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Viscoelastic solids such as rubber exhibit a complex elastic modulus E(u), which depends on the fre-
quency u of the applied stress or strain. The modulus E(u) can often be determined in a wide frequency
range by performing measurements in a limited frequency range for many different temperatures, and
then shift the frequency segments horizontally along the frequency axis to obtain a continuous master
curve. We show that one can use the spectral representation of E(u) (or 1/E(u)), which obeys causality, to
determine the optimal shifting procedure, and to test the accuracy of the measured data and the
calculated master curve.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

If an oscillatory strain is applied to a linear viscoelastic solid the
oscillatory stress

sðuÞe�iut ¼ EðuÞεðuÞe�iut :

In general E(u) is complex which gives rise to a phase shift be-
tween the oscillatory strain and stress; this phase shift is due to
energy dissipation in the solid. To obtain the viscoelastic modulus
E(u) in a large frequency range it is oftenpossible tomeasure E(u) in
a very limited frequency interval, e.g. from 0.1 Hz to 10 Hz, at many
different temperatures, say from�100 �C to 100 �C (in temperature
steps of typically 5 �C), and then shift the frequency segments along
the frequency axis to obtain a continuousmaster curve. The shifting
function aT and the master curve E(u) make it possible to obtain the
viscoelastic modulus for any relevant temperature and frequency
using E ¼ E(uaT). The fundamental reason for why the viscoelastic
modulus depends on the frequency u and the temperature T via the
product uaT follows from the theory of activated processes: the
probability per unit time, w, for a thermally activated process to
occur is given by the Boltzmann factorw¼w0exp(�DU/kBT), where
DU is the activation barrier. During the time period tu ¼ 2p/u the
probability to go over the barrier is wtu ¼ (2pw0/u)exp(�DU/kBT).
sson).

All rights reserved.
Thus we expect E to depend on frequency and temperature as uaT
with aTwexp(DU/kBT) (Arrhenius equation). In reality the temper-
ature dependency is oftenmore complex because the barrier height
DU depends on temperature due to thermal expansion (which
(usually) makes the structure more “open” with increasing tem-
perature, which reduces the activation barrier DU necessary for a
local rearrangement of a polymer segment in the rubber).

For simple rubber materials the shift factor aT is often well
approximated by the WilliamseLandeleFerry (WLF) expression [1]

log10aT ¼ �A
T � Tg

Bþ T � Tg
(1)

where Tg is the rubber glass transition temperature, and the stan-
dard values A ¼ 17.44 and B ¼ 51.6 �C. Thus one procedure to
construct the master curve is to shift the frequency segments using
the WLF expression for aT with either the standard values for A and
B, or optimized values [2e6]. However, in many cases this does not
result in a smooth master curve. For example, in some cases (or for
some temperature interval) the shift factor aT is more accurately
described by the Arrhenius equation given above with DU inde-
pendent of the temperature.

A more general procedure is to do unrestricted shifting, where
the shift function aT is determined numerically so as to give as
smooth master curve as possible [7]. In this case there exist several
possible shifting procedures: (a) aT is determined to give as smooth
as possible master curve for ReE(u). After having determined aT this
way, the same shift function is used to construct the master curve

Delta:1_given name
Delta:1_surname
Delta:1_given name
mailto:b.persson@fz-juelich.de
http://www.MultiscaleConsulting.com
http://crossmark.crossref.org/dialog/?doi=10.1016/j.polymer.2013.12.033&domain=pdf
www.sciencedirect.com/science/journal/00323861
http://www.elsevier.com/locate/polymer
http://dx.doi.org/10.1016/j.polymer.2013.12.033
http://dx.doi.org/10.1016/j.polymer.2013.12.033
http://dx.doi.org/10.1016/j.polymer.2013.12.033


 0

 1

 2

 3

-8 -4  0  4  8  12
log10 f (Hz)

shift ReE
T0 = 20oC

red: veritcal shift
green: no veritical shift

lo
g 1

0 E
 (M

P
a)

ReE

ImE

Fig. 1. The viscoelastic modulus master curves for a rubber tread compound resulting
from shifting ReE. The green and red curves have been obtained without vertical
shifting (i.e. b(T) ¼ 1) and including vertical shifting according to Eq. (8). The reference
temperature T0 ¼ 20 �C. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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for ImE(u). (b) The same procedure is used as in (a), but for ImE. (c)
Some combination of ReE and ImE, e.g. tan d ¼ ImE/ReE is shifted.
For “simple” unfilled rubber the different procedures (a)e(c) usu-
ally give nearly identical results. However, for more complex ma-
terials, such as tread rubber for tires, or as a result of poor
measurements, the different shifting procedures may give rather
different master curves, and in this note we will address the
fundamental question of how to determine the best or optimal
shifting procedure, and to test the accuracy of the measured
viscoelastic modulus data.

2. Linear response, causality and spectral representation

When a body is exposed to weak external forces it usually re-
sponds in a linear way. For example, a weak electric field E may
induce an electric current J which is linearly related to E. If the
driving field oscillates in time as cos(ut) the induced current will in
general be phase shifted due to energy dissipation in the solid. This
is conveniently described using complex numbers. If the external
field oscillates as exp(�iut) the induced current will be related to
the driving force via J(u)exp(�iut)¼ s(u)E(u)exp(�iut). To account
for the phase shift (due to the energy dissipation) between J and E,
the linear response function s(u) must be complex. However,
causality requires that Res(u) and Ims(u) are not independent but
related to each other. We note that causality in the present context
just means that there can be no response (here the electric current)
before the stimuli (here the applied electric field).

The statement above holds for any linear response function. In
the present context because of causality, the Young’s modulus
ReE(u) is related to ImE(u). Thus, for example, because of causality
the real and imaginary part of E(u) satisfies the KramerseKronig
relation, which in the present case takes the form

ReEðuÞ ¼ EðNÞ þ 2
p
P
ZN
0

du0u0ImEðu0Þ
u02 � u2 : (2)

Here we will instead use that causality requires that E(u) can be
represented using the following spectral decomposition

EðuÞ ¼ EðNÞ �
ZN
0

ds
H1ðsÞ
1� isu

(3)

whereH1(s) is a real (and positive) valued function of the relaxation
time s. Alternatively one may write

1
EðuÞ ¼ 1

EðNÞ þ
ZN
0

ds
H2ðsÞ
1� isu

(4)

where H2(s) is a real and positive. These spectral representations
are also very important in many practical calculations (see below).

3. Using the spectral representation to test accuracy of
master curves

The real and imaginary part of any linear response function
must be related via the KramerseKronig relation (2) or, equiva-
lently, can be expressed in terms of a single real-valued (positive)
spectral density H1(u) [or H2(u)] as in (3) [or (4)]. In numerical
studies one must use discretized versions of (3) and (4):

EðuÞzEðNÞ �
X
n

H1ðsnÞ
1� isnu

(5)
and

1
EðuÞz

1
EðNÞ þ

X
n

H2ðsnÞ
1� isnu

(6)

where n ¼ 1,2,.N. It is usually enough to choose N z 100 (or less)
and snþ1 z 3sn. We determine E(N) and H1(sn) [or 1/E(N) and
H2(sn)] by minimizing the difference between the measured func-
tion E(u) [or 1/E(u)] and the fit function given by (5) [or (6)]. The
minimization uses the Monte Carlo (MC) method. The quantity we
minimize is the effective “potential” or error V. For the case where
we fit the expression (5) to the measured master curve E(u) we
define

V ¼ 1
u1 � u0

Zu1

u0

du
�
a2 þ b2

c2 þ d2

�1=2

(7)

where

a ¼ log½ReEðuÞ� � log
h
Re~EðuÞ

i
;

b ¼ log½ImEðuÞ� � log
h
Im~EðuÞ

i
;

c ¼ log½ReEðuÞ�; d ¼ log½ImEðuÞ�;

where E(u) is the measured master curve and where ~EðuÞ now
denotes the fit-function (5). Note that V ¼ 0 corresponds to
EðuÞ ¼ ~EðuÞ, i.e., perfect fitting. We have found that fitting 1/E(u)
with the representation (6) requires 10e100 times less MC steps as
compared to fitting E(u) with (5), and the former procedure (which
typically require less than 1 min on a PC) is therefore more
convenient if the only aim is to test if a measured viscoelastic
master curve obey causality.
4. Vertical shifting

We have developed a shifting procedure based on unrestricted
horizontal shifting to obtain as smooth master curves as possible.
Results will be presented both without and with vertical shifting. If
T0 denotes the reference temperature we write
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temperature T0 ¼ 20 �C.
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Fig. 3. The viscoelastic modulus master curves for a rubber tread compound resulting
from shifting (a) ReE and (b) ImE. Also shown (green curves) are the fitting curves
obtained from (5). The reference temperature T0 ¼ 20 �C. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this
article.)
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Eðu; TÞ ¼ bTEðaTu; T0Þ

where aT ¼ a(T) and bT ¼ b(T) are the horizontal and vertical shift
factors with a(T0) ¼ b(T0) ¼ 1. In the rubbery region the viscoelastic
modulus EwT and for this reason it is often assumed b(T) ¼ T/T0.
However, the origin of the linear T-dependency of E in the rubbery
region (i.e., high temperatures and low frequencies) is the entropic
contribution to the elasticity resulting from the thermal motion of
the rubber segments between the cross-link points. At high fre-
quencies (or low temperatures) in the glassy region this thermal
motion is frozen and the large elastic modulus of rubber in the
glassy region has a different physical origin. To take this into ac-
count we use an interpolation procedure where b(T)wT at very low
frequencies (in the rubbery region) and b(T) ¼ 1 at very high fre-
quencies (in the glassy region). There is no unique way to do this
interpolation but we have found that the exact way to perform the
interpolation is not very important. Here we use

bðTÞ ¼ 1þ
�
ReEðumin; TmaxÞ
ReEðumin; TÞ

�1=2� T
T0

� 1
�

(8)

where Tmax is the highest temperature (in Kelvin) in the frequency
sweep data, and umin the lowest frequency point. Note that in the
rubbery region ReE(umin,Tmax)/ReE(umin,T) z Tmax/T z 1 so that
b(T)z T/T0 in the rubbery region. In the glassy region ReE(umin,T) is
typically 1000 times higher than ReE(umin,Tmax) and hence b(T)z1
in the glassy region.

In Fig. 1 we show the viscoelastic modulus master curve for a
rubber tread compound resulting from shifting ReE. The experi-
mental frequency sweep data was obtained as described in Sec. 5.1.
Thegreenandredcurveshavebeenobtainedwithoutvertical shifting
(i.e. b(T) ¼ 1) and including vertical shifting according to Eq. (8). The
reference temperature T0¼ 20 �C. It is clear that including the vertical
shifting gives a smoother curve for ImE for the lowest frequencies.
However, both cases gives master curves which obey the causality
condition equally well (not shown) (the error V is z0.0144 in both
cases), so causality cannot be used to determine which vertical
shifting procedure is best. In the following analysis, unless otherwise
stated, we will always include vertical shifting according to Eq. (8).

5. Numerical illustrations

We will now present some results for different rubber com-
pounds and different measurement conditions to illustrate how the
causality condition can be used to test the accuracy of themeasured
data or the shifting procedure.
5.1. Tread compound: linear response

We have performed DMA measurements (Q800, TA in-
struments) on a tire tread compound in elongation mode at 0.2%
strain amplitude, where the rubber to a good approximation be-
haves as a linear viscoelastic solid, as shown by performing strain
sweeps (see Fig. 2). The measurements where performed at fre-
quencies between 0.25 Hz and 28 Hz and for temperatures
between �50 �C and 120 �C in temperature steps of 5 �C. The fre-
quency segments for ReE and ImEwere shifted using procedures (a)
and (b) described above. In both cases we use the vertical shift
function bT given by Eq. (8). In Fig. 3 (a) and (b) the noisy blue and
red curves show the resulting master curves (at the reference
temperature T0 ¼ 20 �C), and in Fig. 4 the corresponding shift fac-
tors. If we define the glass transition temperature Tg as the tem-
perature where tan d(T) (for the frequency u0 ¼ 0.01 s�1) is
maximal, then Tg ¼ �35 �C and Tg ¼ �40 �C for shifting procedures
(a) and (b), respectively. Also shown in Fig. 4 (green line) is theWLF
result (with Tg ¼ �35 �C) given by (1). It is clear that the results of
using procedures (a) and (b) give about equally smooth master
curves but they differ strongly. The question is: which shifting
procedure is best? Causality results in a relation between ReE(u)
and ImE(u) and wewill now show that this relation is best satisfied
using the shifting procedure (a).

Let us now study how well one can fit the measured master
curves using the spectral representation (5). The variation of the
error V [see (7)] with the number ofMC steps is shown in Fig. 5. Note
that the error function V after many MC steps converges to a much
smaller value when the master curve was constructed using proce-
dure (a) than for procedure (b). This is also illustrated in Fig. 3 which
shows the original and fitted [Eq. (5)] master curve for both
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procedures (a) and (b). We conclude that shifting process (a) gives a
master curve for E(u) which obeys causality to a very good approx-
imation. Using shifting process (b) gives in the present case bad re-
sults, and the same holds for the shifting process (c) (shifting tan d).

The causality argument used in this paper assumes linear
response, which requires small enough strain [4]. For our tread
compound we have tested the linear response assumption by
performing strain sweeps, see Fig. 2. The real part of the elastic
modulus is only 5% smaller at the strain 0.2% as compared to 0.05%
strain (which should be almost the same as 0% strain). The imagi-
nary part changes slightly more but still to a good approximation,
for the rubber we use, we are in the linear response region.

5.2. Tread compound: non-linear response

In many practical applications the rubber deformations are so
large that the relation between the stress and the strain is non-
linear. In fact, for filled rubber a linear relation is typically only
observed for strain values below 0.2%. When the viscoelastic
modulus ismeasured for large strain amplitudes (non-linear region)
[8] it will not obey the KramerseKronig relation and it cannot be
represented on the formgiven by (5) or (6) since these equations are
only valid for linear response functions (obeying causality). To
illustrate this fact, in Fig. 6 we show the viscoelastic modulus for
another tread compoundmeasured at 3% strain amplitude (in shear-
mode, but this fact is irrelevant). In this case thefit by the expression
(5) is very bad, and the viscoelastic modulus cannot be represented
shift ImE
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Fig. 5. The variation of the effective “potential” with the number of Monte Carlo steps.
by (5). This result is general, and we observe equally bad fits for
other compounds when studied in the non-linear response region.

5.3. Unfilled and filled SB rubber

We now present the master curves for unfilled and filled (80 phr
silica) SB rubber [9]. The data was measured from �35 �C to 150 �C
at a strain amplitude of 0.2% in oscillatory shear deformation. In
Fig. 7 we show the viscoelastic modulus master curves for unfilled
SB rubber resulting from shifting the shear modulus ImG. Also
shown (green curves) are the fitting curves obtained from (5).
Nearly the same master curve is obtained by shifting ReG. In both
cases the measured master curve can be rather well fitted by the
expression (5).

In Fig. 8 we show the viscoelastic modulus master curves for SB
rubber with Si-filler, resulting from shifting (a) ReG and (b) ImG.
Also shown (green curves) are the fitting curves obtained from (5).
Note that shifting ReG and ImG using our software results in slightly
different master curves but in both cases the master curves can be
well fitted by the expression (5) i.e., both procedures result in a
viscoelastic modulus which obey causality to a good approxima-
tion. Nevertheless, shifting ReG results in a master curve for ImG
where the frequency segments do not overlap (or join smoothly) in
the glassy region (high frequency), while shifting ImG results in a
master curve for ReGwhere the frequency segments do not overlap
in the rubbery region (small frequencies). Perhaps some other
shifting procedure, which minimizes some weighted average
involving the fitting error for both ReG and ImG, would result in
better master curves also in the rubbery and glassy regions. How-
ever, the aim of this study is not to present the best possible shifting
procedure but to show how causality may help in testing the ac-
curacy of the master curve independent of how it was obtained.

5.4. Viscoelastic modulus of inhomogeneous (two-phase composite)
rubber

Let us consider an inhomogeneous rubber consisting of two
types of rubber, say type A and B, where type B forms randomly
distributed domains in the type A rubbermatrix (or vise versa). This
type of two-phase (or more) rubbers are very important in practical
applications, e.g., tread rubber for tires often contains a small
fraction of natural rubber in a SB rubber matrix (this decreases the
rubber wear for reasons which does not interest us here). With
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Fig. 6. The viscoelastic modulus master curves for a tread compound resulting from
shifting ReG. Also shown (green curves) are the fitting curves obtained from (5). The
reference temperature T0 ¼ 20 �C and the stain amplitude in the measurements 3%.
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)



Fig. 7. The viscoelastic modulus master curves for unfilled SB rubber resulting from
shifting the shear modulus ImG. Also shown (green curves) are the fitting curves ob-
tained from (5). The reference temperature T0 ¼ 13 �C and the stain amplitude in the
measurements 0.2%. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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respect to deformations of the rubber which varies slowly in space
on the length scale of the fluctuations in the rubber composition,
we can describe the rubber with a homogeneous viscoelastic
modulus Eeff(u,T). We can approximately obtain Eeff(u,T) using the
Bruggeman effective medium theory [10]. Thus if EA(u,T) and
EB(u,T) are the viscoelastic moduli of the two compounds the
effective modulus of the composite is determined by Ref. [11]

cA
EA � Eeff
EA þ 2Eeff

þ cB
EB � Eeff
EB þ 2Eeff

¼ 0 (9)

where cA and cB are the volume fractions (with cA þ cB ¼ 1) of the
rubber compound A and B.

A two component rubber is characterized by two temperature-
frequency shift factors, aA(T), and aB(T). One fundamental question
is to what extent the composite modulus Eeff(u,T) can be approxi-
mated by a function Eeff(aTu). It is clear that this replacement
cannot be exact but no theoretical study we are aware off has
addressed this question quantitatively.

In Fig. 9 we show the viscoelastic modulus master curves for a
tread compound A (red curve) and a syringe rubber stopper com-
pound B (blue curve), and mixtures of the two compounds (green
curves) where one compound is assumed to form domains in the
second compound. The fraction of compound A decreases from the
top to the bottom in the figure from cA ¼ 1.0 (red curve) to 0.9, 0.8,
. 0.1 (green curves) to 0 (blue curve). The viscoelastic modulus of
the mixtures has been calculated using the Bruggeman effective
medium theory, Eq. (9). The black curve has been obtained for the
cA ¼ 0.4 mixture by first calculating the viscoelastic modulus using
(9) for 15 frequencies between 0.01 Hz and 30 Hz, and for many
different temperatures (T ¼ �45, �40, .., 20 �C) and then shifting
the frequency segments (shift ReE) to form a smooth master curve.
In Fig. 10 the black curve shows the resulting shift factors while the
red and blue curves are the shift factors for compound A and
compound B, respectively.

Fig. 11 shows the viscoelastic modulus obtained for the mixture
cA ¼ 0.4 (cB ¼ 0.6) at the temperatures T ¼ 0, 15 and 30 �C using the
Bruggeman theory (blue curves) and using the master curve and
shift factor given by the black curves in Figs. 9 and 10 (red curves).
(Note: the shift factor in Fig. 10 is only given up to T¼ 20 �C, and the
shift factor for T¼ 30 �Cwas obtained by linear extrapolation.) Note
that in the present case it is possible to represent the viscoelastic
modulus relative accurately on the form Eeff(aTu) in spite of the
two-component nature of the rubber system. Finally, we note that if
EA(u,T) and EB(u,T) are linear response functions which satisfy
causality then so will the effective mediummodulus obtained from
(9) do.
6. Time relaxation modulus and application

The spectral representations (3) and (4) have many important
applications in addition to what was discussed above. Note that if
the strain is abruptly increased (at time t ¼ 0) from zero to ε0 then

εðuÞ ¼
ZN
0

dt ε0e
iut�0þt ¼ �ε0

iu� 0þ

In this case the stress at time t > 0 will be:

sðtÞ ¼ 1
2p

Z
du EðuÞεðuÞe�iut

¼ 1
2pi

Z
du

0
@EðNÞ �

ZN
0

ds
H1ðsÞ
1� isu

1
A �ε0

uþ i0þ
e�iut

¼
2
4EðNÞ �

ZN
0

dsH1ðsÞ
�
1� e�t=s

�35
ε0

(10)

which describes stress relaxation in response to the change in
strain. In a similar way, if the stress is abruptly changed (at t ¼ 0)
from zero to s0 we get for t > 0:

εðtÞ ¼ 1
2p

Z
du

sðuÞ
EðuÞe

�iut

¼ 1
2pi

Z
du

0
@ 1
EðNÞ þ

ZN
0

ds
H2ðsÞ
1� isu

1
A �s0

uþ i0þ
e�iut

¼
2
4 1
EðNÞ þ

ZN
0

dsH2ðsÞ
�
1� e�t=s

�35s0

(11)

which describes strain relaxation (creep) in response to the change
in stress.

The representations (3) and (4) [and (10) and (11)] are useful in
viscoelastic contact mechanics [12,13] The area of real contact
(neglecting adhesion) when a hard body with a nominally flat
surface is squeezed against a viscoelastic material (e.g., rubber)
with a constant (in time) nominal pressure s0 is given by

AðtÞ
A0

zerf

 
p1=2

2
P1

!

where

P1 ¼ 23=2

p1=2
1� n2

k

1
2pi

ZN
�N

du
�s0

uþ i0þ
e�iut

EðuÞ
and

k ¼
0
@2p

Zq1
0

dq q3CðqÞ
1
A

1=2

where C(q) is the surface roughness power spectrum. Note that k is
the (combined) surface root-mean-square slope. Using (10) this
gives
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P1 ¼ 23=2 1� n2 4 1 þ
ZN

dsH2ðsÞ
�
1� e�t=s

�5

different temperatures (T ¼ �45, .., 20 �C) and then shifting the frequency segments
(shift ReE) to form a smooth master curve. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
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Fig. 10. The shift factor for compound A (red curve) and compound B (blue curve). The
black curve is the shift factor obtained for the cA ¼ 0.4 (cB ¼ 0.6) mixture as a result of
the shifting of the frequency segments which resulted in the black curve in Fig. 9. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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If instead the interfacial separation is abruptly changed at time
t ¼ 0 the contact area will depend directly on the relaxation
modulus (10) (see Ref. [12]). Another application of (4) is crack
propagation in viscoelastic solids. One can show that the visco-
elastic contribution to the crack propagation energy is conveniently
formulated as an integral over H2(s), see Refs. [14,15].

7. Discussion

We have used the spectral representation of E(u) (or 1/E(u)),
which obeys causality, to determine the optimal shifting procedure
for the construction of master curves. The basic idea is that since
the relaxation spectrum H1(s) (or H2(s)) is a (positive) real-valued
function, it is in general not possible to obtain two functions, ReE
and ImE, as the real and imaginary part of a complex functionwhich
depends on a single real fit-function. However, if E(u) is a causal
linear response function then ReE and ImE are related via a
KramerseKronig relation and a complex function depending on a
single real fit-function (relaxation spectrum) can exactly reproduce
both ReE and ImE. We have found that for a rubber tread compound
only the shifting procedure (a), where aT is determined by shifting
the measured ReE(u) frequency segments, gives a master curve
which corresponds to a linear response function which obeys
causality.

The procedure outlined above can also be used to test the ac-
curacy of the master curve, which may be inaccurate due to poor
measurements. For example, if the holding time at a fixed
temperature before the measurement of a E(u) frequency segment
is too short, the temperature inside the rubber strip may be non-
uniform which will result in an error in the measured data,
which may result in ReE(u) and ImE(u) not obeying the Kramerse
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Fig. 11. The viscoelastic modulus obtained for the mixture cA ¼ 0.4 (cB ¼ 0.6) at the
temperatures T ¼ 0, 15 and 30 �C using the Bruggeman theory (blue curves) and using
the master curve and shift factor given by the black curves in Figs. 9 and 10. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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Kronig relation. That is, if there is inaccuracy in the measured E(u)
then ReE and ImE cannot in general be obtained from a complex
function which depends on a single real function, and the error
function V (after many MC step) converges to a relative large
number. In this case comparing the measured ReE(u) and ImE(u)
curves to the fit curves based on the spectral representation (as in
Fig. 3) will give information about the accuracy of the measured
E(u).

The causality argument used in this paper assumes linear
response, requiring small enough strain [4]. For our tread com-
pound we have tested the linear response assumption by per-
forming strain sweeps, see Fig. 2. The real part of the elastic
modulus is only 5% smaller at the strain 0.2% as compared to 0.05%
strain (which should be almost the same as 0% strain). The imagi-
nary part changes slightly more but still to a good approximation,
for the rubber we use, we are in the linear response region.

Fritzsche and Klüppel [2,3] have suggested a more complex
procedure than used above to obtain the master curve of filled
rubber compounds, involving measurements on both unfilled and
filled compounds. In this procedure themeasured data for the filled
compound is shifted using the shift factor aT (which was forced to
be of the WLF-type) found for the unfilled compound. To obtain a
smooth master curve for the filled compound this requires in
addition performing a vertical shifting. We are not convinced that
this procedure make sense because filled compounds have a dis-
tribution of activation barriers for rearrangements of the polymer
chains which differ from those in the unfilled compound (e.g., the
energy barriers for polymer segment rearrangements may be
higher for rubber segments close to the filler particles [16,17]
(however, see also Ref. [18e20])) and since the shift factor aT re-
flects this distribution of activation barriers (see Section 1) there is
no reason for aT to be the same as for the unfilled compound. In
addition, from a practical point of view it is often not so easy to do
measurements on both filled and unfilled rubber of the same
material.

In many applications, as for rubber friction in the context of
tires, the strain in the asperity contact regions can be very large, say
w100%. In our applications we take into account the non-linearity
in an approximate way by first constructing the master curve for
low strain, and then add information from strain sweeps up to very
large strain (100% or more) at one frequency but many tempera-
tures (see Ref. [21]).
8. Summary and conclusion

We have show that it is possible to test how accurate the master
curve of a linear viscoelastic solid is by using a causality condition.
How the master curvewas produced is irrelevant. One can even use
it to check the quality of the measurement (for a poor measure-
ments one cannot expect ReE and ImE to be related by the Kram-
erseKronig relation). For filled rubber already at small strain (say
larger thanw0.2%) the rubber will behave non-linearly, and in non-
linear response region then again one would not expect the
KramerseKronig relation for E(u) to be satisfied [8].

We emphasize that when working with numerical data, which
always have some uncertainty, there is not necessarily a unique
shift factor from a practical point of view, and this we have indeed
shown to be the case: curves in Figs. 3 and 4 gives equally smooth
master curves. However, only the master curve obtained by shifting
ReE (Fig. 3) obey causality. In the E-shift software we have devel-
oped (seewww.MultiscaleConsulting.com)we now routinely check
how well visoelastic master curves obey the causality condition.
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