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Leak rate of seals: Comparison of theory with experiment
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received 11 March 2009; accepted in final form 5 May 2009
published online 4 June 2009

PACS 46.55.+d – Tribology and mechanical contacts
PACS 81.40.Pq – Friction, lubrication, and wear

Abstract – Seals are extremely useful devices to prevent fluid leakage. We present experimental
results for the leak rate of rubber seals, and compare the results to a novel theory, which is based
on percolation theory and a recently developed contact mechanics theory. We find good agreement
between theory and experiment.
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A seal is a device for closing a gap or making a joint
fluid tight [1]. Seals play a crucial role in many modern
engineering devices, and the failure of seals may result
in catastrophic events, such as the Challenger disaster.
In spite of its apparent simplicity, it is not easy to
predict the leak rate and (for dynamic seals) the friction
forces [2] for seals. The main problem is the influence of
surface roughness on the contact mechanics at the seal-
substrate interface. Most surfaces of engineering interest
have surface roughness on a wide range of length scales [3],
e.g, from cm to nm, which will influence the leak rate and
friction of seals, and accounting for the whole range of
surface roughness is impossible using standard numerical
methods, such as the Finite Element Method.
In this paper we present experimental results for the
leak rate of rubber seals, and compare the results to a
novel theory [3–5], which is based on percolation theory
and a recently developed contact mechanics theory [6–12],
which accurately takes into account the elastic coupling
between the contact regions in the nominal rubber-
substrate contact area. Earlier contact mechanics models,
such as the Greenwood-Williamson [13] model or the
model of Bush et al. [14], neglect this elastic coupling,
which results in highly incorrect results [15,16], in partic-
ular for the relations between the squeezing pressure and
the interfacial separation [17]. We assume that purely
elastic deformation occurs in the solids, which is the case
for rubber seals.
Consider the fluid leakage through a rubber seal, from
a high fluid pressure Pa region, to a low fluid pressure
Pb region, as in fig. 1. Assume that the nominal contact
region between the rubber and the hard countersurface is
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Fig. 1: (Colour on-line) Rubber seal (schematic). The liquid on
the left-hand side is under the hydrostatic pressure Pa and the
liquid to the right under the pressure Pb (usually, Pb is the
atmospheric pressure). The pressure difference ∆P = Pa−Pb
results in liquid flow at the interface between the rubber seal
and the rough substrate surface. The volume of liquid flow
per unit time is denoted by Q̇, and depends on the squeezing
pressure P0 acting on the rubber seal.

rectangular with area Lx×Ly. We assume that the high
pressure fluid region is for x< 0 and the low pressure
region for x>Lx. We “divide” the contact region into
squares with the side Lx =L and the area A0 =L

2 (this
assumes that N =Ly/Lx is an integer, but this restriction
does not affect the final result). Now, let us study the
contact between the two solids within one of the squares as
we change the magnification ζ. We define ζ =L/λ, where
λ is the resolution. We study how the apparent contact
area (projected on the xy-plane), A(ζ), between the two
solids depends on the magnification ζ. At the lowest
magnification we cannot observe any surface roughness,
and the contact between the solids appears to be complete
i.e., A(1) =A0. As we increase the magnification we will
observe some interfacial roughness, and the (apparent)
contact area will decrease. At high enough magnification,
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(a) ζ=3, A/A0=0.778 (b) ζ=9, A/A0=0.434

(c) ζ=12, A/A0=0.405 (d) ζ=648, A/A0=0.323

critical constriction

Fig. 2: (Colour on-line) The contact region at different magni-
fications ζ = 3, 9, 12 and 648, are shown in (a)–(d), respec-
tively. When the magnification increases from 9 to 12 the non-
contact region percolate. At the lowest magnification ζ = 1:
A(1) =A0. The figure is the result of Molecular Dynamics
simulations of the contact between elastic solids with randomly
rough surfaces, see ref. [5].

say ζ = ζc, a percolating path of non-contact area will
be observed for the first time, see fig. 2. We denote
the most narrow (and least high) constriction along this
percolation path as the critical constriction. The critical
constriction will have the lateral size λc =L/ζc and the
surface separation at this point is denoted by uc. We can
calculate uc ≈ u1(ζc), using a recently developed contact
mechanics theory [11]. Thus, we define u1(ζ) to be the
(average) height separating the surfaces which appear to
come into contact when the magnification decreases from ζ
to ζ −∆ζ, where ∆ζ is a small (infinitesimal) change in the
magnification. u1(ζ) can be calculated as described below.
As we continue to increase the magnification we will find
more percolating channels between the surfaces, but these
will have more narrow constrictions than the first channel
which appears at ζ = ζc, and as a first approximation we
will neglect the contribution to the leak rate from these
channels [5].
A first rough estimate of the leak rate is obtained by
assuming that all the leakage occurs through the critical
percolation channel, and that the whole pressure drop
∆P = Pa−Pb occurs over the critical constriction (of
width and length λc ≈L/ζc and height uc = u1(ζc)). If
we approximate the critical constriction as a pore with

rectangular cross-section (width and length λc and height
uc≪ λc), and if assume an incompressible Newtonian
fluid, the volume-flow per unit time through the critical
constriction will be given by (Poiseuille flow)

Q̇= α
u31(ζc)

12η
∆P, (1)

where η is the fluid viscosity. In deriving (1) we have
assumed laminar flow and that uc≪ λc, which is always
satisfied in practice. We have also assumed no-slip bound-
ary condition on the solid walls. This assumption is not
always satisfied at the micro or nano-scale, but is likely to
be a very good approximation in the present case owing
to surface roughness which occurs at length scales shorter
than the size of the critical constriction.
In (1) we have introduced a factor α which depends on
the exact shape of the critical constriction, but which is
expected to be of order unity. The flow rate expected for
a channel with rectangular cross-section (with the height
uc≪ λc) correspond to α= 1. However, the actual flow
channel will not have a rectangular cross-section but the
pore height must go continuously to zero at the “edges” in
the direction perpendicular to the fluid flow. In addition,
the channel is of course not exactly rectangular in the
xy-plane, and this too will effect α. Here we treat α as a
fitting parameter and we find good agreement between the
theory and experiment using α≈ 0.2 (see below). Note also
that a given percolation channel could have several narrow
(critical or nearly critical) constrictions of nearly the same
dimension which would reduce the flow along the channel.
But in this case one would also expect more channels from
the high to the low fluid pressure side of the junction,
which would tend to increase the leak rate. These two
effects will, at least in the simplest picture, compensate
each other (see discussion in ref. [5]). Finally, since there
are N =Ly/Lx square areas in the rubber-countersurface
(apparent) contact area, we get the total leak rate

Q̇= α
Ly
Lx

u31(ζc)

12η
∆P. (2)

To complete the theory we must calculate the separation
uc = u1(ζc) of the surfaces at the critical constriction. We
first determine the critical magnification ζc by assuming
that the apparent relative contact area at this point is
given by site percolation theory. Thus, the relative contact
area A(ζ)/A0 ≈ 1− pc, where pc is the so called site
percolation threshold [18]. For an infinite-sized systems
pc ≈ 0.696 for a hexagonal lattice and 0.593 for a square
lattice [18]. For finite-sized systems the percolation will,
on the average, occur for (slightly) smaller values of p,
and fluctuations in the percolation threshold will occur
between different realizations of the same physical system.
We take pc ≈ 0.6 so that A(ζc)/A0 ≈ 0.4 will determine the
critical magnification ζ = ζc.
The (apparent) relative contact area A(ζ)/A0 at

the magnification ζ can be obtained using the contact
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Fig. 3: An asperity contact region observed at the magnification
ζ. It appears that complete contact occur in the asperity
contact region, but when the magnification is increasing to the
highest (atomic scale) magnification ζ1, it is observed that the
solids are actually separated by the average distance ū(ζ).

mechanics formalism developed elsewhere [6,8–11], where
the system is studied at different magnifications ζ. We
have [6,7]

A(ζ)

A0
=

1

(πG)1/2

∫ P0

0

dσ e−σ
2/4G = erf

(

P0
2G1/2

)

,

where

G(ζ) =
π

4

(

E

1− ν2
)2 ∫ ζq0

q0

dqq3C(q),

where the surface roughness power spectrum

C(q) =
1

(2π)2

∫

d2x〈h(x)h(0)〉e−iq·x,

where 〈. . .〉 stands for ensemble average. Here E and ν
are Young’s elastic modulus and the Poisson ratio of the
rubber. The height profile h(x) of the rough surface can
be measured routinely today on all relevant length scales
using optical and stylus experiments.
The quantity u1(ζ) was defined above and is a monoton-

ically decreasing function of ζ, which can be calculated
from the average interfacial separation ū(ζ) andA(ζ) using
(see ref. [11])

u1(ζ) = ū(ζ)+ ū
′(ζ)A(ζ)/A′(ζ).

The quantity ū(ζ) is the average separation between the
surfaces in the apparent contact regions observed at the
magnification ζ, see fig. 3. It can be calculated from [11]

ū(ζ) =
√
π

∫ q1

ζq0

dq q2C(q)w(q)

∫

∞

p(ζ)

dp′
1

p′
e−[w(q,ζ)p

′/E∗]2 ,

where p(ζ) = P0A0/A(ζ) and

w(q, ζ) =

(

π

∫ q

ζq0

dq′ q′3C(q′)

)

−1/2

.
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Fig. 4: (Colour on-line) Experimental set-up for measuring
the leak rate of seals. A glass (or PMMA) cylinder with a
rubber ring attached to one end is squeezed against a hard
substrate with well-defined surface roughness. The cylinder is
filled with water, and the leak rate of the water at the rubber-
countersurface is detected by the change in the height of the
water in the cylinder.

We have performed a very simple experiment to test
the theory presented above. In fig. 4 we show our set-
up for measuring the leak rate of seals. A glass (or
PMMA) cylinder with a rubber ring (with rectangular
cross-section) attached to one end is squeezed against a
hard substrate with well-defined surface roughness. The
cylinder is filled with water, and the leak rate of the fluid
at the rubber-countersurface is detected by the change
in the height of the fluid in the cylinder. In this case
the pressure difference ∆P = Pa−Pb = ρgH, where g is
the gravitation constant, ρ the fluid density and H the
height of the fluid column. With H ≈ 1m, we get typically
∆P ≈ 0.01MPa. With the diameter of the glass cylinder
of order a few cm, the condition P0≫∆P (which is
necessary in order to be able to neglect the influence
on the contact mechanics from the fluid pressure at
the rubber-countersurface) is satisfied already for loads
(at the upper surface of the cylinder) of order kg. In
our study we use a rubber ring with Young’s elastic
modulus E = 2.3MPa, and with the inner and outer
diameter 3 cm and 4 cm, respectively, and the height
0.5 cm. The rubber ring was made from a silicon elastomer
(PDMS) prepared using a two-component kit (Sylgard
184) purchased from Dow Corning (Midland, MI). The kit
consists of a base (vinyl-terminated polydimethylsiloxane)
and a curing agent (methylhydrosiloxane-dimethylsiloxane
copolymer) with a suitable catalyst. From these two
components we prepared a mixture 10 : 1 (base/cross
linker) in weight. The mixture was degassed to remove the
trapped air induced by stirring from the mixing process
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Fig. 5: (Colour on-line) Surface roughness power spectrum
of sand paper 120. The surface has the root-mean-square
roughness 44µm and the surface area (including only the
surface roughness with wavelength above λ1 = 20µm) is about
40% larger than the nominal surface area A0 (i.e., the surface
area projected on the xy-plane).

and then poured into casts. The bottom of these casts was
made from glass to obtain smooth surfaces. The samples
were cured in an oven at 80 ◦C for 12 h. The substrate is a
corundum paper (grit size 120) with the root-mean-square
roughness 44µm. From the measured surface topography
we obtain the surface roughness power spectrum C(q)
shown in fig. 5.
According to (1) we expect the leak rate to increase
linearly with the fluid pressure difference ∆P =Pa−Pb.
We first performed some experiments to test this predic-
tion. To within the accuracy of the experiment, the leak
rate depends linearly on ∆P [19].
In fig. 6 we show the measured leak rate for ten different
squeezing pressures (square symbols). The solid line is the
calculated leak rate using the measured rubber elastic
modulus E = 2.3MPa and the surface power spectrum
C(q) shown in fig. 5. We have also calculated the critical
pore size as a function of the squeezing pressure and
found it to be about 10 times smaller than the lateral
size of the pore [19]. Finally, in fig. 7 we show the critical
magnification ζc, where the non-contact area percolate,
as a function of the squeezing pressure. Note that, as
expected, the percolation of the non-contact area occur at
higher and higher magnification as the squeezing pressure
increases.
Sand paper has much larger (and sharper) roughness

than the counter surface used in normal rubber seal appli-
cations. However, from a theory point of view it should not
really matter on which length scale the roughness occurs,
except for “complications” such as the influence of adhe-
sion and fluid contamination particles (which tend to clog
narrow flow channels). However, the theory assumes that
the average surface slope is not too large and we plan to
study the leak rate for rubber seal in contact with sand
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Fig. 6: (Colour on-line) Square symbols: the measured leak
rate for ten different squeezing pressures. The experiment
was performed twice, corresponding to the two data points
for each pressure. Solid line: the calculated leak rate using
the measured surface topography, the measured rubber elastic
modulus E = 2.3MPa and the fluid pressure difference ∆P =
Pa−Pb = 10 kPa obtained from the height of the water column.
We have used α= 0.2.
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Fig. 7: (Colour on-line) Calculated critical magnification ζc,
where the non-contact area percolate, as a function of the
squeezing pressure. For the same system as in fig. 6.

blasted Plexiglas with a root-mean-square roughness in
the micrometer range.
To summarize, we have compared experimental data
with theory for the leak rate of seals. The theory is based
on percolation theory and a recently developed contact
mechanics theory. The experiments are for silicon rubber
seals in contact with sand paper. The elastic properties
of the rubber and the surface topography of the sand
paper are fully characterized. The calculated leak rate Q̇
is in good agreement with experiment. The theory only
accounts for fluid flow through the percolation channels
observed at (or close to) the percolation threshold. A
more accurate treatment should include also flow channels
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observed at higher magnification. This problem has simi-
larities to current flow in random resistor networks [18,20].
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