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Abstract. We study the heat transfer between elastic solids with randomly rough surfaces. We include both
the heat transfer from the area of real contact, and the heat transfer between the surfaces in the non-contact
regions. We apply a recently developed contact mechanics theory, which accounts for the hierarchical nature
of the contact between solids with roughness on many different length scales. For elastic contact, at the
highest (atomic) resolution the area of real contact typically consists of atomic (nanometer) sized regions,
and we discuss the implications of this for the heat transfer. For solids with very smooth surfaces, as is
typical in many modern engineering applications, the interfacial separation in the non-contact regions will
be very small, and for this case we show the importance of the radiative heat transfer associated with the
evanescent electromagnetic waves which exist outside of all bodies.

1 Introduction

The heat transfer between solids is a topic of great impor-
tance. Classical applications include topics such as cooling
of microelectronic devices, spacecraft structures, satellite
bolted joints, nuclear engineering, ball bearings, tires and
heat exchangers. Other potential applications involve mi-
croelectromechanical systems (MEMS). Heat transfer is
also of crucial importance in friction and wear processes,
e.g., rubber friction on hard and rough substrates de-
pends crucially on the temperature increase in the rubber-
countersurface asperity contact regions [1].

A large number of papers have been published on the
heat transfer between randomly rough surfaces [2]. How-
ever, most of these studies are based on asperity contact
models such as the model of Greenwood and Williamson
(GW) [3]. Recent studies have shown that the GW-model
(and other asperity contact models [4]) are very inaccu-
rate [5–7], mainly because of the neglect of the long-range
elastic coupling [8]. That is, if an asperity is pushed down-
wards somewhere, the elastic deformation field extends a
long distance away from the asperity, which will influence
the contact involving other asperities further away [9].
This effect is neglected in the GW theory, but it is included
in the contact mechanics model of Persson [10–15], which
we use in the present study. In addition, in the GW model
the asperity contact regions are assumed to be circular (or
elliptical) while the actual contact regions (at high enough
resolution) have fractal-like boundary lines [15–17], see
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fig. 1. Thus, because of their complex nature, one should
try to avoid involving directly the nature of the contact
regions when studying contact mechanics problems, such
as the heat or electric contact resistance. The approach
we use in this paper does not directly involve the nature
of the contact regions. Finally, we note that for elastically
hard solids the area of real (atomic) contact A may be
a very small fraction of the nominal or apparent contact
area A0, even at high nominal squeezing pressures [18,19].

Another important discovery in recent contact me-
chanics studies is that for elastic contact, the contact re-
gions observed at atomic resolution may be just a few
atoms wide, i.e., the diameter of the contact regions may
be of the order of ∼ 1 nm [20–22]. The heat transfer via
such small junctions may be very different from the heat
transfer through macroscopic-sized contact regions, where
the heat transfer usually is assumed to be proportional to
the linear size of the contact regions (this is also the pre-
diction of the macroscopic heat diffusion equation), rather
than the contact area. In particular, if the typical phonon
wavelength involved in the heat transfer becomes larger
than the linear size of the contact regions (which will al-
ways happen at low enough temperature) the effective
heat transfer may be strongly reduced. Similarly, if the
phonons mean free path is longer than the linear size of
the contact regions, ballistic (phonon) energy transfer may
occur which cannot be described by the macroscopic heat
diffusion equation. These effects are likely to be of crucial
importance in many modern applications involving micro-
(or nano-) sized objects, such as MEMS, where just a
few atomic-sized contact regions may occur. However, for
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Fig. 1. The black area is the contact between two elastic solids
with randomly rough surfaces. For surfaces which have fractal-
like roughness the whole way down to the atomic length scale,
the contact at the highest magnification (atomic resolution)
typically consists of nanometer-sized atomic clusters. The re-
sult is obtained using Molecular Dynamics (MD), but since
there is no natural length scale in elastic continuum mechan-
ics the picture could also be the contact observed between two
macroscopic elastic solids. Adapted from ref. [15].

Fig. 2. The contact region (black area) between two elastic
solids observed at low (left) and high (right) magnification.
The contact resistance depends mainly on the long-wavelength
roughness, and can usually be calculated accurately from the
nature of the contact observed at low magnification (left).

macroscopic solids the thermal (and electrical) contact re-
sistance is usually very insensitive to the nature of the con-
tact regions observed at the highest magnification, corre-
sponding to atomistic (or nanoscale) length scales. In fact,
the heat transfer is determined mainly by the nature of the
contact regions observed at lower magnification where the
contact regions appear larger (see sect. 5 and [23,24]), see
fig. 2. For example, in sect. 2.2.1 we show that for self-
affine fractal surfaces the contact resistance depends on
the range of surface roughness included in the analysis as
∼ r(H) − (q0/q1)H , where q0 and q1 are the smallest and
the largest wave vector of the surface roughness included

in the analysis, respectively, and H is the Hurst exponent
related to the fractal dimension via Df = 3−H. The num-
ber r(H) depends on H but is of the order of unity. In a
typical case H ≈ 0.8, and including surface roughness over
one wave vector decade q0 < q < q1 = 10q0 results in a
heat resistance which typically is only ∼ 10% smaller than
obtained when including infinitely many decades of length
scales (i.e., with q1 = ∞× q0). At the same time the area
of real contact approaches zero as q0/q1 → 0. Thus, there
is in general no relation between the area of real contact
(which is observed at the highest magnification, and which
determines, e.g., the friction force in most cases), and the
heat (or electrical) contact resistance between the solids.
One aspect of this in the context of electric conduction
was pointed out a long time ago [25]: if an insulating film
covers the solids in the area of real contact, and if electri-
cal contact occurs by a large number of small breaks in the
film, the resistance may be almost as low as with no film.
Similarly, the thermal contact resistance of macroscopic
solids usually does not depend on whether the heat trans-
fer occurs by diffusive or ballistic phonon propagation, but
rather the contact resistance is usually determined mainly
by the nature of the contact regions observed at relative
low magnification.

Note that as H decreases towards zero (or the frac-
tal dimension Df → 3) one needs to include more and
more decades in the length scales in order to obtain the
correct (or converged) contact resistance, and for H = 0
(or Df = 3) it is necessary to include the roughness on
the whole way down to the atomic length scale (assuming
that the surfaces remain fractal-like with H = 0 the whole
way down to the atomic length scale). Most natural sur-
faces and surfaces of engineering interest have (if self-affine
fractal) H > 0.5 (or Df < 2.5), e.g., surfaces prepared by
crack propagation or sand blasting typically have H ≈ 0.8,
and in these cases the contact resistance can be calcu-
lated accurately from the (apparent) contact observed at
relatively low magnification. However, some surfaces may
have smaller Hurst exponents. One interesting case is sur-
faces (of glassy solids) with frozen capillary waves [14,26]
(which are of great engineering importance [26]), which
have H = 0. The heat transfer between such surfaces may
be understood only by studying the system at the highest
magnification corresponding to atomic resolution.

In this paper we will consider the heat transfer between
(macroscopic-sized) solids in the light of recent advances
in contact mechanics. We will study the contribution to
the heat transfer not just from the area of real contact
(observed at atomic resolution), but also the heat transfer
across the area of non-contact, in particular the contri-
bution from the fluctuating electromagnetic field, which
surrounds all solid objects [27,28]. For high-resistivity ma-
terials and for hard and very flat surfaces, such as those
involved in many modern applications, e.g., MEMS ap-
plications, this non-contact radiative heat transfer may
in fact dominate in the total heat transfer (at least un-
der vacuum condition). We note that for flat surfaces (in
vacuum) separated by a distance d larger than the ther-
mal length dT = ch̄/kBT , the non-contact heat trans-
fer is given by the classical Stefan-Boltzman law, and is
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independent of d. However, for very short distances the
contribution from the evanescent electromagnetic waves to
the heat transfer will be many orders of magnitude larger
than the contribution from propagating electromagnetic
waves (as given by the Stefan-Boltzman law) [27].

In most applications (but not in spacecraft applica-
tions) one is interested in the heat transfer between solid
objects located in the normal atmosphere and sometimes
in a fluid. Most solid objects in the normal atmosphere
have organic and water contamination layers, which may
influence the heat transfer for at least two reasons: (a)
Thin (nanometer) contamination layers may occur at the
interface in the asperity contact regions, which will affect
the acoustic impedance of the contact junctions, and hence
the propagation of phonons between the solids (which usu-
ally is the origin of the heat transfer, at least for most
non-metallic systems). (b) In addition, capillary bridges
may form in the asperity contact regions and effectively
increase the size of the contact regions and increase the
heat transfer. In the normal atmosphere heat can also be
transferred between the non-contact regions via heat diffu-
sion or (at short separation) ballistic processes in the sur-
rounding gas. For larger separations convective processes
may also be important.

In the discussion above we have assumed that the
solids deform elastically and we have neglected the ad-
hesional interaction between the solids. The contact me-
chanics theory of Persson can also be applied to cases
where adhesion and plastic flow are important, and we
will briefly study how this may affect the heat transfer.
Most solids have modified surface properties, e.g., metals
are usually covered by thin oxide layers with very different
conductivities than the underlying bulk materials. How-
ever, as mentioned above, this may not have any major
influence on the contact resistance.

Recently, intense research has focused on heat trans-
fer through atomic or molecular-sized junctions [29–31].
In light of the discussion presented above, this topic may
also be important for the heat transfer between solids, be-
cause of the nanometer-sized nature of the contact regions
between solids with random roughness.

This paper is organized as follows: In sect. 2 we de-
scribe the theory for heat transfer between two solids
with randomly rough surfaces. We consider both the heat
flow in the area of real contact, and between the surfaces
in the non-contact area. Section 3 presents a short re-
view of the contact mechanics theory which is used to
obtain the quantities (related to the surface roughness)
which determine the heat transfer coefficient. In sect. 4
we present numerical results. In sect. 5 we discuss the in-
fluence of plastic flow and adhesion on the heat transfer.
Section 6 presents an application to the heat transfer be-
tween tires and the air and road surface. In sect. 7 we
discuss a new experiment. In sect. 8 we present experi-
mental results. In sect. 9 we point out that the developed
theory can also be applied to the electric contact resis-
tance. Section 10 contains the summary and conclusion.
Appendix A-E present details related to the theory de-
velopment and some other general information relevant to
the present study.

Fig. 3. Two elastic solids with nominally flat surfaces squeezed
together with the nominal pressure p0. The heat current Jz(x)
at the contacting interface varies strongly with the coordinate
x = (x, y) in the xy-plane. The average heat current is denoted
by J0 = 〈Jz(x)〉.

2 Theory

2.1 Heat transfer coefficient

Consider two elastic solids (rectangular blocks) with ran-
domly rough surfaces squeezed in contact as illustrated in
fig. 3. Assume that the temperature at the outer surfaces
z = −d0 and z = d1 is kept fixed at T0 and T1, respec-
tively, with T0 > T1. Close to the interface the heat current
will vary rapidly in space, J = J(x, z), where x = (x, y)
denote the lateral coordinate in the xy-plane. Far from
the interface we will assume that the heat current is con-
stant and in the z-direction, i.e., J = J0ẑ. We denote the
average distance between the macro asperity contact re-
gions by λ (see ref. [14]). We assume that λ � L, where
L is the linear size of the apparent contact between the
elastic blocks. The temperature a distance ∼ λ from the
contacting interface will be approximately independent of
the lateral coordinate x = (x, y) and we denote this tem-
perature by T ′

0 and T ′
1 for z = −λ and z = λ, respectively.

The heat current for |z| � λ is independent of x and can
be written as (to zero order in λ/d0 and λ/d1)

J0 = −κ0
T ′

0 − T0

d0
= −κ1

T1 − T ′
1

d1
, (1)

where κ0 and κ1 are the heat conductivities of the two
solid blocks. We assume that the heat transfer across the
interface is proportional to T ′

0−T ′
1 and we define the heat

transfer coefficient α so that

J0 = α(T ′
0 − T ′

1). (2)

Combining (1) and (2) gives

J0 =
T0 − T1

d0κ
−1
0 + d1κ

−1
1 + α−1

. (3)
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This equation is valid as long as λ � L and λ � d0,
d1. Note that α depends on the macroscopic (or nominal)
pressure which acts at the interface. Thus if the macro-
scopic pressure is non-uniform, as is the case in many prac-
tical applications, e.g., when a ball is squeezed against a
flat surface, one need to include the dependence of α on
x. Thus in general

J(x) = α(x)[T ′
0(x) − T ′

1(x)]. (4)

One expects the contribution to α from the area of
real contact to be proportional to the heat conductivity
κ (for simplicity we assume here two solids of the same
material). Assuming only elastic deformation, contact me-
chanics theories show that for low enough squeezing pres-
sure p0, the area of real contact is proportional to p0,
and the size distribution of contact regions (and the in-
terfacial stress probability distribution) are independent
of p0. Thus one expects that α is proportional to p0. For
randomly rough surfaces the contact mechanics depends
only on the (effective) elastic modulus E∗ and on the sur-
face roughness power spectrum C(q). Thus the only way
to construct a quantity which is proportional to p0κ and
with the same dimension as J0/ΔT , using the quantities
which characterize the problem, is

α ≈ p0κ

E∗u0
,

where u0 is a length parameter which is determined from
the surface roughness power spectrum C(q). For self-
affine fractal surfaces, C(q) depends only on the root-
mean-square roughness hrms, the fractal dimension Df

which is dimensionless, and on the low and high cut-
off wave vectors q0 and q1. Thus in this case u0 =
hrmsf(Df , q0/q1, q0hrms). This result is consistent with the
analysis presented in sect. 2.2.1. Using the GW theory re-
sults in an expression for α of the form given above, but
with a different function f which now (even for low squeez-
ing pressures) also depends on p0/E∗ (see, e.g., ref. [32]).

2.2 Calculation of α

The heat current J and the heat energy density Q are
assumed to be given by

J = −κ∇T, Q = ρCV T,

where κ is the heat conductivity, ρ the mass density and
CV the heat capacitivity. We consider a steady-state con-
dition where Q is time independent. Thus the heat energy
continuity equation,

∇ · J +
∂Q

∂t
= 0,

reduces to
∇2T = 0.

We assume that the surface roughness at the interface is
so small that when solving the heat flow equation we can

consider the surfaces as flat. However the heat flow across
the interface will be highly non-uniform and given by the
heat current Jz(x) (we assume |∇h| � 1, where h(x) is
the surface height profile). Let us first study the heat flow
in the upper solid. We can take into account the heat flow
from the lower solid by introducing a heat source at the
interface z = 0, i.e.

∇2T = −2Jz(x)δ(z)/κ1. (5)

Similarly, when studying the temperature in the lower
solid we introduce a heat sink on the surface z = 0, so
that

∇2T = 2Jz(x)δ(z)/κ0. (6)

Let us first study the temperature for z > 0. We write

Jz(x) =
∫

d2q Jz(q)eiq·x, (7)

Jz(q) =
1

(2π)2

∫
d2xJz(x)e−iq·x, (8)

where q = (qx, qy) is a 2D wave vector. From (5) we get

T (x, z) = T1 −
1
κ1

J0(z − d1)

− 1
πκ1

∫
d2qdk

ΔJz(q)
−q2 − k2

ei(q·x+kz), (9)

where k is the z-component of the wave vector. In (9),
J0 = 〈Jz(x)〉 is the average heat current and

ΔJz(x) = Jz(x) − J0. (10)

Performing the k-integral in (9) gives

T (x, z) = T1 −
1
κ1

J0(z − d1)

+
1
κ1

∫
d2q

1
q
ΔJz(q)eiq·x−qz. (11)

Similarly, one obtains for the temperature field for z < 0

T (x, z) = T0 −
1
κ0

J0(z + d0)

− 1
κ0

∫
d2q

1
q
ΔJz(q)eiq·x+qz. (12)

Let us define

ψ(x) = T (x,−0) − T (x,+0).

Using (11) and (12), we get

ψ(x) = T0 − T1 −
(

d0

κ0
+

d1

κ1

)
J0

− 1
κ

∫
d2q

1
q
ΔJz(q)eiq·x, (13)

where
1
κ

=
1
κ0

+
1
κ1

. (14)
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From (13) we get

ψ(q) = Mδ(q) − 1
κq

ΔJz(q), (15)

where

M = T0 − T1 −
(

d0

κ0
+

d1

κ1

)
J0. (16)

We will now consider two different cases:

2.2.1 Heat flow through the area of real contact

Let us consider the area of real contact. In the contact
region Jz(x) will be non-zero but ψ(x) = T (x,+0) −
T (x,−0) will vanish. On the other surface area Jz(x) will
vanish. Thus we must have

Jz(x)ψ(x) = 0

everywhere. This implies
∫

d2q′ Jz(q − q′)ψ(q′) = 0 (17)

for all q. Combining (15) and (17) gives

MJz(q) − 1
κ

∫
d2q′

1
q′

Jz(q − q′)ΔJz(q′) = 0.

The ensemble average of this equation gives

M〈Jz(q)〉 − 1
κ

∫
d2q′

1
q′
〈Jz(q − q′)ΔJz(q′)〉 = 0. (18)

From (8) we get

〈Jz(q = 0)〉 = (2π)−2A0J0.

Thus the q = 0 component of (18) gives

MA0J0 −
(2π)2

κ

∫
d2q

1
q
〈|ΔJz(q)|2〉 = 0, (19)

where A0 is the nominal contact area. Combining (16)
and (19) and solving for J0 gives an equation of the
form (3) with

1
α

=
(2π)2

κ

1
A0J2

0

∫
d2q

1
q
〈|ΔJz(q)|2〉. (20)

We now assume that the heat current at the interface
is proportional to the normal stress

Jz(x) ≈ μσz(x). (21)

We can also write (21) as

Jz(x)/J0 ≈ σz(x)/p0, (22)

where p0 is the average pressure. We note that (22) im-
plies that the current density Jz(x) will be non-vanishing

exactly where the normal stress σz(x) is non-vanishing,
which must be obeyed in the present case, where all the
heat current flows through the area of real contact. We
note that the heat transfer coefficient depends mainly on
the spatial distribution of the contact area and this is ex-
actly the same for the pressure distribution σ(x) as for
the current distribution Jz(x). Thus the fact that in a
particular asperity contact region the pressure σ(x) is not
proportional to Jz(x) is not very important in the present
context (see Appendix A and below).

Substituting (22) in (20) gives

1
α

≈ (2π)2

κ

1
A0p2

0

∫
d2q

1
q
〈|Δσz(q)|2〉. (23)

We can write

α ≈ p2
0κ

E∗Uel
, (24)

where

Uel =
(2π)2

A0E∗

∫
d2q

1
q
〈|Δσ(q)|2〉 (25)

is the stored elastic energy per unit (nominal) surface
area [15]. In (25) E∗ is the effective elastic modulus

1
E∗ =

1 − ν2
0

E0
+

1 − ν2
1

E1
,

where E0 and ν0 are the Young’s elastic modulus and
the Poisson ratio, respectively, for solid 0 and similar for
solid 1. We have shown elsewhere that for small enough
load [12] Uel ≈ u0p0, where u0 is a length of order the
root-mean-square surface roughness amplitude. Thus

α ≈ p0κ

E∗u0
. (26a)

Note that for small load the squeezing pressure p0 de-
pends on the (average) interfacial separation ū via the ex-
ponential law p0 ∼ exp(−ū/u0). Thus the vertical stiffness
dp0/dū = −p0/u0, so we can also write

α ≈ − κ

E∗
dp0

dū
. (26b)

This equation is, in fact, exact (see Appendix B and
ref. [24]), which shows that the heat transfer is mainly
determined by the geometrical distribution of the contact
area (given by the region where σz(x) is non-vanishing),
and by the thermal interaction between the heat flow
through the various contact spots (see Appendix A).

The length parameter u0 in (26a) can be calculated
(approximately) from the surface roughness power spec-
trum C(q) using [13]

u0 =
√

π

∫ q1

q0

dq q2C(q)w(q),

where

w(q) =
(

π

∫ q

q0

dq′q′3C(q′)
)−1/2

,
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where q0 is the long-distance cut-off (or roll-off) wave vec-
tor and q1 the wave vector of the shortest wavelength
roughness included in the analysis. Assume that the com-
bined surface roughness is self-affine fractal for q0 < q <
q1. In this case

C(q) =
H

π

(
hrms

q0

)2 (
q0

q

)2(H+1)

,

where H is the Hurst exponent related to the fractal di-
mension via Df = 3 − H. Substituting this C(q) into the
equations above gives

u0 ≈
(

2(1 − H)
πH

)1/2

hrms

[
r(H) −

(
q0

q1

)H
]

.

where

r(H) =
H

2(1 − H)

∫ ∞

1

dx (x − 1)−1/2x−1/[2(1−H)].

Note that r(H) is of order unity (see ref. [12]). As dis-
cussed in the introduction this implies that the contact
resistance in general is determined accurately by one or
two decades of the longest-wavelength roughness compo-
nents, and that there is no relation between the area of
real contact (which is observed at the highest magnifica-
tion, and which determines, e.g., the friction force in most
cases), and the contact resistance between the solids.

Note that from (3) it follows that one can neglect the
heat contact resistance if

κ/d � α,

where κ/d is the smallest of κ0/d0 and κ1/d1. Using (25)
this gives

d � u0(E∗/p0).

We note that in modern high-tech applications the linear
size (or thickness) d of the physical system may be very
small, and in these cases the contact heat resistance may
be particularly important.

If roughness occurs only on one length scale, say with
wavelength λ and height h, then the pressure necessary
for complete contact will be of order

p0 ≈ E∗h/λ.

Substituting this in (26a) gives

α ≈ κ/λ, (27)

where we have used that u0 ≈ h. Thus, α−1 ≈ λκ−1 which
is the expected result because the denominator in (3) is
only accurate to zero order in λκ−1. (Alternatively, sub-
stituting (27) in (3) gives a term of the type (d + λ)κ−1

which is the correct result since d in (3) should really be
d − λ.)

As an example [33], consider two nominal flat steel
plates (in vacuum) with thickness d0 = d1 = 0.5 cm and
with root-mean-square roughness ∼ 1μm. The plates are

squeezed together with nominal pressure p0 = 0.1MPa.
The ratio between the measured surface and bulk thermal
contact resistance is about 150. Using (3) we get

ΔT/J0 = 2d0κ
−1
0 + α−1.

Thus, the (theoretical) ratio between the surface and the
bulk contributions to the thermal resistance is

κ0

2αd0
,

where κ0 is the heat conductivity of the bulk steel. Us-
ing (25) with κ = κ0/2 this gives

κ0

2αd0
=

u0

d0

E∗

p0
. (28)

With (from theory) u0 ≈ 1μm, and E∗ ≈ 110GPa,
p0 = 0.1MPa and 2d0 = 1 cm, from (28) the ratio be-
tween the thermal surface and bulk resistance is ≈ 200, in
good agreement with the experimental data.

The discussion above assumes purely elastic deforma-
tions. However, plastic flow is likely to occur in the present
application at short enough length scales, observed at high
magnification. Since the heat flow is determined mainly by
the long-wavelength roughness components, i.e., by the
roughness observed at relative low magnification, when
calculating the heat transfer one may often assume that
the surfaces deform purely elastically, even if plastic de-
formation is observed at high magnification, see sect. 5.

2.2.2 Heat flow through the non-contact area

Let us now assume that

Jz(x) = β(x) [T (x,−0) − T (x,+0)] = β(x)ψ(x).

From (15) we get

ψ(q) = Mδ(q)

− 1
κq

∫
d2q′β(q − q′)

[
1− (2π)2

A0
δ(q)

]
ψ(q′). (29)

Next, note that

J0 =
1

A0

∫
d2xJz(x) =

1
A0

∫
d2xβ(x)ψ(x)

=
(2π)2

A0

∫
d2q β(−q)ψ(q). (30)

Equation (29) can be solved by iteration. The zero-
order solution

ψ(q) = Mδ(q).

Substituting this in (30) gives

J0 = M
(2π)2

A0
β(q = 0) = Mβ̄, (31)

where
β̄ = 〈β(x)〉 =

1
A0

∫
d2xβ(x)
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is the average of β(x) over the whole interfacial area A0.
Substituting (16) in (31) and solving for J0 gives an equa-
tion of the form (3) with α = β̄.

The first-order solution to (29) is

ψ(q) = Mδ(q) − M

κq
β(q)

[
1 − (2π)2

A0
δ(q)

]
. (32)

Substituting (32) in (30) gives again an equation of the
form (3) with

α = β̄ − (2π)2

κA0

∫
d2q

1
q
〈|β(q)|2〉

[
1 − (2π)2

A0
δ(q)

]
, (33)

where we have added 〈. . .〉 which denotes ensemble aver-
age, and where we used that

〈β(q)β(−q)〉 = 〈|β(q)|2〉.

We can rewrite (33) as follows. Let us define the correla-
tion function

Cβ(q) =
1

(2π)2

∫
d2x 〈β(x)β(0)〉eiq·x. (34)

Note that

Cβ(q) =
(2π)2

A0
〈|β(q)|2〉. (35)

This equation follows from the fact that the statistical
properties are assumed to be translational invariant in the
x-plane, and is proved as follows:

Cβ(q) =
1

(2π)2

∫
d2x 〈β(x)β(0)〉eiq·x

=
1

(2π)2

∫
d2x 〈β(x + x′)β(x′)〉eiq·x

=
1

(2π)2

∫
d2x′′ 〈β(x′′)β(x′)〉eiq·(x′′−x′).

This equation must be independent of x′ and we can there-
fore integrate over the x′-plane and divide by the area A0

giving

Cβ(q) =
1

(2π)2A0

∫
d2x′d2x′′ 〈β(x′′)β(x′)〉eiq·(x′′−x′)

=
(2π)2

A0
〈|β(q)|2〉.

Let us define
Δβ(x) = β(x) − β̄. (36)

We get
Δβ(q) = β(q) − β̄δ(q)

and thus

〈|Δβ(q)|2〉 = 〈|β(q)|2〉
[
1 − (2π)2

A0
δ(q)

]
, (37)

where we have used that

β̄δ(q) =
(2π)2

A0
β(q)δ(q)

and that

δ(q)δ(−q) = δ(q)
1

(2π)2

∫
d2x e−iq·x = δ(q)

A0

(2π)2
.

Using (33) and (37) gives

α = β̄ − 1
κ

∫
d2qq−1CΔβ(q). (38)

Let us write

〈Δβ(x)Δβ(0)〉 = 〈(Δβ)2〉f(x), (39)

where f(0) = 1. We write

f(x) =
∫

d2q f(q)eiq·x,

so that f(x = 0) = 1 gives
∫

d2q f(q) = 1. (40)

Using (39) and (40), eq. (38) takes the form

α = β̄ − 〈(Δβ)2〉κ−1l, (41)

where the correlation length

l =
∫

d2q q−1f(q)∫
d2q f(q)

.

For randomly rough surfaces with isotropic statistical
properties f(q) depends only on q = |q| so that

l =

∫ ∞
0

dq f(q)∫ ∞
0

dq qf(q)
.

Most surfaces of engineering interest are fractal-like, with
the surface roughness power spectrum having a (long-
distance) roll-off wave vector q0. In this case one can
show that l ≈ q−1

0 . For the surface used in the numerical
study presented below in sect. 4, one has q0 ≈ 107 m−1

(see fig. 8). Furthermore, in this case (for amorphous
silicon dioxide solids) κ ≈ 1W/m K and if we assume
that 〈(Δβ)2〉 is of order β̄2, we get the ratio between
the second and the first term in (41) to be of order
β̄/(q0κ) ≈ 0.01, where we have used that typically (see
fig. 9) β̄ ≈ 0.1MW/m2K. Thus, in the application pre-
sented in sect. 4 the second term in the expansion (41) is
negligible.

Equation (41) represents the first two terms in an infi-
nite series which would result if (29) is iterated to infinite
order. The result (41) is only useful if the first term β̄
is much larger that the second term. If this is not the
case one would need to include also higher-order terms
(in principle, to infinite order) which becomes very hard
to calculate using the iterative procedure. By comparing
the magnitude between the two terms in (41), one can de-
termine if it is legitimate to include only the lowest-order
term β̄.
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We now consider two applications of (41), namely the
contribution to the heat transfer from a) the electromag-
netic field (in vacuum) and b) from heat transfer via a gas
(e.g., the normal atmosphere) which we assume is sur-
rounding the two solids.

a) Radiative contribution to α (in vacuum)
The heat flux per unit area between two black-bodies

separated by d � dT = ch̄/kBT is given by the Stefan-
Boltzmann law

J0 =
π2k4

B

60h̄3c2
(T 4

0 − T 4
1 ),

where T0 and T1 are the temperatures of solids 1 and 2,
respectively, and c the light velocity. In this limiting case
the heat transfer between the bodies is determined by the
propagating electromagnetic waves radiated by the bod-
ies and does not depend on the separation d between the
bodies. Electromagnetic waves (or photons) always exist
outside any body due to thermal or quantum fluctuations
of the current density inside the body. The electromag-
netic field created by the fluctuating current density exists
also in the form of evanescent waves, which are damped
exponentially with the distance away from the surface of
the body. For an isolated body, the evanescent waves do
not give a contribution to the energy radiation. However,
for two solids separated by d < dT , the heat transfer may
increase by many orders of magnitude due to the evanes-
cent electromagnetic waves —this is often referred to as
photon tunneling.

For short separation between two solids with flat sur-
faces (d � dT ), the heat current due to the evanescent
electromagnetic waves is given by [27]

J0 =
4

(2π)3

∫ ∞

0

dω (Π0(ω) − Π1(ω))

×
∫

d2q e−2qd ImR0(ω) Im R1(ω)
|1 − e−2qdR0(ω)R1(ω)|2 , (42)

where
Π(ω) = h̄ω

(
eh̄ω/kBT − 1

)−1

and

R(ω) =
ε(ω) − 1
ε(ω) + 1

,

where ε(ω) is the dielectric function. From (42) it follows
that the heat current scales as 1/d2 with the separation
between the solid surfaces. The heat current is especially
large in the case of resonant photon tunneling between
surface modes localized on the two different surfaces. The
resonant condition corresponds to the case when the de-
nominator in the integrand of (42) is small. Close to the
resonance we can use the approximation

R ≈ ω1

ω − ω0 − iγ
,

where ω1 is a constant and ω0 is determined by the equa-
tion Re[ε(ω0) + 1] = 0. In this case the heat current is
determined by [27]

J0 ≈ μ
γ

d2
[Π0(ω0) − Π1(ω0)] ,

0 20 40
0

60

120

ΔT (K)

J 
(M

W
/m

  )2

d=1nm
T=296K

Fig. 4. Solid line: The calculated (using (42)) heat current
per unit area, J0, between two (amorphous) silicon dioxide
bodies, as a function of the temperature difference ΔT . The
solids have flat surfaces separated by d = 1 nm. One solid is at
the temperature T = 296 K and the other at T + ΔT . Dashed
line: linear function with the slope given by the initial slope
(at ΔT = 0) of the solid line.

where μ ≈ [log(2ωa/γ)]2/(8π). If we write T1 = T0 − ΔT
and assume ΔT/T0 � 1 we get J0 = αΔT , with

α ≈ μ
kBγ

d2

η2 exp(η)
[exp(η) − 1]2

, (43)

where η = h̄ω0/kBT0.
Resonant photon tunneling enhancement of the heat

transfer is possible for two semiconductor or insulator sur-
faces which can support low-frequency surface phonon-
polariton modes in the mid-infrared frequency region. As
an example, consider two clean surfaces of (amorphous)
silicon dioxide (SiO2). The optical properties of this ma-
terial can be described using an oscillator model [34]

ε(ω) = ε∞ +
a

ω2
a − ω2 − iωγa

+
b

ω2
b − ω2 − iωγb

.

The frequency-dependent term in this expression is due
to optical phonons. The values for the parameters ε∞,
(a, ωa, γa) and (b, ωb, γb) are given in ref. [34]. In fig. 4 we
show the calculated heat current per unit area, J0, as a
function of the temperature difference ΔT . The solids have
flat surfaces separated by d = 1nm. One solid is at the
temperature T = 296K and the other at T + ΔT . When
ΔT � T , the heat transfer depends (nearly) linearly on
the temperature difference ΔT (see fig. 4), and we can de-
fine the heat transfer coefficient α = J0/ΔT . In the present
case (for d = d0 = 1nm) α = α0 ≈ 2× 106 W/m2K. If the
surfaces are not smooth but if roughness occurs so that
the separation d varies with the coordinate x = (x, y) we
have to first order in the expansion (41)

α = β̄ = α0〈(d0/d)2〉, (44)

where 〈. . .〉 stands for ensemble average, or average over
the whole surface area, and where α0 is the heat transfer
between flat surfaces separated by d = d0.
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In the present case the heat transfer is associated with
thermally excited optical (surface) phonons. That is, the
electric field of a thermally excited optical phonon in one
solid excites an optical phonon in the other solid, leading
to energy transfer. The excitation transfer occurs in both
directions but if one solid is hotter than the other, there
will be a net transfer of energy from the hotter to the
colder solid. For metals, low-energy excited electron-hole
pairs will also contribute to the energy transfer, but for
good metals the screening of the fluctuating electric field
by the conduction electrons leads to very ineffective heat
transfer. However, if the metals are covered with metal
oxide layers, and if the separation between the solids is
smaller than the oxide layer thickness, the energy transfer
may again be due mainly to the optical phonons of the
oxide, and the magnitude of the heat current will be sim-
ilar to what we calculated above for (amorphous) silicon
dioxide.

Let us consider a high-tech application. Consider a
MEMS device involving very smooth (amorphous) silicon
dioxide slabs. Consider, for example, a very thin silicon
dioxide slab rotating on a silicon dioxide substrate. Dur-
ing operation a large amount of frictional energy may be
generated at the interface. Assume that the disk is pressed
against the substrate with the nominal stress or pressure
p0. This does not need to be an external applied force but
may be due to the long-ranged van der Waals attraction
between the solids, or due to capillary bridges formed in
the vicinity of the (asperity) contact regions between the
solids. The heat transfer due to the area of real contact
(assuming purely elastic deformation) can be calculated
from (25). Let us make a very rough estimate: Surfaces
used in MEMS application have typically a roughness of
order a few nanometers. Thus, u0 ∼ 1 nm and for (amor-
phous) silicon dioxide the heat conductivity κ ≈ 1W/Km.
Thus, from (26a)

α ≈ (p0/E) × 109 W/m2K. (45)

In a typical case the nominal pressure p0 may be (due
to the van der Waals interaction and capillary bridges)
between 106 and 107 Pa and with E ≈ 1011 Pa we get
from (45) α ≈ 104–105 W/K m2. If the root-mean-square
roughness is of order ∼ 1 nm, we expect the average
separation between the surfaces to be of order a few
nanometer so that 〈(d0/d)2〉 ≈ 0.1 giving the non-contact
contribution to α from the electromagnetic field of or-
der (from (44)) 105 W/K m2, i.e., larger than or of sim-
ilar magnitude as the contribution from the area of real
contact.

b) Contribution to α from heat transfer via the sur-
rounding gas or liquid

Consider two solids with flat surfaces separated by a
distance d. Assume that the solids are surrounded by a
gas. Let Λ be the gas mean free path. If d � Λ the heat
transfer between the solids occurs via heat diffusion in the
gas. If d � Λ the heat transfer occurs by ballistic prop-
agation of gas molecules from one surface to the other.
In this case gas molecules reflected from the hotter sur-
face will have (on the average) higher kinetic energy that

the gas molecules reflected from the colder surface. This
will result in heat transfer from the hotter to the colder
surface. The heat current is approximately given by [35]

J0 ≈ κgasΔT

d + aΛ
,

where a is a number of order unity and which depends on
the interaction between the gas molecules and the solid
walls [2]. For air (and most other gases) at the normal at-
mospheric pressure and at room temperature Λ ≈ 65 nm
and κgas ≈ 0.02W/mK. For contacting surfaces with sur-
face roughness we get, to first order in the expansion
in (41),

α ≈ κgas〈(d + Λ)−1〉 = κgas

∫ ∞

0

duP (u)(u + Λ)−1, (46)

where 〈. . .〉 stands for ensemble average or averaging over
the surface area, and where P (u) is the probability distri-
bution of interfacial separations. Equation (46) also holds
if the surfaces are surrounded by a liquid rather than a
gas. In this case κgas must be replaced with the liquid
heat conductivity κliq and in most cases one can put Λ
equal to zero.

If we again consider a MEMS application where the
average surface separation is of order nm, we can ne-
glect the d-dependence in (46) and get α ≈ κgas/Λ ≈
3 × 105 W/m2K which is similar to the contribution from
the electromagnetic coupling.

c) Contribution to α from heat transfer via capillary
bridges

If the solid walls are wet by water, in a humid atmo-
sphere capillary bridges will form spontaneously at the
interface in the vicinity of the asperity contact regions.
For very smooth surfaces, such as in MEMS applications,
the fluid (in this case water) may occupy a large region
between the surfaces and will then dominate the heat
transfer between the solids. Similarly, contamination lay-
ers (mainly organic molecules) which cover most natural
surfaces may form capillary bridges between the contact-
ing solids, and contribute in an important way to the heat
transfer coefficient. The fraction of the interfacial surface
area occupied by fluid bridges, and the separation between
the solids in the fluid-covered region, can be calculated
using the theory developed in ref. [36]. From this one can
calculate the contribution to the heat transfer using (46),

α ≈ κliq〈d−1〉 ≈ κliq

∫ dK

a

duP (u)u−1, (47)

where P (u) is the distribution of interfacial separation u,
and A0 the nominal contact area. The lower cut-off a in
the integral is a distance of order a molecular length and
dK is the maximum height of the liquid bridge which, for a
system in thermal equilibrium and for a wetting liquid, is
of order the Kelvin length. Note that P (u) is normalized
and that ∫ dK

a

duA0P (u) = ΔA (48)

is the surface area (projected on the xy-plane) where the
surface separation is between a < u < dK.
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Fig. 5. A rubber block (dotted area) in adhesive contact with a
hard rough substrate (hatched area). The substrate has rough-
ness on many different length scales and the rubber makes
partial contact with the substrate on all length scales. When
a contact area is studied at low magnification it appears as
if complete contact occurs, but when the magnification is in-
creased it is observed that in reality only partial contact occurs.

3 Contact mechanics: short review and basic
equations

The theory of heat transfer presented above depends on
quantities which can be calculated using contact mechan-
ics theories. Thus, the heat flux through the non-contact
area (sect. 2.2.2) depends on the average of some func-
tion f [d(x)] of the interfacial separation d(x). If P (u) de-
notes the probability distribution of interfacial separation
u, then

〈f(d)〉 =
∫ ∞

a

du f(u)P (u), (49)

where a is a short-distance cut-off (typically of molecular
dimension). The contribution from the area of real con-
tact depends on the elastic energy Uel stored in the as-
perity contact regions (see eq. (23)). In the limit of small
contact pressure Uel = p0u0, where u0 is a length which
is of order the root-mean-square roughness of the com-
bined roughness profile. All the quantities P (u), Uel and
u0 can be calculated with good accuracy using the contact
mechanics model of Persson. Here we will briefly review
this theory and give the basic equations relevant for heat
transfer.

Consider the frictionless contact between two elastic
solids with Young’s elastic modulus E0 and E1 and the
Poisson ratios ν0 and ν1. Assume that the solid surfaces
have height profiles h0(x) and h1(x), respectively. The
elastic contact mechanics for the solids is equivalent to
those of a rigid substrate with the height profile h(x) =
h0(x)+h1(x) and a second elastic solid with a flat surface
and with Young’s modulus E and Poisson ratio ν chosen
so that [37]

1 − ν2

E
=

1 − ν2
0

E0
+

1 − ν2
1

E1
. (50)

The contact mechanics formalism developed else-
where [10–14] is based on studying the interface between

Fig. 6. An asperity contact region observed at magnification ζ.
It appears that complete contact occurs in the asperity contact
region, but when the magnification is increasing to the highest
(atomic scale) magnification ζ1, it is observed that the solids
are actually separated by the average distance ū(ζ).

two contacting solids at different magnification ζ, see
fig. 5. When the system is studied at the magnification ζ it
appears as if the contact area (projected on the xy-plane)
equals A(ζ), but when the magnification increases it is ob-
served that the contact is incomplete, and the surfaces in
the apparent contact area A(ζ) are in fact separated by
the average distance ū(ζ), see fig. 6. The (apparent) rela-
tive contact area A(ζ)/A0 at the magnification ζ is given
by [10–13]

A(ζ)
A0

=
1

(πG)1/2

∫ p0

0

dσ e−σ2/4G = erf
( p0

2G1/2

)
, (51)

where

G(ζ) =
π

4

(
E

1 − ν2

)2 ∫ ζq0

q0

dqq3C(q), (52)

where the surface roughness power spectrum

C(q) =
1

(2π)2

∫
d2x 〈h(x)h(0)〉e−iq·x, (53)

where 〈. . .〉 stands for ensemble average. The height pro-
file h(x) of the rough surface can be measured routinely
today on all relevant length scales using optical and stylus
experiments.

We define u1(ζ) to be the (average) height separating
the surfaces which appear to come into contact when the
magnification decreases from ζ to ζ − Δζ, where Δζ is
a small (infinitesimal) change in the magnification. u1(ζ)
is a monotonically decreasing function of ζ, and can be
calculated from the average interfacial separation ū(ζ) and
A(ζ) using (see ref. [13])

u1(ζ) = ū(ζ) + ū′(ζ)A(ζ)/A′(ζ), (54)
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Fig. 7. An elastic block squeezed against a rigid rough sub-
strate. The separation between the average plane of the sub-
strate and the average plane of the lower surface of the block
is denoted by u. Elastic energy is stored in the block in the
vicinity of the asperity contact regions.

where [13]

ū(ζ) =
√

π

∫ q1

ζq0

dq q2C(q)w(q)

×
∫ ∞

p(ζ)

dp′
1
p′

e−[w(q,ζ)p′/E∗]2 , (55)

where E∗ = E/(1−ν2), and where p(ζ) = p0A0/A(ζ) and

w(q, ζ) =
(

π

∫ q

ζq0

dq′ q′3C(q′)
)−1/2

.

The distribution of interfacial separations

P (u) = 〈δ[u − u(x)]〉,

where u(x) = d(x) is the separation between the surfaces
at point x. As shown in ref. [13] we have (approximately)

P (u) =
∫ ∞

1

dζ [−A′(ζ)]δ[u − u1(ζ)]. (56a)

Thus we can write (49) as

〈f(d)〉 =
∫ ζ1

1

dζ [−A′(ζ)]f [u1(ζ)], (56b)

where ζ1 is defined by u1(ζ1) = a.
Finally, the elastic energy Uel (see fig. 7) and the length

parameter u0 can be calculated as follows. The elastic en-
ergy Uel has been studied in ref. [8]:

Uel = A0E
∗π

2

∫ q1

q0

dq q2W (q, p)C(q). (57)

In the simplest case one takes, W (q, p) = P (q, p) =
A(ζ)/A0 is the relative contact area when the interface
is studied at the magnification ζ = q/q0, which depends
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Fig. 8. Surface roughness power spectrum C(q) as a function
of the wave vector q on a log-log scale (with 10 as basis). For
a typical surface used in MEMS applications with the root-
mean-square roughness 2.5 nm when measured over an area of
10 μm × 10 μm.

on the applied pressure p = p0. A more accurate expres-
sion is

W (q, p) = P (q, p)[γ + (1 − γ)P 2(q, p)]. (58)

However, in this case one also need to modify (55) ap-
propriately (see ref. [13]). The parameter γ in (58) seems
to depend on the surface roughness. For self-affine frac-
tal surfaces with the fractal dimension Df ≈ 2.2 we have
found that γ ≈ 0.5 gives a good agreement between the
theory and numerical studies [15]. As Df → 2, the analysis
of numerical data indicates that γ → 1.

For small pressures one can show that [13]

p = βE∗e−ū/u0 , (59)

where
u0 =

√
πγ

∫ q1

q0

dq q2C(q)w(q), (60)

where w(q) = w(q, 1), and where

β = ε exp

[∫ q1

q0
dq q2C(q)w(q) log w(q)∫ q1

q0
dq q2C(q)w(q)

]
, (61)

where (for γ = 1) ε = 0.7493.

4 Numerical results

In this section we present numerical results to illustrate
the theory. We focus on a MEMS-like application. In fig. 8
we show the surface roughness power spectrum C(q) as
a function of the wave vector q on a log-log scale (with
10 as basis) for a typical surface used in MEMS applica-
tions, with the root-mean-square roughness 2.5 nm when
measured over an area 10 μm × 10μm. In fig. 9 we show
for this case the contribution to the heat transfer coeffi-
cient α from the direct contact area, and the non-contact
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Fig. 9. The contribution to the heat transfer coefficient α from
the direct contact area, and the non-contact contribution due
to the fluctuating electromagnetic (EM) field and due to heat
transfer via the surrounding gas. For a randomly rough surface
with the (combined) surface roughness power spectrum shown
in fig. 8.

contribution due to the fluctuating electromagnetic (EM)
field and due to heat transfer via the surrounding gas. In
the calculation of the EM-contribution we have used (44),
with α0 = 2.0MW/m2K (and d0 = 1nm). For the contri-
bution from the surrounding gas we have used (46), with
κgas = 0.024W/mK and Λ = 65nm (and a = 1). For the
contact contribution we used (25) with κ = 1 W/mK. In
all calculations we have assumed E∗ = 86GPa and that
the contact is elastic (no plastic yielding). The relative
weak (squeezing) pressure dependence of the contribution
from the non-contact area is due to the fact that the (aver-
age) surface separation is smaller than the mean free path
Λ of the gas molecules in the non-contact area. Thus, for
squeezing pressures above ∼ 100MPa the contact contri-
bution will dominate the heat transfer.

We have also studied the contribution to the heat
transfer from capillary bridges which on hydrophilic sur-
faces form spontaneously in a humid atmosphere. The cap-
illary bridges give an attractive force (to be added to the
external squeezing force), which pulls the solids closer to-
gether. We have used the theory presented in ref. [36] to in-
clude the influence of capillary bridges on the contact me-
chanics, and to determine the fraction of the interface area
filled with fluid at any given relative humidity. In fig. 10 we
show the logarithm (with 10 as basis) of the contribution
to the heat transfer coefficient α from the real contact ar-
eas, and from the water in the capillary bridges, as a func-
tion of the relative (water) humidity. For relative humidity
below ∼ 0.4 the contribution to the heat transfer from cap-
illary bridges decreases roughly linearly with decreasing
humidity (and vanishes at zero humidity), and for relative
humidity below ∼ 0.015 the heat transfer via the area of
real contact will be more important than the contribution
from the capillary bridges. However the contribution from
heat transfer via the air or vapor phase (not shown) is
about ∼ 0.3MW/m2K (see fig. 9), and will hence give the
dominant contribution to the heat transfer for relative hu-
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4

6

8

7

5

contact

capillary
bridge

lo
g 

α 
(W

/m
  K

)
2

Fig. 10. The logarithm (with 10 as basis) of the contribution
to the heat transfer coefficient α from the real contact area,
and from the water in the capillary bridges, as a function of
the relative (water) humidity. For a randomly rough surface
with the (combined) surface roughness power spectrum shown
in fig. 8. The squeezing pressure p0 = 4 MPa and the effective
elastic modulus E∗ = 86 GPa. The heat conductivity of water
κfluid = 0.58 W/m K.

midity below 0.3. The small increase in the contribution
from the area of real contact for relative humidity around
∼ 0.94 is due to the increase in the contact area due to
the force from the capillary bridges. For soft elastic solids
(such as rubber) this effect is much more important: see
ref. [36] for a detailed discussion of this effect, which will
also affect (increase) the heat transfer in a drastic way.

We note that heat transfer via capillary bridges has
recently been observed in nanoscale point contact experi-
ments [38]. In this study the authors investigated the heat
transfer mechanisms at a ∼ 100 nm diameter point contact
between a sample and a probe tip of a scanning thermal
microscope. They observed heat transfer both due to the
surrounding (atmospheric) air, and via capillary bridges.

5 Role of adhesion and plastic deformation

In the theory above we have assumed that the solids de-
form purely elastically. However, in many practical situ-
ations the solids will deform plastically at short enough
length scale. Similarly, in many practical situations, in
particular for elastically soft solids, the area of real contact
may depend strongly on the adhesive interaction across
the contacting interface. Here we will briefly discuss un-
der which circumstances this will affect the heat transfer
between the solids.

The contribution to the heat transfer from the area
of real contact between two solids depends on the elas-
tic energy Uel stored in the asperity contact regions, or,
at small enough applied loads, on the length parame-
ter u0. For most randomly rough surfaces these quanti-
ties are determined mainly by the long-wavelength, large-
amplitude surface roughness components. Similarly, the
interfacial separation, which determines the non-contact
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Fig. 11. The elastic Ael and plastic Apl contact area as a func-
tion of magnification on a log-log scale (with 10 as basis). The
penetration hardness σY = 4 GPa and the applied pressure
p0 = 4 MPa. Also shown is the asperity-induced elastic en-
ergy Uel(ζ) in units of the full elastic energy Uel(ζ1) obtained
when all the roughness (with wave vectors below q1 = ζ1q0) is
included. The vertical dashed line indicate the magnification
where Ael = Apl.

contribution to the heat transfer, depends mainly on the
long-wavelength, large amplitude surface roughness com-
ponents. On the other hand, plastic deformation and ad-
hesion often manifest themself only at short length scales,
corresponding to high magnification. For this reason, in
many cases one may assume purely elastic deformation
when calculating the heat transfer, even if, at short enough
length scale, all asperities have yielded plastically, or the
adhesion has strongly increased the (apparent) contact
area. Let us illustrate this with the amorphous silicon
dioxide system studied in sect. 4.

In fig. 11 we show the elastic and plastic contact area
as a function of magnification on a log-log scale (with
10 as basis). Also shown is the asperity-induced elastic
energy Uel(ζ) in units of the full elastic energy Uel(ζ1)
obtained when all the roughness (with wave vectors be-
low q1 = ζ1q0) is included. Note that about 90% of the
full elastic energy is already obtained at the magnifica-
tion where the elastic and plastic contact areas are equal,
and about 60% of the full elastic energy is obtained when
Apl/Ael ≈ 0.01. Thus, in the present case, to a good ap-
proximation, we can neglect the plastic deformation when
studying the heat transfer. In the calculation we have
assumed the penetration hardness σY = 4GPa and the
squeezing pressure p0 = 4MPa. Thus, at high magnifi-
cation, where all the contact regions are plastically de-
formed, the relative contact area A/A0 = p0/σY = 0.001,
which is in good agreement with the numerical data in
fig. 11.

If necessary, it is easy to include adhesion and plastic
deformation when calculating the heat transfer coefficient
α. Thus (26b) is also valid when adhesion is included, at
least as long as adhesion is treated as a contact interaction.
However, in this case the interfacial stiffness dp0/dū must

be calculated including the adhesion (see ref. [39]). Plas-
tic deformation can be included in an approximate way
as follows. If two solids are squeezed together at the pres-
sure p0 they will deform elastically and, at short enough
length scale, plastically. If the contact is now removed the
surfaces will be locally plastically deformed. Assume now
that the surfaces are moved into contact again at exactly
the same position as the original contact, and with the
same squeezing pressure p0 applied. In this case the solids
will deform purely elastically and the theory outlined in
this paper can be (approximately) applied assuming that
the surface roughness power spectrum C̄(q) of the (plas-
tically) deformed surface is known. In ref. [14] we have
described an approximately way of how to obtain C̄(q)
from C(q) by defining (with q = ζq0) [40]

C̄(q) =

⎡
⎣1 −

(
Apl(ζ)
A0

pl

)6
⎤
⎦C(q),

where A0
pl = FN/σY. The basic picture behind this defini-

tion is that surface roughness at short length scales gets
smoothed out by plastic deformation, resulting in an effec-
tive cut-off of the power spectrum for large wave vectors
(corresponding to short distances).

6 Application to tires

Here we will briefly discuss heat transfer in the context
of tires. The rolling resistance μR of a tire determines the
heat production in a tire during driving on a strait planar
road at a constant velocity v. In a stationary state the
energy produced per unit time, W = μRFNv, must equal
the transfer of energy per unit time, from the tire to the
surrounding atmosphere and to the road surface. Here we
will briefly discuss the relative importance of these two
different contributions to the heat transfer.

Assume for simplicity that the frictional heat is pro-
duced uniformly in the tread rubber, and assume a tire
without tread pattern. Let z be a coordinate axis perpen-
dicular to the rubber surface. In this case at stationary
condition the temperature in the tread rubber satisfies
T ′′(z) = −q̇/κ, where q̇ is the frictional heat produced per
unit volume and unit time. We assume that the heat cur-
rent vanish at the inner rubber surface (z = 0, see fig. 12),
so that T ′(0) = 0. Thus we get T (z) = T0 − q̇z2/2κ. The
heat current at the outer rubber surface is

J0 = −κT ′(d) = q̇d. (62)

The temperature of the outer surface of the tread rubber

T1 = T (d) = T0 − q̇d2/2κ. (63)

Let us now assume that the heat transfer to the surround-
ing medium is

J0 = α(T1 − Tair). (64)

Combining (62)–(64) gives

T1 = T0 −
T0 − Tair

1 + 2κ/dα
. (65)
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Fig. 12. Temperature distribution of rubber tread (thickness
d) in contact with the air. The air temperature (for z > d) and
the temperature at the outer (z = d) and inner (z = 0) rubber
surfaces are denoted by Tair, T1 and T0, respectively.

For rubber κ ≈ 0.2W/mK and with d = 1 cm and
α ≈ 100W/m2K, as is typical for (forced) convective heat
transfer between a tire and (dry) air (see Appendix D and
ref. [41]), we get

T1 ≈ 0.3T0 + 0.7Tair.

The temperature profile is shown (schematically) in fig. 12.
Actually, the heat production, even during pure rolling,
will be somewhat larger close to the outer surface of the
tread and the resulting temperature profile in the tread
rubber will therefore be more uniform than indicated by
the analysis above.

Let us now discuss the relative importance of the con-
tributions to the heat transfer to the air and to the road.
We assume that the heat transfer to the atmosphere and
to the road are proportional to the temperature difference
T1 − Tair and T1 − Troad, respectively. We get

μRFNv = αairAsurf(T1−Tair)+αroadA0(T1−Troad), (66)

where Asurf is the outer surface area of the tread, and A0

the nominal tire-road footprint area. For rubber in contact
with a road surface, κ in eq. (26) is ≈ 0.2W/mK and with
p0/E∗ ≈ 0.04 and u0 ≈ 10−3 m (as calculated for a typical
case) we get αroad ≈ 10W/m2K which is smaller than the
contribution from the forced convection. Since the nom-
inal contact area between the tire and the road is much
smaller than the total rubber tread area, we conclude that
the contribution from the area of real contact between the
road and the tire is rather unimportant. During fast ac-
celeration wear process may occur, involving the transfer
of hot rubber particles to the road surface, but such pro-
cesses will not be considered here. In addition, at the inlet
of the tire-road footprint area, air may be compressed and
then rapidly squeezed out from the tire-road contact area

resulting in strong forced convective cooling of the rubber
surface in the contact area. A similar process involving the
inflow of air occurs at the exit of the tire-road footprint
area. A detailed study of this complex process is necessary
in order to accurately determine the heat transfer from a
tire to the surrounding atmosphere and the road surface.

For a passenger car tire during driving on a strait pla-
nar road at a constant velocity v, the tire temperature
which follows from (66) is in reasonable agreement with
experiment. Thus, using (66), we get

ΔT = T1 − Tair ≈
μRFNv

αairAsurf
, (67)

and with αair = 100W/m2K, Asurf ≈ 0.5m2 and μR ≈
0.02, FN = 3500N and v = 30m/s, we get ΔT ≈ 40 ◦C.

The discussion above has focused on the stationary
state where the heat energy produced in the tire per unit
time is equal to the energy given off to the surrounding
per unit time. However, for a rolling tire it may take a
very long time to arrive at this stationary state. In the
simplest picture, assuming a uniform temperature in the
tire rubber, we get from energy conservation

ρCV
dT

dt
= q̇ − α

d
(T − Tair),

or, if T (0) = Tair,

T (t) = Tair +
q̇d

α

(
1 − e−t/τ

)
,

where the relaxation time τ = ρCV d/α ≈ 200 s. In reality,
the temperature in the tire is not uniform, and this will
introduce another relaxation time τ ′, defined as the time
it takes for heat to diffuse a distance d, which is of order
τ ′ = ρCV d2/κ. The ratio τ ′/τ = αd/κ. For rubber κ ≈
0.2W/mK and assuming d = 1 cm and α = 100W/m2K
gives τ ′/τ ≈ 5 or τ ′ ≈ 103 s. Experiment have shown that
it typically takes ∼ 30 minutes to fully build up the tire
temperature during rolling [41].

Rubber friction depends sensitively on the tempera-
ture of the rubber, in particular the temperature close to
the rubber surface in contact with the road. The tem-
perature in the surface region of a tire varies rapidly in
space and time, which must be considered when calculat-
ing the rubber friction [1]. The shortest time and length
scales are related to the contact between the road asperi-
ties and the rubber surface in the tire-road footprint con-
tact area. During slip this generates intense heating which
varies over length scales from a few micrometer to several
mm, and over time scales shorter than the time a rubber
patch stays in the footprint, which typically may be of
order a few milliseconds. During this short time, very lit-
tle heat is transferred to the surrounding, and very little
heat conduction occurs inside the rubber, i.e., the heat
energy mainly stays where it is produced by the internal
friction in the rubber. This results in a flash temperature
effect, which has a crucial influence on rubber friction [1].
However, rubber friction also depends on the background
temperature (usually denoted by T0), which varies rela-
tively slowly in space and time, e.g., on time scales from
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Fig. 13. Experiment to test the theory predictions for the
heat transfer across interfaces. The increase in the temperature
T1(t) of the water in the lower container, with increasing time
t, determines the heat transfer between the upper and lower
water container.

the time ∼ 0.1 s it takes for the tire to perform a few rota-
tions, up to the time ∼ 30 minutes necessary to build up
the full tire temperature after any change in the driving
condition (e.g., from the start of driving). Note that the
time variation of the background temperature T0 depends
on the surrounding (e.g., the air and road temperatures,
humidity, rain, . . . ) and on the driving history, while the
flash temperature effect mainly depends on the slip history
of a tread block (or rubber surface patch) in the footprint
contact area, but not on the outside air or road tempera-
ture, or atmospheric condition.

7 A new experiment

We have performed a very simple experiment to test the
theoretical predictions for the heat transfer. The setup is
shown in fig. 13 and consists of two containers, both filled
with distilled water, standing on top of each other with a
thin silicon rubber film in between. The upper container is
made from copper (inner diameter 5 cm), and the water is
heated to the boiling temperature (i.e., T0 = 100 ◦C). The
lower container is made from PMMA with a cylindrical
copper block at the top. To study the effect of surface
roughness on the heat transfer, the copper block can be
replaced with another copper block with different surface
roughness. In the experiments presented below we used 3
copper blocks with different surface roughness.

The temperature T1(t) of the water in the lower con-
tainer will increase with time t due to the heat current J0

flowing from the upper container to the lower container:

J0 = ρCV Ṫ1d, (68)

where d is the height of the water column in the lower
container (in our experiment d = 3.5 cm), and where ρ
and CV are the water mass density and heat capacity,
respectively. We measure the temperature of the water
in the lower container as a function of time, starting at
25 ◦C. To obtain a uniform temperature of the water in
the lower container, we mix it using a (magnetic-driven)
rotating metal bar.

We have investigated the heat transfer using copper
blocks with different surface roughness. To prepare the
rough surfaces, we have pressed annealed (plastically soft)
copper blocks with smooth surface against sandpaper, us-
ing a hydraulic press. We repeated this procedure several
times to obtain randomly rough surfaces. The roughness of
the copper surfaces can be changed by using sandpaper of
different grade (consisting of particles with different (aver-
age) diameter). Due to the surface roughness, the contact
between the top surface of the lower container and the thin
silicon rubber sheet (thickness d0 = 2.5 mm) attached to
the upper container, is only partial. The bottom surface of
the upper container has been highly polished and we can
neglect the heat resistance at this rubber-copper interface.
Thus, most of the resistance to the heat flow arises from
the heat diffusion through the rubber sheet, and from the
resistance to the heat flow at the interface between the
rubber and the rough copper block.

The rubber sheet (elastic modulus E = 2.5MPa, Pois-
son ratio ν = 0.5) was made from a silicone elastomer
(PDMS). We have used Polydimethylsiloxane because of
its almost purely elastic behavior on the time scales in-
volved in our experiments. The PDMS sample was pre-
pared using a two-component kit (Sylgard 184) purchased
from Dow Corning (Midland, MI). This kit consists of a
base (vinyl-terminated polydimethylsiloxane) and a cur-
ing agent (methylhydrosiloxane-dimethylsiloxane copoly-
mer) with a suitable catalyst. From these two compo-
nents we prepared a mixture of 10:1 (base/cross linker) in
weight. The mixture was degassed to remove the trapped
air induced by stirring from the mixing process and then
poured into cylindrical casts (diameter 5 cm and height
d0 = 2.5mm). The bottom of these casts were made from
glass to obtain smooth surfaces (negligible roughness).
The samples were cured in an oven at 80 ◦C for over 12
hours.

Using (3), we can write

J0 ≈ T0 − T1(t)
d0κ

−1
0 + α−1

, (69)

where κ0 is the heat conductivity of the rubber. Here we
have neglected the influence of the copper blocks on the
heat transfer resistance, which is a good approximation
because of the high thermal conductivity of copper. Com-
bining (68) and (69) gives

τ0Ṫ1 = T0 − T1(t),
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where the relaxation time is

τ0 = ρCV d

(
d0

κ0
+

1
α

)
.

If we assume that τ0 is time independent, we get

T1(t) = T0 + [T1(0) − T0]e−t/τ0 . (70a)

In the study above we have assumed that there is no
heat transfer from the lower container to the surround-
ing. However, if necessary one can easily take into account
such a heat transfer: If we assume that the heat transfer
depends linearly on the temperature difference between
the water and the surrounding we can write

J1 = α1(T1 − Tsurr).

In this case it is easy to show that (70a) is replaced with

T1(t) = Ta + [T1(0) − Ta]e−t/τ , (70b)

where Ta is the temperature in the water after a long time
(stationary state where J0 = J1), and where the relaxation
time τ now is given by

τ = ρCV d
Ta − Tsurr

T0 − Tsurr

(
d0

κ0
+

1
α

)
.

The heat transfer across the rubber-copper interface
can occur via the area of real contact, or via the non-
contact area via heat diffusion in the thin air film or via
radiative heat transfer. Since all these heat transfer pro-
cesses act in parallel, we have

α ≈ αgas + αcon + αrad.

Let us estimate the relative importance of these differ-
ent contributions to α. Using the (diffusive) heat conduc-
tivity of air κgas ≈ 0.02W/mK and assuming 〈d−1〉 =
(20μm)−1 gives

αgas = κgas〈(d + Λ)−1〉 ≈ κgas〈d−1〉 ≈ 1000W/m2K.

Let us assume that p0 ≈ 0.01MPa, E∗ ≈ 2MPa, u0 ≈
10μm and (for rubber) κ0 = 0.2W/mK. Thus

αcon =
p0κ0

E∗u0
≈ 100W/m2K.

Here we have used that κ ≈ κ0 (since the heat conduc-
tivity κ1 of copper is much higher than for the rubber).
Finally, assuming that the radiative heat transfer is well
approximated by the Stefan-Boltzmann law and assuming
that (T0 − T1)/T1 � 1, we get with T0 = 373K

αrad ≈ π2k4
B

60h̄3c2
4T 3

0 ≈ 10W/m2K.

Note that αrad is independent of the squeezing pressure
p0, while αcon ∼ p0. The pressure dependence of αgas will
be discussed below.
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Fig. 14. The surface roughness power spectrum of the three
copper surfaces used in the experiment. The surfaces 1, 2 and
3 have the root-mean-square roughness 42, 88 and 114 μm,
respectively.

In the experiment reported on below the silicon rub-
ber film has the thickness d0 = 2.5mm so that d−1

0 κ0 ≈
100W/m2K. Thus

1
d−1
0 κ0

+
1
α

≈
(

1
100

+
1

1000 + 100 + 10

)
(W/m2K)−1

and it is clear from this equation that in the present case
the thin rubber film will give the dominant contribution
to the heat resistance. This is in accordance with our ex-
perimental data presented below.

8 Experimental results and discussion

To test the theory we have performed the experiment de-
scribed in sect. 7. We have performed experiments on four
different (copper) substrate surfaces, namely one highly
polished surface (surface 0) with the root-mean-square
(rms) roughness 64 nm, and for three rough surfaces with
the rms roughness 42, 88 and 114μm. In fig. 14 we show
the surface roughness power spectrum of the three latter
surfaces. Including only the roughness with wavelength
above ∼ 30μm, the rms slope of all three surfaces are of
order unity, and the normalized surface area A/A0 ≈ 1.5
in all cases.

In fig. 15 we show for the surfaces 1, 2 and 3, the
pressure dependence of heat transfer coefficient from the
contact area (αcon) and from the air-gap (αgas). In calcul-
tating the results in fig. 15 we have used (26a) (with u0

from (60)) (top figure) and (46) (with P (u) from (56a))
(bottom figure). Note that both αcon and αgas varies
(nearly) linearly with p0. The latter may at first appear
remarkable because we know that at the low (nominal)
squeezing pressures used in the present calculation (where
the area of real contact varies linearly with p0), the aver-
age surface separation ū = 〈u〉 depends logarithmically on
p0. However, the heat transfer via heat diffusion in the
air gap depends on 〈(u + Λ)−1〉, which depends on p0 al-
most linearly as long as ū � Λ, which is obeyed in our
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Fig. 15. The variation of the heat transfer coefficient from
the contact area (αcon) and from the air-gap (αgas) with the
squeezing pressure. The surfaces 1, 2 and 3 have the power
spectra shown in fig. 14.

case. This can be understood as follows: 〈u〉 is determined
mainly by the surface regions where the surface separation
is close to its largest value. On the other hand 〈(u+Λ)−1〉
is determined mainly by the surface regions where u is
very small, i.e., narrow strips (which we will refer to as
boundary strips) of surface area close to the area of real
contact. Now, for small p0 the area of real contact in-
creases linearly with p0 while the distribution of sizes of
the contact regions is independent of p0. It follows that
the total area of the boundary strips will also increase
linearly with p0. Thus, since 〈(u + Λ)−1〉 is determined
mainly by this surface area, it follows that 〈(u + Λ)−1〉
will be nearly proportional to p0. We note that, in fig. 9,
αgas is nearly pressure independent, but this is due to the
fact that the (combined) surface in this case is extremely
smooth (root-mean-square roughness 2.5 nm) so that the
u-term in 〈(u+Λ)−1〉 can be neglected compared to the gas
mean free path Λ, giving a nearly pressure-independent
gas heat transfer coefficient. However, in the system stud-
ied above ū is much larger than Λ and the result is nearly
independent of Λ.

Note that in the present case (see fig. 15) αgas � αcon,
so that the present experiment mainly tests the theory for
the heat flow in the air gap.

In fig. 16 we show the variation of the cumulative prob-
ability with the height (or gap-separation) u for the sur-
faces 1 and 3 (top) and 2 (bottom).
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Fig. 16. The variation of the cumulative probability with the
height (or gap-separation) u. The surfaces 1 and 3 (top) and 2
(bottom) have the power spectra shown in fig. 14. For each sur-
face the curves are for the nominal squeezing pressures (from
right to left): 11.8, 23.7, 35.5, 47.3, 59.2 and 71.0 kPa.

0

1

2

3

0 100 200 300

te
m

pe
ra

tu
re

 (
C

)

25

27

29

30

20

26

time (s)

Fig. 17. The measured (dots) and calculated (solid lines) tem-
perature in the lower container as a function of time. Results
are for all four surfaces and for the nominal squeezing pressure
p0 = 0.012 MPa.

In fig. 17 we show the measured (dots) and calculated
(using (70b)) (solid lines) temperature in the lower con-
tainer as a function of time. Results are for all four surfaces
and for the nominal squeezing pressure p0 = 0.012MPa.
The experiments where repeated 16 times and all the ex-
perimental data points are shown in the figure. In fig. 18
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Fig. 18. The measured (dots) and calculated (solid lines) tem-
perature in the lower container as a function of time. Results
are for surface 2 for the nominal squeezing pressure p0 = 0.012
(lower curve) and 0.071 MPa (upper curve).

we show the measured (dots) and calculated (solid lines)
temperature in the lower container as a function of time.
Results are for surface 2 for the nominal squeezing pres-
sure p0 = 0.012 (lower curve) and 0.071MPa (upper
curve). Note that there is no fitting parameter in the the-
ory calculations, and the agreement between theory and
experiment is relatively good.

It would be interesting to repeat the experiment pre-
sented above under vacuum condition. In this case about
half of the heat transfer resistance will arise from heat
diffusion in the thin rubber film and half arises from the
area of real contact, and it would be easy to accurately
test the theory for the latter contribution. It would also
be interesting to repeat the experiment using elastic ma-
terials with thermal conductivities much higher than that
of silicon rubber.

The heat resistance of the system studied above is
dominated by the thin rubber film. The reason for this
is the low heat conductivity of rubber (roughly 100 times
lower than for metals). For direct metal-metal contact the
contact resistance will be much more important. However,
for very rough surfaces it is likely that plastic flow is ob-
served already at such low magnification (corresponding
to large length scales) that it will affect the contact resis-
tance. Nevertheless, it is interesting to compare the theory
predictions for elastic contact with experimental data for
metal-metal contacts.

In fig. 19 we show the measured heat transfer coeffi-
cient for metal-metal contacts with steel, copper and alu-
minum [42]. The surfaces have the effective (or combined)
rms surface roughness hrms = 7.2μm (steel), 2.2 μm (Cu)
and 5.0μm (Al). Assume that the variation of α with p0

is mainly due to the area of real contact, i.e., we neglect
the heat transfer via the thin air film between the surfaces.
For the experiments involving rubber discussed above, the
contribution to the heat transfer coefficient α from the
area of real contact was smaller by a factor of ∼ 20 than
the contribution from heat diffusion in the air gap, but be-
cause of the much higher thermal conductivity of metals
(typically ∼ 100–1000 times higher) the contribution to α
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Fig. 19. Variation of the heat transfer coefficient α with
the squeezing pressure p0 for metal-metal contact with steel,
copper and aluminum. The surfaces have the effective (or
combined) root-mean-square surface roughness values hrms =
7.2 μm (steel), 2.2 μm (copper) and 5.0 μm (aluminum). The
heat conductivity of the metals are κ = 54 W/m K (steel),
381 W/m K (copper) and 174 W/m K (aluminum). Based on
experimental data from ref. [42].

from the area of real contact (which is proportional to κ)
will be much more important. Fitting the data points in
fig. 19 with straight lines gives the slope dα/dp0(exp) (in
units of m/s K)

2 × 10−4 (steel), 7 × 10−3 (Cu), 1.2 × 10−3 (Al).

Using (26a) with u0 ≈ 0.4hrms (here we have assumed
γ = 0.4) gives dα/dp0(theory) = κ/E∗u0

1 × 10−4 (steel), 4 × 10−3 (Cu), 1.3 × 10−3 (Al)

The agreement between theory and experiment is very
good taking into account that plastic deformation may
have some influence on the result, and that an accu-
rate analysis requires the full surface roughness power
spectrum C(q) (in order to calculate u0 accurately, and
in order to include plastic deformation if necessary (see
sect. 5)), which was not reported on in ref. [42]. We
note that experimental results such as those presented
in fig. 19 are usually analyzed with a phenomenological
model which assumes plastic flow and neglects elastic de-
formation. In this theory the heat transfer coefficient [43]

α ≈ κsp0

hrmsσY
(71)

is proportional to the rms surface slope s, but it is well
known that this quantity is dominated by the very short-
est wavelength roughness which in fact makes the theory
ill-defined. In ref. [42] the data presented in fig. 19 was
analyzed using (71) with s = 0.035, 0.006 and 0.03 for the
steel, Cu and Au surfaces, respectively. However, analysis
of polished surfaces with similar rms roughness as used in
the experiments usually gives slopes of order unity when
all roughness down to the nanometer is included in the
analysis [44]. Using s ≈ 1 in (71) gives heat transfer co-
efficients roughly ∼ 100 times larger than observed in the



B.N.J. Persson et al.: Heat transfer between elastic solids with randomly rough surfaces 21

experiments. (In our theory (eq. (26a)) s/σY in (71) is re-
placed with 1/E∗, and since typically E∗/σY ≈ 100, our
theory is consistent with experimental observations.) [45]
We conclude that the theory behind (71) is incorrect or in-
complete. A theory which includes both elastic and plastic
deformation was described in sect. 5.

9 Electric contact resistance

It is easy to show that the problem of the electrical contact
resistance is mathematically equivalent to the problem of
the thermal contact resistance. Thus, the electric current
(per unit nominal contact area) J0 through an interface
between solids with randomly rough surfaces can be re-
lated to the electric potential drop Δφ at the interface via
J0 = α′Δφ where, in analogy with (25),

α′ =
p0κ

′

E∗u0
, (72)

where κ′ is the electrical conductivity. However, from a
practical point of view the problem of the electrical con-
tact resistance is more complex than for the heat contact
resistance because of the great sensitivity of the electric
conductivity on the type of material (see Appendix E).
Thus, in a metal-metal contact the contact resistance will
depend sensitively on whether the thin insulating oxide
layers, which cover most metals, are fractured, so that di-
rect metal-metal contact can occur. On the other hand, in
most cases there will be a negligible contribution to the
electric conductivity from the non-contact regions.

10 Summary and conclusion

We have studied the heat transfer between elastic solids
with randomly rough but nominally flat surfaces squeezed
in contact with the pressure p0. Our approach is based
on studying the heat flow and contact mechanics in wave
vector space rather than real space which has the advan-
tage that we do not need to consider the very complex
fractal-like shape of the contact regions in real space. We
have included both the heat flow in the area of real con-
tact as well as the heat flow across the non-contact surface
region. For the latter contribution we have included the
heat transfer both from the fluctuating electromagnetic
field (which surrounds all material objects), and the heat
flow via the surrounding gas or liquid. We have also stud-
ied the contribution to the heat transfer from capillary
bridges, which form spontaneously in a humid atmosphere
(e.g., as a result of organic and water contamination films
which occur on most solid surfaces in the normal atmo-
sphere). We have presented an illustrative application rel-
evant for MEMS applications involving very smooth amor-
phous silicon dioxide surfaces. In this case we find that all
the mentioned heat transfer processes may be roughly of
equal importance.

We have briefly discussed the role of plastic deforma-
tion and adhesion on the contact heat resistance. We have

pointed out that even if plastic deformation and adhesion
are important at short length scale (or high magnification)
they may have a negligible influence on the heat transfer
since the elastic energy stored in the asperity contact re-
gions, which mainly determines both the interfacial sepa-
ration and the contact heat transfer coefficient, is usually
mainly determined by the long-wavelength surface rough-
ness components, at least for fractal-like surfaces with
fractal dimension Df < 2.5 (which is typically obeyed for
natural surfaces and surfaces of engineering interest).
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Appendix A.

In sect. 2.2.1 we have assumed that

1
J2

0

∫
d2q

1
q
〈|ΔJz(q)|2〉 ≈ 1

p2
0

∫
d2q

1
q
〈|Δσz(q)|2〉. (A.1)

This equation is a consequence of the fact that for elastic
solids with randomly rough surfaces the heat transfer co-
efficient depends mainly on the geometrical distribution of
the contact area. This can be understood as follows. Let
xn denote the center of the contact spot n and let In be
the heat current through the same contact spot. We now
approximate

Jz(x) ≈
∑

n

Inδ(x − xn).

Thus
A0J0 =

∑
n

In

and
Jz(q) =

1
(2π)2

∑
n

Ine−iq·xn .

Thus the left-hand side (LHS) of (A.1) becomes

LHS ≈
(

A0

(2π)2

)2
(∑

n

In

)−2

×
′∑

mn

InIm

∫
d2q

1
q
eiq·(xm−xn), (A.2)

where the prime on the summation indicates that the term
m = n is excluded from the sum. Next note that

∫
d2q

1
q
eiq·(xm−xn) =

4π

|xm − xn|
. (A.3)
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Substituting (A.3) in (A.2) gives

LHS ≈ A2
0

4π3

(∑
n

In

)−2 ′∑
mn

ImIn

|xm − xn|
. (A.4)

If one assumes that there is no correlation between the
magnitude of In (determined by the size of the contact)
and its position, we can replace the individual current In

in the double summation in (A.2) by their mean and get

LHS ≈ 1
4n2π3

′∑
mn

1
|xm − xn|

, (A.5)

where n = N/A0 is the concentration of contact spots and
N the total number of contact spots.

In the same way as above, one can simplify the expres-
sion involving the normal stress (right-hand side (RHS)
of (A.1)). We write

σ(x) =
∑

n

fnδ(x − xn),

where fn is the normal force acting in the contact n. Using
this equation, the RHS of (A.1) becomes

RHS ≈ A2
0

4π3

(∑
n

fn

)−2 ′∑
mn

fmfn

|xm − xn|
. (A.6)

If one assumes that there is no correlation between the
magnitude of fn and its position, we can replace the in-
dividual current fn in the double summation in (A.6) by
their mean and get

RHS ≈ 1
4n2π3

′∑
mn

1
|xm − xn|

. (A.7)

Thus, LHS ≈ RHS and we have proved the (approximate)
equality (A.1).

Substituting (A.5) in (20) gives

1
α

≈ 1
πκn

1
N

′∑
mn

1
|xm − xn|

, (A.8)

which agrees with the result obtained by Greenwood [23].
We refer to the article of Greenwood for an interesting
discussion about the contact resistance based on the (ap-
proximate) expression (A.8) for the contact resistance.

Appendix B.

The normal (interfacial) stress σz(x) and the difference in
the surface displacement u0z(x) − u1z(x) at the interface
can be considered to depend on the average interfacial sep-
aration ū. The derivatives of these quantities with respect
to ū are denoted by σ′

z and φ. In Appendix C we show
that

φ(q) = δ(q) − 2
E∗q

Δσ′
z(q). (B.1)

Note that (15) and (B.1) are very similar. Thus, if we
multiply both sides of (B.1) by M and define Mφ = ψ,
then (B.1) takes the form

ψ(q) = Mδ(q) − μ

κq
Δσ′

z(q), (B.2)

where
μ =

2Mκ

E∗ (B.3)

Equation (B.2) is identical to (15) if we write

Jz(q) = μσ′
z(q), (B.4)

or, equivalently,

Jz(x)/J0 = σ′
z(x)/p′0,

where p′0 is the normal stiffness. We note that (B.4) im-
plies that the current density Jz(x) will be non-vanishing
exactly where the normal stress σz(x) is non-vanishing,
which must be obeyed in the present case, where all the
heat current flows through the area of real contact. How-
ever, in order for Jz(x) to be proportional to σ′

z(x), it is
not enough that these functions obey similar (in the sense
discussed above) differential equations, but both problems
must also involve similar boundary conditions. Now in the
area of non-contact both Jz and σz and hence σ′

z must van-
ish. In the area of real contact the temperature field T is
continuous so that ψ = T (x,−0)−T (x,+0) = 0, while the
displacement field satisfies Φ = u0z − u1z = h(x), so that
(since h(x) is independent of ū) φ = 0 in the area of real
contact. Thus, both problems involve the same boundary
conditions and Jz and σ′

z must therefore be proportional
to each other.

Note that (B.4) gives J0 = μp′0. Substituting (B.3)
in this equation and using the definition (16) gives an
equation of the form (3) with

α = − κ

E∗
dp0

dū
.

This exact relation between the heat transfer coefficient
and the normal stiffness per unit area has already been de-
rived by Barber [24] using a somehow different approach.

Appendix C.

In refs. [10,11] it was shown that the normal displacement
u0z is related to the normal stress σz via

u0z(q) = − 2
E∗

0q
σz(q), (C.1)

where E∗
0 = E0/(1 − ν2

0). In a similar way

u1z(q) =
2

E∗
1q

σz(q). (C.2)

Let Φ = u0z − u1z be the difference between the (inter-
facial) surface displacement fields. Using (C.1) and (C.2)
gives

Φ(q) = − 2
E∗q

σz(q) (C.3)
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where
1

E∗ =
1

E∗
0

+
1

E∗
1

.

Note that the average of Φ(x) is the average separation
between the surfaces which we denote by ū. Thus if

σz(x) = p0 + Δσz(x),

we get

Φ(q) = ūδ(q) − 2
E∗q

Δσz(q). (C.4)

As the squeezing pressure p0 increases, the average sepa-
ration ū will decrease and we can consider p0 as a function
of ū. The quantity p′0(ū) is referred to as the normal stiff-
ness per unit nominal contact area. Taking the derivative
of (C.4) with respect to ū gives

φ(q) = δ(q) − 2
E∗q

Δσ′
z(q), (C.5)

where σ′
z is the derivative of σz with respect to ū and

where φ = Φ′ is the derivative of Φ with respect to ū.

Appendix D.

Here we briefly summarize some results related to forced
convective heat transfer [46]. When a fluid (e.g., air) flows
around a solid object the tangential (and the normal) com-
ponent of the fluid velocity usually vanish on the surface of
the solid. This results in the formation of a thin boundary
layer (thickness δ) at the surface of the solid where the
fluid velocity rapidly increases from zero to some value
which is of order the main stream velocity outside of the
solid. If the temperature T1 at the solid surface is different
from the fluid temperature Tfluid, the fluid temperature in
the boundary layer will also change rapidly from T1 to
Tfluid. Depending on the fluid flow velocity, the fluid vis-
cosity and the dimension of the solid object, the flow will
be laminar or turbulent, and the heat transfer process is
fundamentally different in these two limiting cases. In a
typical case (for air) the thickness δ ≈ 1mm and the heat
transfer coefficient α ≈ κ/δ ≈ 10W/m2K.

Let us consider heat transfer from a rotating disk as a
model for the heat transfer from a tire [47]. In this case it
has been shown [48] that fully turbulent flow occurs if the
Reynolds number Re > 2.5 × 105, where

Re =
ωR2

ν
=

vRR

ν
,

where R is the radius of the disk (or rather the distance
from the center of the disk to some surface patch on the
disk), ω the angular velocity and ν the kinematic viscosity
of air. In typical tire applications Re > 2.5×105 so turbu-
lent flow will prevail in most tire applications. In this case
the heat transfer coefficient is given approximately by [48]

αair ≈ 0.019
κair

R

(
vRR

ν

)0.8

.

As an example, at T = 300K for air ν = 15.7×10−6 m2/s
and κair = 0.025W/mK and assuming R = 0.3m and
vR = 30m/s, we get αair ≈ 63W/m2K.

Appendix E.

Heat conduction results from the collisions between atoms
as in fluids, or by free electron diffusion as predominant
in metals, or phonon diffusion as predominant in insula-
tors. In liquids and gases, the molecules are usually further
apart than in solids, giving a lower chance of molecules
colliding and passing on thermal energy. Metals are usu-
ally the best conductors of thermal energy. This is due to
the free-moving electrons which are able to transfer ther-
mal energy rapidly through the metal. However, the differ-
ence in the thermal conductivity of metals and non-metals
are usually not more than a factor ∼ 100. Typical values
for the heat conductivity are κ ≈ 100W/mK for metals,
≈ 1W/mK for insulators (e.g., metal oxides or polymers),
≈ 0.1W/mK for fluids (but for water κ ≈ 0.6W/mK)
and ≈ 0.02W/mK for gases at normal atmospheric pres-
sure and room temperature.

In contrast to thermal heat transfer, electric conduc-
tion always involves the motion of charged particles (elec-
trons or ions). For this reason the electric contact resis-
tance is much more sensitive to oxide or contamination
layers at the contacting interface than for the heat trans-
fer. For the electric conduction the variation of conductiv-
ity between good conductors (most metals), with typical
electric conductivity κ′ ≈ 107 (Ω m)−1, and bad conduc-
tors such as silicon dioxide glass or (natural) rubber, where
κ′ ≈ 10−14 (Ω m)−1, is huge. This makes the electrical
contact resistance of metals sensitive to (nanometer) thin
oxide or contamination layers. However, as pointed out in
the Introduction, if there is a large number of small breaks
in the film, the resistance may be almost as low as with
no film.
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