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Abstract

We study the average separation between an elastic solid and a hard solid, with a nominally flat

but randomly rough surface, as a function of the squeezing pressure. We present experimental

results for a silicon rubber (PDMS) block with a flat surface squeezed against an asphalt road

surface. The theory shows that an effective repulsive pressure acts between the surfaces of the

form p ∼ exp(−u/u0), where u is the average separation between the surfaces and u0 a

constant of the order of the root-mean-square roughness, in good agreement with the

experimental results.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Contact mechanics between solid surfaces is the basis for

understanding many tribology processes [1–7] such as friction,

adhesion, wear, and sealing. The two most important

properties in contact mechanics are the area of real contact and

the interfacial separation between the solid surfaces. For non-

adhesive contact and small squeezing pressure, the (projected)

contact area depends linearly on the squeezing pressure [8–11].

When two elastic solids with rough surfaces are squeezed

together, the solids will in general not make contact

everywhere in the apparent contact area, but only at a

distribution of asperity contact spots. The separation u(x)

between the surfaces will vary in a nearly random way with

the lateral coordinates x = (x, y) in the apparent contact

area. When the applied squeezing pressure increases, the

average surface separation u = 〈u(x)〉 will decrease, but in

most situations it is not possible to squeeze the solids into

perfect contact corresponding to u = 0. We have recently

developed a theory which predicts that, for randomly rough

surfaces at low squeezing pressures, p ∼ exp(−u/u0), where

the reference length u0 depends on the nature of the surface

roughness but is independent of p [1, 12]. Here we will present

experimental results to test the theoretical predictions1. We

study the squeezing of a rubber block against an asphalt road

1 Experiments involving the squeezing of rubber blocks against rough

surfaces have been performed by Gäbel and Kröger [13] but without comparing

the experimental results to theory.

surface. This topic is also important in the context of the air-

pumping contribution to tire noise [14]. Thus the compression

and outward flow of the air between a tread block and the

road surface cavities during driving contribute to tire noise,

similarly to how sound is generated during applause. A similar

effect (but now involving decompression and inward flow of

air) occurs when a tread block leaves the tire–road contact area.

2. Theory

We consider the frictionless contact between an elastic solid

(elastic modulus E and Poisson ratio ν) with a flat surface and

a rigid, randomly rough surface with the surface height profile

z = h(x). The separation between the average surface plane

of the block and the average surface plane of the substrate

(see figure 1) is denoted by u with u > 0. When the

applied squeezing force p increases, the separation between

the surfaces at the interface will decrease, and we can consider

p = p(u) as a function of u. The elastic energy Uel(u) stored

in the substrate asperity–elastic block contact regions must be

equal to the work done by the external pressure p in displacing

the lower surface of the block towards the substrate. Thus,

p(u) = −
1

A0

dUel

du
, (1)

where A0 is the nominal contact area. For elastic solids

equation (1) is exact [12, 15]. The equation holds also for
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Figure 1. An elastic block squeezed against a rigid rough substrate.
The separation between the average plane of the substrate and the
average plane of the lower surface of the block is denoted by u.
Elastic energy is stored in the block in the vicinity of the asperity
contact regions.

viscoelastic solids if the compression occurs so slowly that

negligible energy dissipation (caused by the internal friction of

the solids) occurs during the compression. In our experiments

we use silicon rubber which behaves as a perfect elastic solid

under our experimental conditions.

Theory shows that for low squeezing pressure, the area

of real contact A varies linearly with the squeezing force

p A0, and that the interfacial stress distribution and the size

distribution of contact spots are independent of the squeezing

pressure [16]. That is, with increasing p existing contact

areas grow and new contact areas form in such a way

that in the thermodynamic limit (infinite-sized system) the

quantities referred to above remain unchanged. It follows

immediately that for small load the elastic energy stored in

the asperity contact region will increase linearly with the load,

i.e. Uel(u) = u0A0 p(u), where u0 is a characteristic length

which depends on the surface roughness (see below) but is

independent of the squeezing pressure p. Thus, for small

pressures (1) takes the form

p(u) = −u0
dp

du

or2

p(u) ∼ e−u/u0 . (2)

To quantitatively derive the relation p(u) we need

an analytical expression for the asperity induced elastic

energy. Within the contact mechanics approach of Persson we

have [16, 18, 19]

Uel ≈ A0E∗ π

2

∫ q1

q0

dq q2P(q, p)C(q), (3)

where E∗ = E/(1 − ν2) and where P(q, p) = A(ζ )/A0
is the relative contact area when the interface is studied at

the magnification ζ = q/q0, which depends on the applied

2 We note that the result (2) differs drastically from the prediction of asperity

contact mechanics theories such as those of Bush et al [17] and the theory of

Greenwood and Williamson [17].

Figure 2. A rubber block between two flat and rigid solid plates.
(a) Undeformed state. (b) Squeezed block assuming no slip (i.e. high
enough static friction) at the rubber–plate interfaces. (c) Squeezed
block assuming perfect slip (i.e. no friction) at the rubber–plate
interfaces.

pressure p. The surface roughness power spectrum [16]

C(q) =
1

(2π)2

∫

d2x 〈h(x)h(0)〉e−iq·x,

where 〈· · ·〉 stands for ensemble average. Note that for

complete contact P = 1 and in this limit (3) is exact.

For self-affine fractal surfaces the prediction of the contact

mechanics theory of Persson has been compared to numerical

simulations [19, 20]. The numerical studies indicate that

as the fractal dimension of the surface approaches 2 the

Persson theory may become exact, while a small difference

between theory and simulations is observed for larger fractal

dimensions [21]. Below we will compare the theoretical

predictions with experimental data for an asphalt road surface

which is fractal-like with the fractal dimension Df ≈ 2. We

find nearly perfect agreement between theory and experiment

(see below), supporting the picture gained before based on

numerical simulations.

Substituting (3) in (1) gives for small squeezing

pressures [12]:

p = β E∗e−u/u0 . (4)

For self-affine fractal surfaces, the length u0 and the parameter

β depend on the Hurst exponent H and on q0 and q1. Most

surfaces which are self-affine fractal have the Hurst exponent

H > 0.5 (or the fractal dimension Df < 2.5). For such

surfaces u0 and β are nearly independent of the highest

surface roughness wavevector, q1, included in the analysis.

For the substrate surface studied below we obtain from the

measured surface roughness power spectrum (see figure 7)

u0 = 0.30 mm and β = 0.59. Note that u0 is of the order of

the root-mean-square roughness amplitude (hrms ≈ 0.29 mm

in the present case, see below).

Consider a rubber block (elastic modulus E) with a flat

surface (area A0) and thickness d . We will study both dry

and lubricated interfaces (see figure 2) resulting in no slip

and perfect slip at the two rubber-confining wall interfaces. If

the block is squeezed against a rigid, randomly rough counter

surface, the upper surface of the rubber block will move

downwards by the distance s (see figure 3), which is the sum

of a uniform compression of the rubber block, dσ/E , and a

movement (or penetration) w of the average position of the

lower surface of the rubber block into the valleys or cavities

of the countersurface:

s = w + dσ/E . (5)
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Figure 3. A rubber block in contact with a rigid, randomly rough
substrate. Left: no applied load. Right: the rubber block is squeezed
against the substrate with force F . The upper and (the average
position of) the lower surface of the rubber block moves downwards
by the distances s and w, respectively. We assume perfect interfacial
slip (no friction).

If u denote the average separation between the block and the

substrate (so that u = 0 corresponds to perfect contact) then

w = hmax − u (6)

where we have assumed that the initial position of the lower

surface of the block corresponds to the separation where the

block just makes contact with the highest substrate asperity (as

in figure 3, left), which is located a distance hmax above the

average substrate surface plane. Using (4) we get

log(σ/E) = log(4β/3) − u/u0 (7)

where σ = F/A0 the squeezing pressure. Here we have

used E∗/E = 1/(1 − ν2) ≈ 4/3 since for rubber ν ≈ 1/2.

Combining (5) and (6) gives

u = hmax − s + dσ/E .

Substituting this in (7) gives

log
( σ

E

)

= log

(

4β

3

)

−
1

u0

(

hmax − s + d
σ

E

)

or

log
( σ

E

)

= B +
1

u0

(

s − d
σ

E

)

(8)

where B = log(4β/3) − hmax/u0.

For the no-slip boundary condition, equation (5) is

replaced by

s = w + dσ/E ′

where the effective modulus E ′ > E . Thus, in this case (8)

takes the form

log
( σ

E ′

)

= B ′ +
1

u0

(

s − d
σ

E ′

)

(9)

where B ′ = log(4β E/3E ′) − hmax/u0.

3. Experimental details

To test the theory presented above, we have performed the

experiment indicated in figure 3. A rubber block with a flat

surface was squeezed against an asphalt road surface. The

displacement s of the upper surface of the rubber block was

changed in steps of 0.05 mm, and the force F was measured.

For the experiment we used a test stand produced by SAUTER

GmbH (Albstadt, Germany), normally used to measure spring

constants. Using this test stand, we were able to measure forces

up to 500 N, and displacement with a resolution of 0.01 mm.

The rubber block was made from a silicone elastomer

(PDMS). The PDMS samples were prepared using a

two-component kit (Sylgard 184) purchased from Dow

Corning (Midland, MI). This kit consists of a base

(vinyl-terminated polydimethylsiloxane) and a curing agent

(methylhydrosiloxane–dimethylsiloxane copolymer) with a

suitable catalyst. From these two components we prepared a

mixture 10:1 (base/cross linker) in weight. The mixture was

degassed to remove the trapped air induced by stirring from the

mixing process and then poured into cylindrical casts (diameter

D = 3 cm and height d = 1 cm). The bottom of these casts

was made from glass to obtain smooth surfaces (negligible

roughness). The samples were cured in an oven at 80 ◦C for

over 12 h.

The road surface used in this experiment was provided

by Pirelli (Italian tire manufacturer). The topography was

measured with contact-less optical methods using a chromatic

sensor with two different optics produced by Fries Research

and Technology GmbH (Bergisch Gladbach, Germany). To

identify the elastic modulus E , the PDMS sample was first

squeezed against a smooth substrate in a compression test.

We measured the force F over the displacement s for two

different cases. First there was no lubrication used and

the PDMS sample deformed laterally at the force-free area,

as shown in figure 2(b), because no slip occurred at the

contact areas. Second we lubricated the contact areas to

obtain perfect slip at the interfaces (see figure 2(c)). We

used polyfluoroalkylsiloxane (PFAS), a fluorinated silicone oil

supplied by ABCR GmbH & Co. KG (Karlsruhe, Germany).

Because of its high viscosity (η = 1000 cSt), the fluid is an

excellent lubricant also under extreme pressure applications

and should therefore not easily be squeezed out of the contact

area. Also it does not react (or interdiffuse) with the PDMS

elastomer.

4. Results

Consider first flat surfaces. In figure 4 we show the measured

relation between the stress and the strain for lubricated surfaces

(so that the shear stress vanish on the boundaries). If the stress

is normalized with E = 2.3 MPa, a nearly straight line with

slope 1 will result, so that the relation σ = Es/d holds. The

elastic modulus E = 2.3 MPa is consistent with the elastic

modulus reported in the literature for similar silicon rubbers3.

We note that when repeating this experiment (figure 4), as

well as the other similar experiments described below, the new

results never differed by more than ∼2.5% from the original

measurements.

We have also performed experiments for dry surfaces.

In this case no (or negligible) slip occurred at the interface

with the confining walls, and visual inspection of the system

3 See, e.g. Bongaerts et al [22], where they report a Young’s modulus E =

2.4 MPa for PDMS prepared in the same way as ours, using Sylgard 184 with

a base/curing agent mass ratio of 10:1. Similarly, Scheibert et al [22] obtained

the Young’s modulus 2.2± 0.1 MPa.
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Figure 4. The stress σ (in units of the elastic modulus E) as a
function of the strain s/d , where s is the displacement of the upper
surface and d the thickness of the block. In the calculation we used
E = 2.3 MPa for a PDMS rubber block confined between two
smooth lubricated (wet) surfaces.

Figure 5. The stress σ (in units of the elastic modulus E ′) as a
function of the strain s/d , where s is the displacement of the upper
surface and d the thickness of the block. In the calculation we used
the effective modulus E ′ = 4.2 MPa for a PDMS rubber block
confined between smooth dry surfaces. The two experimental curves
correspond to increasing and decreasing strain.

showed that the rubber bulged laterally at the force-free area

(see figure 2(b)). We still expect a linear (or near linear)

relation between stress and strain but the effective elastic

modulus E ′ is larger than for lubricated interfaces. Thus, the

effective elastic modulus deduced from the experimental data

(see figure 5) E ′ ≈ 4.2 MPa is about 80% larger than for

the lubricated interface. To check the measuring system for

hysteresis effects, some of the experiments were performed

bidirectionally. The results are shown in figure 5 where the

strain was increased and after that slowly decreased again.

Negligible hysteresis occurred, as expected because of the low

glass transition temperature of PDMS.

The increase in the effective elastic modulus in

compression, from 2.3 to 4.2 MPa, when going from slip to

no-slip boundary conditions, is consistent with the prediction

Figure 6. The stress σ (in units of the elastic modulus E ′) as a
function of the strain s/d , where s is the displacement of the upper
surface and d the thickness of the block. In the calculation we used
the effective modulus E ′ = 2.9 MPa. For a PDMS rubber block
confined between one lubricated (wet) surface and one dry surface.

of the Lindley equation [23], which in the present case takes

the form

E ′ ≈ E
(

1+ 1.4S2
)

For a cylinder, the shape factor S = R/2d . In the present case

E = 2.3 MPa and S = 0.75 giving E ′ = 4.1 MPa which

agrees very well with the measured value (4.2 MPa).

We have also studied the case where one surface is

lubricated and the other dry. In this case the rubber will

displace laterally in an asymmetric way (as in figure 10(b))

and the measured effective elastic modulus E ′ = 2.9 MPa (see

figure 6), is slightly smaller than the average of the effective E-

modulus obtained assuming no slip and complete slip on both

surfaces: (2.3+ 4.2)/2 MPa ≈ 3.3 MPa.

We will now present experimental results for a rubber

block squeezed against an asphalt road surface. The surface

roughness power spectrum of the road surface is shown in

figure 7. The surface has the root-mean-square roughness

hrms ≈ 0.29 mm, and for the wavevector q > q0 ≈

2500 m−1 it is (on a log–log scale) well approximated by a

straight line with the slope corresponding to a self-affine fractal

surface with the fractal dimension Df = 2. For q < q0,

C(q) is approximately constant; we refer to q0 as the roll-off

wavevector.

In figure 8 we show the natural logarithm of the squeezing

pressure (divided by the effective elastic modulus) as a function

of s − dσ/E ′, where s is the displacement of the upper surface

of the rubber block relative to the substrate, and where d is the

thickness of the rubber block. In the calculation we used the

effective elastic modulus E ′ = 4.8 MPa and B ′ = −6.85. The

value of B ′ has been calculated using (9) (using the measured

hmax) so that the only fitting parameter is the effective elastic

modulus E ′, which, however, agrees rather well with the

measurements for flat surfaces (E ′ = 4.2 MPa).

In figure 9 we show the same as in figure 8 but now for

lubricated surfaces. In the calculation we used the effective

elastic modulus E ′ = 3.4 MPa and B ′ = −6.50. Note that

4



J. Phys.: Condens. Matter 21 (2009) 015003 B Lorenz and B N J Persson

Figure 7. The surface roughness power spectrum C , as a function of
the wavevector q (log–log scale), for an asphalt road surface. The
straight green line has the slope −4, corresponding to the Hurst
exponent H = 1 (fractal dimension Df = 2).

Figure 8. The natural logarithm of the squeezing pressure (divided
by the effective elastic modulus) as a function of s − dσ/E ′, where s
is the displacement of the upper surface of the rubber block relative
to the substrate, and where d is the thickness of the rubber block. In
the calculation we used the effective elastic modulus E ′ = 4.8 MPa
and B ′ = −6.85. The two experimental curves were obtained using
two different silicon rubber blocks, produced in the same way. The
results are for dry contact.

this value for B ′ is slightly smaller than for dry contacts. The

difference 1B ′ = −6.50 − (−6.85) = 0.35 just reflects the

difference in the effective E-modulus since according to (9)

1B ′ = log[E ′(dry)/E ′(lubricated)] = log(4.8/3.4) ≈ 0.35.

The E ′ value is larger than the E-modulus measured for flat

lubricated surfaces (E = 2.3 MPa), but this can be understood

as follows.

Visual inspection of the contact between the rubber

cylinder and the two confining walls shows that, as expected

from above, the rubber block slips against the top (flat) steel

surface, while no slip (or only very limited slip) occurs against

the rough substrate surface, see figure 10(b). This is consistent

with the fact that the observed elastic modulus is larger than

E = 2.3 MPa, as obtained above when complete slip occurs

Figure 9. The natural logarithm of the squeezing pressure (divided
by the effective elastic modulus) as a function of s − dσ/E ′, where s
is the displacement of the upper surface of the rubber block relative
to the substrate, and where d is the thickness of the rubber block.
The results are for lubricated (wet) contact. In the calculation we
used the effective elastic modulus E ′ = 3.4 MPa and B ′ = −6.5.

Figure 10. A rubber block squeezed between a rigid solid plate and a
rigid randomly rough substrate: (a) dry surfaces and (b) lubricated
surfaces.

at both (lubricated) surfaces. In fact, the observed effective

E-modulus (3.4 MPa) is quite close to the value 2.9 MPa

measured for smooth surfaces when slip occurs at one surface

and no slip at the other surface. The fact that no (or very small)

slip occurs at the interface between the rubber and the rough

substrate surface may be due to at least two facts.

(1) The pressures in the asperity contact regions are much

higher than the average pressure, and the asperity contact

regions much smaller than the nominal contact area,

resulting in much faster squeeze out of the lubricant oil

from the asperity contact regions, as compared to the case

of flat surfaces, and consequently to higher friction in the

contact regions.

(2) The substrate surface roughness on different length scales

contributes to the friction during slip because of the

viscoelastic deformations of the rubber on different length

scales. However, since for silicon rubber viscoelastic

dissipation only occurs at very high frequencies, it is likely

that this effect is small in the present case.

The measured E ′-values for rough surfaces (4.8 and

3.4 MPa) are roughly 14% larger than for smooth surfaces (4.2

and 2.9 MPa), as obtained assuming no slip on the confining
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surfaces in one case, and slip on only one of the confining

surfaces in the other case. The origin of this (small) difference

in effective elastic modulus is not known to us.

Finally, we note that for s − dσ/E ′ < 0.6 mm the

experimental curve in figure 9 drops off faster with decreasing

interfacial separation than predicted by the theory. (The same

effect can also be seen in figure 8 and has also been observed

in molecular dynamics calculations [15].) This is a finite size

effect: the theory is for an infinite system which has (arbitrary

many) arbitrary high asperities, and contact between the two

solids will occur for arbitrary large surface separation, and the

relation p ∼ exp(−u/u0) holds for arbitrary large u. On the

other hand a finite system has asperities with height below

some finite length hmax, and for u > hmax no contact occurs

between the solids and p = 0.

5. Summary and conclusion

We have presented a combined experimental–theoretical study

of the contact between a rigid solid with a randomly rough

surface and an elastic block with a flat surface. The

interfacial separation as a function of the squeezing pressure

has been derived theoretically and has been compared to

the experimental results. We find nearly perfect agreement

between theory and experimental data for an asphalt road

surface. We conclude that for non-adhesive interaction and

small applied pressure, p ∼ exp(−u/u0), where p is the

squeezing pressure and u the average interfacial separation,

and u0 a constant of the order of the root-mean-square

roughness of the combined surface profile. In addition, the

experimental results indicate that for surfaces with fractal-like

roughness profiles the Persson contact mechanics theory may

be exact for the fractal dimension Df = 2. We plan to extend

the study above to surfaces with other fractal dimensions to

test the theory in more general cases. The presented results

may be of great importance for, for example, heat transfer,

lubrication, sealing, optical interference, and tire noise related

to air-pumping.
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