

d2x 〈h(x)h(0)〉eiq·xδ(q+ q′)

= C(q)δ(q + q′).

Using this equation and (6) gives

〈h∇ p1〉 =
∫

d2q d2q ′ (iq′)〈h(q)p1(q
′)〉ei(q+q′)·x

=
∫

d2q C(q)
qq

q2
·

(

6η

ū3
v− 3

ū
∇ p0

)

.

Substituting this result in (3) gives

〈J〉 = − 1

12η
A(ū)∇ p̄ + 1

2
B(ū)v (7)

where p̄ = 〈p0 + p1 + p2〉, and where the 2 × 2 matrices A

and B can be written as A = ū3φp and B = ūφs with the flow

factor matrices

φp = 1+
3

ū2

(

〈h2〉 − 3
∫

d2q C(q)
qq

q2

)

= 1+ 3〈h
2〉

ū2
(1− 3D), (8)

and

φs = 1−
3

ū2

∫

d2q C(q)
qq

q2
= 1− 3〈h2〉

ū2
D. (9)

Here we have defined the 2× 2 matrix

D =
∫

d2q C(q)qq/q2
∫

d2q C(q)
.

For roughness with isotropic statistical properties, Di j = 1/2,
in which case (8) and (9) become

φp = φs = 1−
3

2

〈h2〉
ū2

. (10)

In deriving (7) we have used that, to order h2, one can replace

terms like h2∇ p0 with h2∇ p̄.

In the derivation above we calculated the pressure and

shear flow factors to first order in 〈h2〉/ū2. In principle it
is possible to extend the perturbation expansion to calculate

higher-order terms in 〈h2〉/ū2. This will result in higher-order
correlation functions, e.g. 〈h1h2h3h4〉 (where h1 = h(q1) and

so on), but if the surface is randomly rough then these higher-

order correlation functions can be decomposed into a sum of

products of pair correlation functions, e.g.

〈h1h2h3h4〉 = 〈h1h2〉〈h3h4〉 + 〈h1h3〉〈h2h4〉 + 〈h1h4〉〈h2h3〉.

Thus, all terms in the perturbation expansion will only involve

the pair correlation function C(q). We empathize that this

is the case only for randomly rough surfaces where the

phase of the different plane-wave components in the Fourier

decomposition of h(x) are uncorrelated. However, already

the calculation of the second-order term in the expansion of

the flow factors in 〈h2〉/ū2 becomes very cumbersome. In
the appendix we present a much simpler and more powerful

approach, which is in the spirit of the renormalization group

(RG) procedure. Thus we eliminate or integrate out the surface

roughness components in steps and obtain a set of RG flow

equations describing how the effective fluid equation evolves

as more and more of the surface roughness components are

eliminated.

Assume that after eliminating all the surface roughness

components with wavevector |q| = q > ζq0 the fluid current

takes the form

J = − 1

12η
A(u, ζ )∇ p + 1

2
B(u, ζ )v (11)

where A and B are 2 × 2 matrices. In the appendix we show
that A(u, ζ ) and B(u, ζ ) satisfies

∂A

∂ζ
=

[

1

2
A′′(u, ζ )− A′(u, ζ )M A′(u, ζ )

]

d

dζ
〈h2〉ζ (12)

∂B

∂ζ
=

[

1

2
B ′′(u, ζ )− A′(u, ζ )M B ′(u, ζ )

]

d

dζ
〈h2〉ζ (13)

where A′ = ∂A/∂u and so on, and where the 2 × 2 matrix
M ∼ A−1 is defined in the appendix. Here 〈h2〉ζ is the mean
of the square of the roughness amplitude including only the

roughness components with wavevector q > ζq0 which can be

written as

〈h2〉ζ =
∫

q>ζq0

d2q C(q). (14)

If we assume that D(ζ ) (defined in the appendix and in

section 4) is independent of ζ , it is easy to solve these equations

using perturbation theory to arbitrary order in the surface

roughness amplitude h. As an example, for random roughness

4
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with isotropic statistical properties one obtains to second order

in 〈h2〉/ū2 (see the appendix)

A = u3
(

1− 3
2

〈h2〉ζ
u2

− 9
8

〈h2〉2ζ
u4

)

(15)

B = u

(

1− 3

2

〈h2〉ζ
u2

− 21

8

〈h2〉2ζ
u4

)

. (16)

The terms to linear order in 〈h2〉 in these expressions agree with
the result of Tripp. He compared his expansion results with

the numerical results of Patir and Cheng and found that the

expression for A (or φp) and B (or φs) agrees rather well with

the numerical results for 〈h2〉1/2/ū < 3 and <6, respectively.

For the latter case our second-order contribution to B improves

the agreement between numerical results and the expansion

result but for 〈h2〉1/2/ū < 3 the direct wall–wall interaction

becomes so important that the expansion result (which neglects

this interaction) cannot be used.

4. Surfaces with anisotropic statistical properties

As discussed in the introduction, surfaces with anisotropic

statistical properties are usually characterized by the Peklenik

number γ = ξx/ξy , which is the ratio between the

characteristic correlation length ξx and ξy , defined as the

distances along the x and y axes where the height–height

correlation function 〈h(x, y)h(0, 0)〉 has decayed to half of its
initial value. However, for most real surfaces γ (ζ ) will depend

on the magnification or length scale under consideration. Here

we propose to obtain γ (ζ ) from the surface roughness power

spectrum C(qx, qy) as follows.

The surface roughness power spectrum C(q) is defined by

C(q) = 1

(2π)2

∫

d2x 〈h(x)h(0)〉eiq·x.

We can write

C(x) = 〈h(x)h(0)〉 =
∫

d2q C(q)e−iq·x.

We also define

C(x, ζ ) =
∫ 2π

0

dφ C(q)e−iq·x

where q = ζq0(cosφ, sinφ). Now consider the closed contour

defined by

C(x, ζ ) = C(0, ζ )/2.

We now fit this contour to the quadratic function f (x) =
ai j xi x j + bi xi + c. The function ai j xi x j = const. describes

an ellipse which in general has its major axis rotated by some

angle ψ relative to the x axis. We define γ as the ratio

between the major and minor ellipse axes, and obtain both

γ (ζ ) and the rotation angle ψ(ζ ), both of which depend on

the magnification ζ .

Another way to determine an effective γ (ζ ) is as follows.

Consider the tensor (see also the appendix)

D(ζ ) =
∫ 2π

0
dφ C(q)qq/q2

∫ 2π

0
dφ C(q)

(17a)

where q = ζq0(cosφ, sinφ). If D(ζ ) is independent of ζ then

this definition is identical to

D =
∫

d2q C(q)qq/q2
∫

d2q C(q)
(17b)

which appeared already in the perturbation calculation in

section 3. Note that D11 + D22 = Tr D = 1 and that D is

symmetric and can be diagonalized. For example, suppose

C(q) = f (αx q2x + αyq2y) and that the q integrals in (17b)

are over the whole q plane. For this case we get after some

simplifications

D = 1

2π

∫ 2π

0

dφ
x̂ x̂ cos2 φ + ŷ ŷγ 2 sin2 φ

cos2 φ + γ 2 sin2 φ
(18)

where γ 2 = αx/αy . Performing the integral gives D11 =
1/(1 + γ ) and D22 = γ /(1 + γ ). Note that in this case

|D| = D11D22 = γ /(1 + γ )2, where |D| is the determinant
of the matrix D. This equation has two solutions, γ and 1/γ ,

where

γ = 1

2|D| [1− (1− 4|D|)
1/2] − 1. (19)

Note that this definition of γ is independent of the coordinate

system used since the determinant is invariant under rotations

(orthogonal transformations). Note also that, for a surface with

isotropic statistical properties, from (17) Di j = δi j/2 so that

|D| = 1/4 and (19) reduces to γ = 1 as it should. The

angle ψ between the major axis of the ellipse and the x axis

of the coordinate system depends, of course, on the coordinate

system and is given by

tanψ = c ± (1+ c2)1/2 (20)

where c = (D22 − D11)/(2D12).

In figure 2 we show the surface topography of a grinded

steel surface as obtained using (a) atomic force microscopy

(AFM) (10 µm × 10 µm) and (b) scanning tunneling

microscopy (STM) (0.1 µm×0.1 µm). In figure 3 we show the
(angular-averaged) surface roughness power spectrum C(q)

calculated from the AFM and the STM surface topography data

shown in figure 2. The power spectrum is well approximated

with a self-affine fractal with the fractal dimension Df = 2.25.
However, note that the surface topography is anisotropic. In

figure 4 we show the calculated (using (19)) γ parameter

for the same surface. The maximum of γ occurs for q ≈
1.8 × 106 m−1, corresponding to a wavelength λ = 2π/q ≈
3.5 µm. This is just the wavelength of the surface topography

orthogonal to the major wear tracks in figure 2.

In figure 5 we show the calculated (using (19)) γ

parameter for a sandblasted PMMA surface. In this case the

5
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Figure 2. Surface topography of a grinded steel surface obtained
using (a) atomic force microscopy (AFM) (10 µm× 10 µm) and
(b) scanning tunneling microscopy (STM) (0.1 µm× 0.1 µm).

STM

AFM

6 8 10
-40

-36

-32

-28

log q (1/m)

lo
g

 C
 (

m
  
)

4

grinded steel

Figure 3. The (angular-averaged) surface roughness power spectrum
C(q) calculated from the AFM and the STM surface topography data
shown in figure 2.

statistical properties of the surface are expected to be isotropic,

and indeed γ is very close to unity.

For surfaces which have been grinded or polished in one

direction, wear scars may occur almost uninterrupted for a very

long distance. In this case it is necessary to measure the surface

topography over a very large surface area in order to correctly

obtain the γ (ζ ) function. In numerical flow calculations as

involved in, for example, the studies of Patir and Cheng, it

would be necessary to use very large rectangular units which

would be practically impossible because of the huge memory

and computational time required.

STM

AFM

6 8 10
1

4

7

10

log q (1/m)

γ

grinded steel

Figure 4. The γ parameter calculated from the AFM and the STM
surface topography data shown in figure 2. The maximum of γ
occurs for q ≈ 1.8× 106 m−1, corresponding to a wavelength
λ = 2π/q ≈ 3.5 µm. This is just the wavelength of surface
topography orthogonal to the major wear tracks in figure 2.

2 3 4 5
1

1.02

1.04

1.06

log q (1/m)

sandblasted PMMA
γ

Figure 5. The γ parameter calculated from optically measured
surface topography data for sandblasted PMMA. The surface
topography was measured over a 3 cm× 3 cm surface area. The
surface root-mean-square roughness was 32 µm.

5. Contact mechanics: short review and basic
equations

At short (average) interfacial separation there will be a direct

asperity interaction between the solid walls, and in this case

the perturbation approach of section 2 will fail. Here we will

briefly review the contact mechanics model of Persson which

we use in this study.

Consider the frictionless contact between two elastic

solids with Young’s elastic moduli E0 and E1 and the Poisson

ratios ν0 and ν1. Assume that the solid surfaces have the

height profiles h0(x) and h1(x), respectively. The elastic

contact mechanics for the solids is equivalent to those of a

rigid substrate with the height profile h(x) = h0(x) + h1(x)

and a second elastic solid with a flat surface and with Young’s

modulus E and the Poisson ratio ν chosen so that [15]

1− ν2
E

= 1− ν20
E0

+ 1− ν
2
1

E1
.
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Figure 6. A rubber block (dotted area) in adhesive contact with a
hard rough substrate (dashed area). The substrate has roughness on
many different length scales and the rubber makes partial contact
with the substrate on all length scales. When a contact area is studied
at low magnification it appears as if complete contact occurs, but
when the magnification is increased it is observed that in reality only
partial contact occurs.

The contact mechanics formalism developed else-

where [7, 8, 13, 14] is based on studying the interface between

two contacting solids at different magnifications ζ . When

the system is studied at the magnification ζ it appears as if

the contact area (projected on the xy plane) equals A(ζ ),

but when the magnification increases it is observed that the

contact is incomplete (see figure 6) and the surfaces in the

apparent contact area A(ζ ) are, in fact, separated by the

average distance ū(ζ ), see figure 7. The (apparent) relative

contact area A(ζ )/A0 at the magnification ζ is given by [8, 13]

A(ζ )

A0
= 1

(πG)1/2

∫ p0

0

dσ e−σ
2/4G = erf

(

p0

2G1/2

)

(21)

where

G(ζ ) = π

4

(

E

1− ν2
)2 ∫ ζq0

q0

dq q3C(q)

where the surface roughness power spectrum is

C(q) = 1

(2π)2

∫

d2x 〈h(x)h(0)〉e−iq·x

where 〈· · ·〉 stands for the ensemble average. The height profile
h(x) of the rough surface can be measured routinely today on

all relevant length scales using optical and stylus experiments.

The quantity ū(ζ ) is the average separation between

the surfaces in the apparent contact regions observed at the

magnification ζ , see figure 7. It can be calculated from [8]

ū(ζ ) = √π
∫ q1

ζq0

dq q2C(q)w(q, ζ )

×
∫ ∞

p(ζ )

dp′
1

p′
e−[w(q,ζ )p′/E∗]2 ,

where p(ζ ) = p0A0/A(ζ ) and

w(q, ζ ) =
(

π

∫ q

ζq0

dq ′ q ′3C(q ′)

)−1/2
.

magnification ζ

elastic solid

rigid solid

ζ1

u(ζ)
_

Figure 7. An asperity contact region observed at the magnification ζ .
It appears that complete contact occurs in the asperity contact region,
but when the magnification is increased to the highest (atomic scale)
magnification ζ1, it is observed that the solids are actually separated
by the average distance ū(ζ ).

We define u1(ζ ) to be the (average) height separating

the surfaces which appear to come into contact when the

magnification decreases from ζ to ζ−1ζ , where1ζ is a small
(infinitesimal) change in the magnification. In figure 8(a) the

black area is the asperity contact region at the magnification

ζ . The green area is the additional contact area observed

when the magnification is reduced to ζ − 1ζ (where 1ζ is

small)1. The average separation between the solid walls in

the green surface area is given by u1(ζ ). Figure 8(b) shows

the separation between the solid walls along the dashed line

in figure 8(a). Since the surfaces of the solids are everywhere

rough the actual separation between the solid walls in the green

area will fluctuate around the average u1(ζ ). Thus we expect

the smallest surface separation uc = αu1(ζc), where α < 1

(but of order unity, see figure 8(b))2. In [12, 16] we have

analyzed leak-rate data for rubber seals and always found α

to be in the range 0.5–1. However, it is clear that α cannot

be a fixed constant but must depend on the average surface

separation and on the surface roughness which occurs at length

scales shorter than λ = L/ζ . In particular, as 〈h2〉ζ /u21(ζ )→
0 we expect that α→ 1 (see also section 8).

u1(ζ ) is a monotonically decreasing function of ζ and can

be calculated from the average interfacial separation ū(ζ ) and

1 Figure 8(a) is schematic as in reality the contact islands at high enough

magnification are fractal-like, and decreasing the magnification results in more

complex changes than just adding strips (of constant width) of contact area

to the periphery of the contact islands. However, this does not change our

conclusions.
2 In [8] the probability distribution of interfacial separations 〈δ(u − u(x))〉 as
obtained from molecular dynamics calculations for self-affine fractal surfaces

(with the fractal dimension Df = 2.2) was compared to the distribution of

separations obtained from u1(ζ ). The former distribution was found to be

about a factor of two wider than that obtained from u1(ζ ). This is consistent

with the fact that u1(ζ ) is already an averaged separation and indicates that in

this case α ≈ 0.5.

7
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(a)

(b)

cu u1

Figure 8. (a) The black area is the asperity contact region at the
magnification ζ . The green (grey) area is the additional contact area
observed when the magnification is reduced to ζ −1ζ (where1ζ is
small). The average separation between the solid walls in the green
(grey) surface area is denoted by u1(ζ ). (b) The separation between
the solid walls along the blue dashed line in (a). Since the surfaces of
the solids are everywhere rough the actual separation between the
solid walls in the green (grey) area will fluctuate around the average
u1(ζ ). At the most narrow constriction the surface separation is uc.

A(ζ ) using (see [8])

u1(ζ ) = ū(ζ )+ ū′(ζ )A(ζ )/A′(ζ ).

One can show [12] from the equations above that, as the

applied squeezing pressure p0 → 0, for the magnifications

most relevant for calculating fluid flow (e.g. the leak rate of

seals), u1 → ū.

We note that, when solving for the fluid flow between

macroscopic surfaces with roughness, one may in a mean-

field type of treatment write the local nominal pressure (i.e.

the pressure locally averaged over surface area with linear

dimension of the order of the wavelength λ0 of the longest

surface roughness component) as [17]

p(x, t) = pfluid(x, t)+ psolid(x, t),

where pfluid and psolid are locally averaged nominal fluid

pressure and solid wall–wall contact pressure, respectively.

The pressure psolid can be related to the interfacial separation

ū(x, t) as described in [7, 8]. In particular, for large enough

average surface separation [7]

psolid ≈ βE∗e−ū/u0

where β and u0 can be calculated from the surface roughness

power spectrum.

6. Critical-junction theory of fluid flow

The perturbation expansion presented in section 3 assumed

no direct contact between the solid walls. But direct contact

between the solid walls occurs in most cases of interest, e.g.

in static seals. The simplest approach for this case is based

on the leak-rate model developed in [12, 18–22]. Consider the

fluid leakage through a (nominal) contact region, say between

a hard solid and rubber, from a high fluid pressure Pa region,

to a low fluid pressure Pb region. Assume that the nominal

contact region between the rubber and the hard countersurface

is rectangular with area L x × L y , with L y > L x . We assume

that the high pressure fluid region is for x < 0 and the low

pressure region is for x > L x . We ‘divide’ the contact region

into squares with the side L x = L and the area A0 = L2

(this assumes that N = L y/L x is an integer, but this restriction

does not affect the final result). Now, let us study the contact

between the two solids within one of the squares as we change

the magnification ζ . We define ζ = L/λ, where λ is the

resolution. We study how the apparent contact area (projected

on the xy plane), A(ζ ), between the two solids depends on

the magnification ζ . At the lowest magnification we cannot

observe any surface roughness, and the contact between the

solids appears to be complete, i.e. A(1) = A0. As we increase

the magnification we will observe some interfacial roughness

and the (apparent) contact area will decrease. At high enough

magnification, say ζ = ζc, a percolating path of non-contact

area will be observed for the first time, see figure 9. We denote

the most narrow constriction along this percolation path as the

critical constriction. The critical constriction will have the

lateral size λc = L/ζc and the surface separation at this point

is denoted by uc = αu1(ζc). As we continue to increase the

magnification we will find more percolating channels between

the surfaces, but these will have more narrow constrictions

than the first channel which appears at ζ = ζc, and as a first

approximation one may neglect the contribution to the leak rate

from these channels [20].

A first rough estimate of the leak rate is obtained by

assuming that all the leakage occurs through the critical

percolation channel and that the whole pressure drop 1P =
Pa− Pb (where Pa and Pb are the pressures to the left and right

of the seal, respectively) occurs over the critical constriction (of

width and length λc ≈ L/ζc and height uc). We will refer to

this theory as the ‘critical-junction’ theory. If we approximate

the critical constriction as a pore with rectangular cross section

(width and length λc and height uc ≪ λc), and if we assume an

incompressible Newtonian fluid, the volume flow per unit time

through the critical constriction will be given by (Poiseuille

flow)

Q̇ = u3c

12η
1P, (22)

where η is the fluid viscosity. In deriving (22) we have assumed

laminar flow and that uc ≪ λc, which is always satisfied in

practice. We have also assumed a no-slip boundary condition

on the solid walls. This assumption is not always satisfied

8
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(a) ζ=3, A/A0=0.778 (b) ζ=9, A/A0=0.434

(c) ζ=12, A/A0=0.405 (d) ζ=648, A/A0=0.323

critical constriction

Figure 9. The contact region at different magnifications ζ = 3, 9, 12
and 648 is shown in (a)–(d), respectively. When the magnification
increases from 9 to 12 the non-contact region percolates. At the
lowest magnification ζ = 1: A(1) = A0. The figure is the result of
molecular dynamics simulations of the contact between elastic solids
with randomly rough surfaces, see [20].

at the micro- or nanoscale, but is likely to be a very good

approximation in the present case owing to surface roughness

which occurs at length scales shorter than the size of the critical

constriction. Finally, since there are N = L y/L x square areas

in the rubber–countersurface (apparent) contact area, we get

the total leak rate

Q̇ = L y

L x

u3c

12η
1P. (23)

Note that a given percolation channel could have several

narrow (critical or nearly critical) constrictions of nearly the

same dimension which would reduce the flow along the

channel. But in this case one would also expect more channels

from the high to the low fluid pressure side of the junction,

which would tend to increase the leak rate. These two effects

will, at least in the simplest picture where one assumes that

the distance between the critical junctions along a percolation

path (in the x direction) is the same as the distance between

the percolation channels (in the y direction), compensate each

other (see [20]). The effective medium theory presented below

includes (in an approximate way) all the flow channels.

To complete the theory wemust calculate the separation uc
of the surfaces at the critical constriction. We first determine

the critical magnification ζc by assuming that the apparent

relative contact area at this point is given by percolation theory.

Thus, the relative contact area A(ζ )/A0 ≈ 1 − pc, where

pc is the so-called percolation threshold [23]. For infinite-

sized 2D systems, and assuming site percolation, pc ≈ 0.70

for a hexagonal lattice, 0.59 for a square lattice and 0.5 for a

triangular lattice [23]. For bond percolation the corresponding

numbers are 0.65, 0.5 and 0.35, respectively. For continuous

percolation in 2D the Bruggeman effective medium theory

predicts pc = 0.5. For finite-sized systems the percolation

will, on average, occur for (slightly) smaller values of pc, and

fluctuations in the percolation threshold will occur between

different realizations of the same physical system. Numerical

simulations such as those presented in [20] (see figure 9)

and [24] typically give pc slightly larger than 0.5. In our earlier

leak-rate studies we have used pc = 0.5 and 0.6 to determine

the critical magnification ζ = ζc.
We can write the leak rate in terms of the pressure flow

factor. Thus the current

Jx = −
ū3φp

12η

dp

dx
= − ū3φp

12η

1P

L x

and the leak rate

Q̇ = Jx L y =
L y

L x

ū3φp

12η
1P.

Comparing this with (23) gives

φp =
(uc

ū

)3

=
(

α
u1(ζc)

ū(1)

)3

.

7. Effective medium theory of fluid flow: isotropic
roughness

The critical-junction theory presented above assumes that the

leak rate is determined by the resistance towards fluid flow

through the critical constriction (or through a network of

critical constrictions, see above). In reality there will be

many flow channels at the interface. Here we will use the

2D Bruggeman effective medium theory [25–27] to calculate

(approximately) the leak rate resulting from the network of

flow channels. Another approach to extend the critical-junction

theory is critical path analysis, see [28, 29].

We study the fluid flow through an interface where the

separation u(x) between the surfaces varies with the lateral

coordinate x = (x, y). If u(x) varies slowly with x the Navier–

Stokes equations of fluid flow reduce to

J = −σ∇ p, (24)

where the conductivity σ = u3(x)/12η.

In the effective medium approach one replaces the local,

spatially varying, conductivity σ(x) with a constant effective

conductivity σeff. Thus the fluid flow current equation

J = −σeff∇ p, (25)

as applied to a rectangular region L x × L y with the pressure

gradient dp/dx = (Pb − Pa)/L x , gives

Q̇ = L y Jx =
L y

L x

σeff1P, (26)

where 1P = Pa − Pb is the pressure drop.

9
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av

effective
medium

= σ

σeff σeff

Figure 10. Effective medium theories take into account random
disorder in a physical system, e.g. random fluctuations in the
interfacial separation u(x). Thus, for an n-component system (e.g.
where the separation u takes n different discrete values) the flow in
the effective medium should be the same as the average fluid flow
obtained when circular regions of the n components are embedded in
the effective medium. Thus, for example, the pressure p at the origin
calculated assuming that the effective medium occurs everywhere
must equal the average

∑

ci pi (where ci is the concentration of
component i) of the pressures pi (at the origin) calculated with the
circular inclusion of component i = 1, . . . , n.

The effective medium conductivity σeff is obtained as

follows. Let us study the current flow at a circular inclusion

(radius R) with the (constant) conductivity σ located in an

infinite conducting sheet with the (constant) conductivity σeff.

Inside and outside the inclusion the fluid pressure satisfies

∇2 p = 0. Let J0 = −σeffa be the current far from the inclusion
(assumed to be constant). For r < R we have the solution

p = βa · x. (27)

Using that p and x · J must be continuous at r = R one can

show that

β = 2σeff

σeff + σ
. (28)

The basic picture behind effective medium theories is

presented in figure 10. Thus, for a two-component system, one

assumes that the flow in the effective medium should be the

same as the average fluid flow obtained when circular regions

of the two components are embedded in the effective medium.

Thus, for example, the pressure p calculated assuming that the

effective medium occurs everywhere must equal the average

c1 p1 + c2 p2 of the pressures p1 and p2 calculated with the

circular inclusion of the two components 1 and 2, respectively.

For r < R we have for the effective medium p = a · x and

using (27) the equation p = c1 p1 + c2 p2 which gives

1 = c1β1 + c2β2 (29)

where c1 and c2 are the fractions of the total area occupied

by the components 1 and 2, respectively. Using (28) and (29)

gives

1 = c1
2σeff

σeff + σ1
+ c2

2σeff

σeff + σ2
which is the standard Bruggeman effective medium for a two-

component system. Note that if one component is insulating,

say σ2 = 0, as c1 → 0.5 from above, σeff → 0, i.e.

pc = 1/2 is the percolation threshold of the two-component

2D Bruggeman effective medium model.

If one instead has a continuous distribution of components

(which we number by the continuous index ξ ) with

conductivities σ = σ(ξ), then

1 =
∫

dξ P(ξ)β(ξ) (30)

where P(ξ) is the fraction of the total surface area occupied

by the component denoted by ξ . The probability distribution

P(ξ) is normalized so that

∫

dξ P(ξ) = 1. (31)

Using (28) we get

1 =
∫

dξ P(ξ)
2σeff

σeff + σ(ξ)
. (32)

It is easy to show from this equation that also for the case of

a continuous distribution of components, the percolation limit

occurs when the non-conducting component (which in our case

corresponds to the area of real contact where u = 0 and hence
σ = u3/12η = 0) occupies 50% of the total surface area, i.e.

pc = 1/2 in this case too.
To summarize, using the 2D Bruggeman effective medium

theory we get

Q̇ = L y

L x

σeff1P, (33)

where 1P = Pa − Pb is the pressure drop and where

1

σeff
=

∫

dσ P(σ )
2

σeff + σ

=
∫

dζ

(

− A′(ζ )

A0

)

2

σeff + σ(ζ )
, (34)

where

σ(ζ ) = [αu1(ζ )]3
12η

. (35)

Equation (34) is easy to solve by iteration.

8. Effective medium theory of fluid flow: anisotropic
roughness

Here we briefly describe how one may apply the effective

medium theory to study fluid flow between surfaces with

anisotropic (but translationally invariant) statistical properties.

Let p be the locally average pressure and J the fluid flow

current also locally averaged. We have

Ji = −σ effi j

∂p

∂x j

. (36)

Note that

σ effi j =
ū3

12η

(

φp
)

i j
.

We can choose a coordinate system such that the flow

conductivity tensor is diagonal:

σ̄eff =
(

σ‖ 0

0 σ⊥

)

10
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x

(a) (b) (c)

ξ

ξy

x

Figure 11. Contact regions for (a) longitudinally oriented, (b) isotropic and (c) transversely oriented rough surfaces. The ratio between the
ellipse major axes is denoted by γ = ξx/ξy and γ > 1,=1 and<1 in (a), (b) and (c), respectively. The average fluid flow is in the x direction.

In this case the x and y coordinate axes are oriented along

and perpendicular to the ‘grooves’ on the surface, respectively.

The flow conductivity for any other orientation can be obtained

using the standard transformation of tensors under rotation.

Thus if the x axis is oriented an angle φ relative to the ‘grooves’

then

σ̄eff =
(

σ‖ cos2 φ + σ⊥ sin2 φ (σ‖ − σ⊥) cosφ sinφ
(σ‖ − σ⊥) cosφ sinφ σ‖ sin

2 φ + σ⊥ cos2 φ

)

.

We will now calculate the flow conductivities σ‖ and σ⊥
parallel and perpendicular to the grooves, respectively. We

assume that interfacial separation u(x) varies slowly with x =
(x, y). Consider an elliptic inclusion in a fluid. Assume that

the fluid flow conductivity equals σeff outside the inclusion and

σ1 inside the inclusion. Assume that the fluid flow far from

the inclusion is along the x axis and that the major axis of the

inclusion is at an angle ψ relative to the x axis. Thus, far from

the inclusion J = −σeffax̂ = −σ‖ax̂ and

p = a · x = ax . (37)

The fluid flow can be calculated analytically using elliptic

coordinates (µ, ϑ), see [30]. In this coordinate system the

curves µ = const. are ellipses. Consider the ellipse µ = µ0.

The ratio γ between the major and minor axes can be written

as γ = cothµ0 so that when µ0 → ∞ the ellipse becomes a

circle.

The fluid pressure inside the elliptic inclusion is given by

p = xa(A cos2 ψ+ B sin2ψ)+ ya(B− A) cosψ sinψ (38)

where

A = σeffe
µ0

σeff coshµ0 + σ1 sinhµ0
(39)

B = σeffe
µ0

σ1 coshµ0 + σeff sinhµ0
(40)

where σeff = σ‖. Note that when µ0 → ∞ the matrix

A = B = β , where β is given by (28). Thus in this case

the pressure in the inclusion becomes p = βa · x just as for

a circular inclusion (see equation (27)), which of course is

expected because the ellipse becomes a circle when µ0 →∞.
The parameter µ0 is determined by γ = cothµ0 or

e2µ0 = γ + 1
γ − 1 .

Using this equation we can also write (39) and (40) as

A = σeff(γ + 1)
σeffγ + σ1

(41)

B = σeff(γ + 1)
σ1γ + σeff

. (42)

We now consider the situation where ψ = 0 so that one

of the ellipse axes is oriented along the (average) fluid flow

direction as in figure 11(a). In this case the pressure in the

inclusion

p = Aax

while the pressure far away from the inclusion p = ax . For

a two-component system the effective medium equation (30)

now becomes

1 = c1σeff(γ1 + 1)
σeffγ1 + σ1

+ c2σeff(γ2 + 1)
σeffγ2 + σ2

(43)

where we have taken into account that the two components

may have a different ratio γ . Assume that one component,

say component 2, has the conductivity σ2 = 0. In this case it

follows from (43) that σeff → 0 as c2 → γ1/(γ1 + 1). Note in
particular that for γ1 →∞, c2 → 1, i.e. in the limit when the

major axis of inclusion 1 goes to infinite (where conducting

strips of conducting component 1 occur for an arbitrary low

concentration of component 1), fluid flow will occur at the

interface until complete contact occurs between the solids. In

the opposite limit γ1 → 0, c2 → 0. In this case no fluid

can flow (in the x direction) at the interface for any applied

pressure. These two limits correspond to the configurations

illustrated in figure 12.

For a continuous distribution of components

1 =
∫

dζ P(ζ )
σeff(γ (ζ )+ 1)
σeffγ (ζ )+ σ(ζ )

(44)

where σ(ζ ) = (αu1(ζ ))
3/12η. This equation is also valid for

the orientation of the ellipse as in figure 11(c) in which case

γ < 1 (in general, γ is the ratio between the ellipse axes in the

x direction and the y direction). Note that in the limit γ → 0,

equation (44) reduces to

σeff = 〈σ−1〉−1,

11
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(a) (b)

Figure 12. The black area denotes interfacial solid–solid contact
with the flow conductivity σ2 = 0. The two cases (a) and (b)
correspond to γ = ∞ and γ = 0, respectively. In the first case (a)
fluid flow can occur in the strips (open channels) of component 1 for
arbitrary low concentration of component 1. In this case fluid flow
will occur at the interface until complete contact occurs between the
solids. In the opposite limit γ → 0 no fluid can flow (in the x
direction) at the interface unless c2 is zero.

where

〈σ−1〉 =
∫

dζ P(ζ )σ−1(ζ ).

Similarly for γ →∞ we get from (47)

σeff = 〈σ 〉.

Note that these two limiting results are exact as is easy to prove

using (1) and that u(x) = u(x, y) only depends on x as γ → 0,

and only on y as γ →∞.
In the most general case ψ depends on the magnification

(see section 4), ψ = ψ(ζ ), and in that case (44) is replaced

with

1 =
∫

dζ P(ζ )(A(ζ ) cos2ψ(ζ )+ B(ζ ) sin2ψ(ζ )

+ (y/x) cosψ(ζ ) sinψ(ζ )[B(ζ )− A(ζ )]) (45)

where

A(ζ ) = σeff(γ (ζ )+ 1)
σeffγ (ζ )+ σ(ζ )

B(ζ ) = σeff(γ (ζ )+ 1)
σ (ζ )γ (ζ )+ σeff

.

Now when ψ(ζ ) varies with ζ we do not know a priori the

coordinate system where σ̄eff is diagonal. However, givenψ(ζ )

obtained (relative to the x axis) in any given coordinate system,

we can determine the rotated coordinate system in which σ̄eff is

diagonal as follows. Let the rotation angle be denoted by φ. We

determine φ so that with ψ(ζ ) in (45) replaced by ψ(ζ ) + φ,
the term in (45) which is proportional to y vanishes. That is, φ

is determined so that

0 =
∫

dζ P(ζ ) cos[ψ(ζ )+ φ] sin[ψ(ζ )+ φ][B(ζ )− A(ζ )].
(46)

In this case (45) reduces to

1 =
∫

dζ P(ζ )(A(ζ ) cos2[ψ(ζ )+ φ]

+ B(ζ ) sin2[ψ(ζ )+ φ]). (47)

γ = 3

1
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Figure 13. The pressure flow factor φp as a function of the average
surface separation ū in units of the root-mean-square roughness
amplitude. For three different surfaces with surface roughness with
isotropic statistical properties (γ = 1), and for surfaces with
anisotropic roughness of longitudinal (γ = 3) and transverse
(γ = 1/3) type. The γ = 1 case is for sandblasted PMMA
(root-mean-square roughness 22 µm) in contact with rubber with the
elastic modulus E = 2.3 MPa. The other cases assume the same
angular averaged power spectrum and elastic properties as for the
γ = 1 case. The solid and dashed lines are discussed in the text.

Equations (46) and (47) constitute two equations for αeff and

φ which can be easily solved by iteration. Note that (46) is

unchanged as ψ(ζ ) → ψ(ζ ) + π/2 while under the same

transformation (47) becomes

1 =
∫

dζ P(ζ )(A(ζ ) sin2[ψ(ζ )+φ]+B(ζ ) cos2[ψ(ζ )+φ]).
(48)

If the solution to (46) and (47) is denoted by σ‖ then the
solution to (46) and (48) will be σ⊥.

In figure 13 we show the pressure flow factor φp as a

function of the average surface separation ū in units of the

root-mean-square roughness amplitude. In the calculation

we have for simplicity assumed that γ (ζ ) is a constant

independent of the magnification ζ . Results are shown for

three different surfaces with surface roughness with isotropic

statistical properties (γ = 1), and for surfaces with anisotropic
roughness of longitudinal (γ = 3) and transverse (γ = 1/3)

type. The dashed lines are calculated with α = 1 while the

solid lines are calculated with an α which depends on the

interfacial separation as follows.

As pointed out is section 5, the surfaces in the (non-

contact) flow channels are everywhere rough, and the actual

separation between the solid walls in the non-contact region

which appears when the magnification is reduced from ζ to

ζ − 1ζ (green area in figure 8(a)) will fluctuate around the

average u1(ζ ). Thus, with respect to fluid flow the separation

u between the walls will appear smaller than the average u1
and we use u = αu1(ζ ), where α < 1. We note that α is due

to the surface roughness which occurs at length scales shorter

than λ = L/ζ , and it is possible to calculate (or estimate) α

from the surface roughness power spectrum, as follows.

As shown in section 2 and the appendix, the fluid flow

between two nominal flat surfaces is affected by the surface

12
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Figure 14. The variation of the area of real contact A (in units of the
nominal contact area A0) and the average interfacial separation ū (in
units of the root-mean-square roughness amplitude) as a function of
the (nominal) squeezing pressure for the system shown in figure 13:
sandblasted PMMA (root-mean-square roughness 22 µm) in contact
with rubber with the elastic modulus E = 2.3 MPa.

roughness on the solid walls even at such large (average)

surface separation that no direct wall–wall contact occurs.

Thus for isotropic roughness at large separation there is a

reduction in the fluid flow entering via the flow factor φp ≈
1− (3/2)(〈h2〉/u2), where u is the average surface separation.

If we apply this to the present case in the fluid flow problem

we replace the term u31(ζ ) by u31(ζ )φ
∗
p , where

φ∗p =
(

1+ 3
2

〈h2〉ζ ∗
u21(ζ

∗)

)−1
.

Here we have assumed a surface roughness with isotropic

statistical properties and 〈h2〉ζ denotes the ensemble average
of the square of the roughness amplitude including only the

surface roughness with wavevectors larger than q = ζ ∗q0.
In calculating the solid lines in figure 13 we have chosen

ζ ∗ = 3ζ .
Figure 13 shows, as expected, that when γ decreases the

percolation limit, below which no fluid flow can occur, appears

at larger and larger average separation. Note also that for

γ = 3 the pressure flow factor first increases with decreasing

ū, but finally it decreases towards zero. Thus, even for arbitrary

large γ at high enough squeezing pressures (corresponding

to small enough ū) the non-contact area will not percolate

in which case no fluid flow can occur at the interface and

φp = 0.
Figure 14 shows the variation of the area of real contact

A (in units of the nominal contact area A0) and the average

interfacial separation ū (in units of the root-mean-square

roughness amplitude) as a function of the (nominal) squeezing

pressure for the system shown in figure 13: sandblasted

PMMA (root-mean-square roughness 22 µm) in contact with

rubber with the elastic modulus E = 2.3 MPa. Note that, even
at the lowest squeezing pressure where ū/rms ≈ 4, the area

of real contact is still non-negligible, about 1% of the nominal

contact area.

9. Summary and conclusion

We have studied the fluid flow at the interface between

elastic solids with randomly rough surfaces. I have used the

contact mechanics model of Persson to take into account the

elastic interaction between the solid walls and the Bruggeman

effective medium theory to account for the influence of the

disorder on the fluid flow. We have calculated the flow tensor

which determines the pressure flow factor and, for example,

the leak rate of seals. We have shown how the perturbation

treatment of Tripp can be extended to arbitrary order in the

ratio between the root-mean-square roughness amplitude and

the average interfacial surface separation. We have introduced

a matrix D(ζ ), determined by the surface roughness power

spectrum, which can be used to describe the anisotropy of the

surface at any magnification ζ . We have presented results for

the asymmetry factor γ (ζ ) (generalized Peklenik number) for

a grinded steel surface and a sandblasted PMMA surface.
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Appendix

In section 2 we calculated the pressure and shear flow factors to

first order in 〈h2〉/ū2. Here we will present a simpler and more
powerful approach, which is in the spirit of the renormalization

group (RG) procedure. Thus we will eliminate or integrate out

the surface roughness components in steps and obtain a set of

RG flow equations describing how the effective fluid equation

evolves as more and more of the surface roughness components

are eliminated.

Assume that, after eliminating all the surface roughness

components with wavevector |q| = q > ζq0, the fluid current

(given by (1)) takes the form

J = − 1

12η
A(u)∇ p + 1

2
B(u)v (A.1)

where A and B are 2 × 2 matrices. We now add to u a small

amount of roughness:

h =
∫

(ζ−1ζ)q0<q<ζq0

d2q h(q)eiq·x. (A.2)

Consider now the current

J = − 1

12η
A(u + h)∇ p + 1

2
B(u + h)v.

Writing as before

p = p0 + p1 + p2

13
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we get to second order in h

J = − A(u)

12η
∇(p0 + p1 + p2)−

A′(u)h

12η
∇(p0 + p1)

− A′′(u)h2

24η
∇ p0 +

1

2
(B(u)+ B ′(u)h)v+ 1

4
B ′′(u)h2v.

(A.3)

The ensemble average of this current gives to second order in h

〈J〉 = − A(u)

12η
∇ p̄ − A′(u)

12η
〈h∇ p1〉

− A′′(u)〈h2〉
24η

∇ p̄ + 1

2
B(u)v+ 1

4
B ′′(u)〈h2〉v (A.4)

where we have used that 〈h〉 = 0. To zero order in h the

continuity equation ∇ · J gives

Ai j(u)∂i∂ j p0 = 0,

and to first order in h we get

−
A′i j(u)

12η
∂i h∂ j p0 −

Ai j(u)

12η
∂i∂ j p1 +

1

2
B ′i j(u)∂i hv j = 0.

In wavevector space this equation takes the form

− 1

12η
A′i j(u)(iqi)h(q)∂ j p0 +

1

12η
Ai j(u)qi q j p1(q)

+ 1
2

B ′i j(u)(iqi)h(q)v j = 0
or

p1(q) = (Alm(u)qlqm)
−1(iqi)h(q)

×
(

A′i j(u)∂ j p0 − 6ηB ′i j(u)v j

)

. (A.5)

Using this equation and (A.2) gives

〈h∂i p1〉 =
∫

d2q d2q ′ 〈h(q′)(iqi)p1(q)〉

=
∫

d2q C(q)(Alm(u)qlqm)
−1qi q j

×
(

6ηB ′jk(u)vk − A′jk(u)∂k p0
)

. (A.6)

Let us define the matrix

Mi j = 〈h2〉−1
∫

d2q C(q)(Alm(u)qlqm)
−1qi q j (A.7)

so that (A.5) becomes

〈h∇ p1〉 = 6ηM B ′v− M A′∇ p0.

Substituting this in (A.4) gives

〈J〉 = − 1

12η

(

A(u)+ 1
2
〈h2〉A′′(u)− 〈h2〉M A′

)

∇ p̄

+ 1
2

(

B(u)+ 1
2
〈h2〉B ′′(u)− 〈h2〉M B ′(u)

)

v. (A.8)

Note that this equation has the same general form as the

original equation (A.1). If we denote the matrices A and

B in the original equation (A.1) as A(u, ζ ) and B(u, ζ ) to

indicate that these were the matrices obtained after eliminating

all wavevector components of h with q > ζq0, then the new

matrices obtained by eliminating the additional roughness with

wavevectors between (ζ −1ζ)q0 < q < ζq0 become

A(u, ζ −1ζ) = A(u, ζ )+ 1
2
〈h2〉A′′(u, ζ )

− 〈h2〉A′(u, ζ )M A′(u, ζ ) (A.9)

B(u, ζ −1ζ) = B(u, ζ )+ 1
2
〈h2〉B ′′(u, ζ )

− 〈h2〉A′(u, ζ )M B ′(u, ζ ). (A.10)

Since 1ζ is small we can expand the left-hand side to linear

order in 1ζ . Furthermore note that

〈h2〉
1ζ

= 1

1ζ

∫

(ζ−1ζ)q0<q<ζq0

d2q C(q)

= 1

1ζ

∫ ζq0

(ζ−1ζ)q0
dq q

∫ 2π

0

dφ C(q cosφ, q sinφ)

= ζq20

∫ 2π

0

dφ C(ζq0 cosφ, ζq0 sinφ)

= − d

dζ

∫

q>q0ζ

d2q C(q) = − d

dζ
〈h2〉ζ (A.11)

where 〈h2〉ζ is the ensemble average of the square of

the roughness amplitude including only roughness with

wavevector |q| > ζq0. Thus from (A.9)–(A.11) we get

∂A

∂ζ
=

[

1

2
A′′(u, ζ )− A′(u, ζ )M A′(u, ζ )

]

d

dζ
〈h2〉ζ (A.12)

∂B

∂ζ
=

[

1

2
B ′′(u, ζ )− A′(u, ζ )M B ′(u, ζ )

]

d

dζ
〈h2〉ζ . (A.13)

If we assume that D(ζ ) is independent of ζ , it is easy to solve

these equations using perturbation theory to arbitrary order

in the surface roughness amplitude h. Since A → u3 and

〈h2〉ζ → 0 as ζ → ζ1 we can write

A(u, ζ ) = u3 + a1(u)〈h2〉ζ + a2(u)〈h2〉2ζ + · · · . (A.14)

To first order in 〈h2〉ζ we get from (A.12)

a1 = 3u − 9Mu4

where

M =
∫

(ζ−1ζ)q0<q<ζq0
d2q C(q)u−3q−2qq

∫

(ζ−1ζ)q0<q<ζq0
d2q C(q)

or

M = u−3
∫ 2π

0
dφ C(q)q−2qq
∫ 2π

0
dφ C(q)

= u−3D(ζ ) (A.15)

where |q| = ζq0. Thus to first order in 〈h2〉ζ
A(u, ζ ) = u3 + 〈h2〉ζu3(1− 3D)

= u3
(

1+ 〈h
2〉ζ

u2
3(1− 3D)

)

. (A.16)

Since B → u and 〈h2〉ζ → 0 as ζ → ζ1 we can write

B(u, ζ ) = u + b1(u)〈h2〉ζ + b2(u)〈h2〉2ζ + · · · . (A.17)

14
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Substituting this in (A.13) gives

b1 = −3Mu2.

Thus to first order in 〈h2〉ζ we get

B(u, ζ ) = u − 〈h2〉ζ u−13D = u

(

1− 〈h
2〉ζ

u2
3D

)

. (A.18)

It is straightforward to calculate the higher-order terms (e.g.

a2 and b2) in the expansions (A.14) and (A.17) but here we

will only do so for the case of surface roughness with isotropic

statistical properties. In this case Ai j = A(u, ζ )δi j and Bi j =
B(u, ζ )δi j . Thus the matrix M in (A.7) becomes

Mi j = A−1〈h2〉−1
∫

d2q C(q)q−2qi q j = 1
2

A−1δi j

and (A.12) and (A.13) reduce to

∂A

∂ζ
= 1

2

[

A′′(u, ζ )− [A
′(u, ζ )]2

A(u, ζ )

]

d

dζ
〈h2〉ζ (A.19)

∂B

∂ζ
= 1

2

[

B ′′(u, ζ )− A′(u, ζ )B ′(u, ζ )

A(u, ζ )

]

d

dζ
〈h2〉ζ (A.20)

where A and B are now scalar fields. Substituting (A.14)

in (A.19) gives to second order in 〈h2〉ζ

a1 + 2a2〈h2〉ζ = − 3
2
+ 1

2
〈h2〉ζ

(

a′′1 − 6u−1a′1 + 9a1u−2
)

or

a1 = − 3
2
u

a2 = 1
4
(a′′1 − 6u−1a′1 + 9a1u−2) = − 9

8
u−1.

Thus, to second order

A = u3 − 3
2
u〈h2〉ζ − 9

8
u−1〈h2〉2ζ

= u3

(

1− 3
2

〈h2〉ζ
u2

− 9
8

〈h2〉2ζ
u4

)

.

In a similar way one obtain to second order

B = u

(

1− 3

2

〈h2〉ζ
u2

− 21

8

〈h2〉2ζ
u4

)

.
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[6] Campana C, Müser M H and Robbins M O 2008 J. Phys.:

Condens. Matter 20 354013
[7] Persson B N J 2007 Phys. Rev. Lett. 99 125502
[8] Yang C and Persson B N J 2008 J. Phys.: Condens. Matter

20 215214
[9] Lorenz B and Persson B N J 2009 J. Phys.: Condens. Matter

201 015003
[10] Sahlin F, Almqvist A, Larsson R and Glavatskih S 2007 Tribol.

Int. 40 1025
[11] Tripp J H 1983 ASME J. Lubrication Technol. 105 485
[12] Lorenz B and Persson B N J 2010 Eur. J. Phys. E E31 159
[13] Persson B N J 2001 J. Chem. Phys. 115 3840
[14] Persson B N J 2006 Surf. Sci. Rep. 61 201
[15] Johnson K L 1985 Contact Mechanics (Cambridge: Cambridge

University Press)
[16] Lorenz B and Persson B N J in preparation
[17] Persson B N J and Scaraggi M 2009 J. Phys.: Condens. Matter

21 185002
[18] See, e.g. Persson B N J, Albohr O, Tartaglino U, Volokitin A I

and Tosatti E 2005 J. Phys.: Condens. Matter 17 R1
[19] Persson B N J, Albohr O, Creton C and Peveri V 2004 J. Chem.

Phys. 120 8779
[20] Persson B N J and Yang C 2008 J. Phys.: Condens. Matter

20 315011
[21] Lorenz B and Persson B N J 2009 Europhys. Lett. 86 44006
[22] Carbone G and Bottiglione F 2008 J. Mech. Phys. Solids

56 2555
[23] Stauffer D and Aharony A 1991 An Introduction to Percolation

Theory (Boca Raton, FL: CRC Press)
[24] See paper F in: Sahlin F 2008 Lubrication, contact mechanics

and leakage between rough surfaces PhD Thesis
[25] Bruggeman D 1935 Ann. Phys. Lpz. 24 636
[26] Kirkpatrick S 1973 Rev. Mod. Phys. 45 574
[27] Sahimi M 2003 Heterogeneous Materials I (New York:

Springer)
[28] Bottiglione F, Carbone G, Mangialardi L and Mantriota G 2009

J. Appl. Phys. 106 104902
[29] Ambegaokar V N, Halperin B I and Langer J S 1971 Phys. Rev.

B 4 2612
Hunt A G 2005 Percolation Theory for Flow in Porous Media
(New York: Springer)

Wu Z, Lopez E, Buldyrev S V, Braunstein L A, Havlin S and
Stanley H E 2005 Phys. Rev. E 71 045101(R)

[30] Morse P M and Fesbach H 1953Methods of Theoretical
Physics, Part II (New York: McGraw-Hill) p 1199

15


