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Received 27 October 2007
Published online: 3 March 2008 – c© EDP Sciences / Società Italiana di Fisica / Springer-Verlag 2008

Abstract. We present results of Molecular Dynamics (MD) calculations on the behavior of liquid nan-
odroplets on rough hydrophobic and hydrophilic solid surfaces. On hydrophobic surfaces, the contact
angle for nanodroplets depends strongly on the root-mean-square roughness amplitude, but it is nearly
independent of the fractal dimension of the surface. Since increasing the fractal dimension increases the
short-wavelength roughness, while the long-wavelength roughness is almost unchanged, we conclude that
for hydrophobic interactions the short-wavelength (atomistic) roughness is not very important. We show
that the nanodroplet is in a Cassie-like state. For rough hydrophobic surfaces, there is no contact angle
hysteresis due to strong thermal fluctuations, which occur at the liquid-solid interface on the nanoscale. On
hydrophilic surfaces, however, there is strong contact angle hysteresis due to higher energy barrier. These
findings may be very important for the development of artificially biomimetic superhydrophobic surfaces.

PACS. 68.08.Bc Wetting

1 Introduction

In the year of 1805, Thomas Young and Pierre Simon de
Laplace proposed that an interface between two materials
has specific energy, the so-called interfacial energy, which
is proportional to the interfacial surface area [1–3]. This
concept is the basis for the field of wetting, which has
become an extremely hot topic in the last two decades [4,
5], thanks to biological and high-tech applications, ranging
from self-cleaning surfaces, microelectronics and thin film
coatings, to image formation that involve the spreading of
liquids on solid surfaces.

Wetting describes the contact between a fluid and
a solid surface. Liquids with high surface tension (usu-
ally reflecting strong intra-molecular bonds), or liquids on
low-energy solid surfaces, usually form nearly (complete)
spherical droplets, whereas liquids with low surface ten-
sion, or liquids on high-energy surfaces, usually spread out
on (or wet) the surfaces. This phenomenon is a result of
minimization of interfacial energy. Thus, if a surface has
a high free energy, most liquids will spread on the surface
since this will usually lower the free energy.

Wetting phenomena have been widely studied both
theoretically [6, 7] and experimentally [8, 9] in connection
with the physics of surfaces and interfaces. The behavior
of liquids on smooth solid surfaces is rather well under-
stood. However, for rough solid surfaces the situation is
much less clear, even though roughness occurs on practi-
cally all real surfaces of engineering or biological interest.
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Fig. 1. A droplet on a superhydrophobic surface: The droplet
touches the leaf only at a few points and forms a ball. It com-
pletely rolls off at the slightest declination. Adapted from ref-
erence [16] with permission.

Studies (and classification) of disordered and inhomoge-
neous surfaces [10] should have significant impact on the
problem of liquid contact angle and wetting of rough sub-
strates [11–15]

The fascinating water repellents of many biological
surfaces, in particular plant leaves, have recently attracted
great interest for fundamental research as well as practical
applications [16–23]. The ability of these surfaces to elimi-
nate water beads completely and thereby wash off contam-
ination very effectively has been termed the Lotus effect,
although it is observed not only on the leaves of the Lotus
plant (Fig. 1), but also on many other plants such as straw-
berry, raspberry and so on. Water repellents are very im-
portant in many industrial and biological processes, such
as prevention of the adhesion of snow, rain drops and fog
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Fig. 2. A leaf surface with roughness on several length scales
optimized via nature selection for hydrophobicity and self-
cleaning. Through the combination of microstructure (cells)
and nanostructure (wax crystals) the macroscopic water con-
tact angle θ0 is maximized. Adapted from reference [16] with
permission.

to antennas, self-cleaning windows and traffic indicators,
low-friction surfaces and cell mobility [24–26].

Most leaves that exhibit strong hydrophobicity have
hierarchical surface roughness with micro- and nanostruc-
tures made of unwettable wax crystals, which maximize
the contact angle with water and most other liquids. Fig-
ure 2 shows epidermal cells (microscale roughness) covered
with wax crystals (nanoscale roughness). The wax crystals
exhibit a relative high contact angle with water, which is
enhanced by the surface roughness. Water droplets on the
rough wax surface tend to minimize the contact between
the surface and the droplet by forming nearly spherical
droplets, as approximately described by the two classi-
cal models due to Wenzel [27] and Cassie [28] (see be-
low). As a result the leaves have also a self-cleaning prop-
erty: because of the small adhesion energy (and small con-
tact area) between contamination particles and the rough
leaf [17], during raining water drops roll away removing
the contamination particles from the leaf surface.

The hydrophobicity of solid surfaces is determined by
both the chemical composition and the geometrical micro-
or nanostructure of the surface [8, 29, 30]. Understanding
the wetting of corrugated and porous surfaces is a problem
of long-standing interest in areas ranging from textile sci-
ence [31] to catalytic reaction engineering [32]. Renewed
interest in this problem has been generated by the discov-
eries of surfaces with small-scale corrugations that exhibit
very large contact angles for water and other liquids —in
some cases the contact angle is close to 180◦. Such surfaces
are referred to as superhydrophobic [33].

In this paper we present results of Molecular Dynamics
(MD) calculations on the behavior of liquid nanodroplets
on rough hydrophilic and hydrophobic solid surfaces. We
find that for hydrophobic surfaces, the contact angle for
nanodroplets depends strongly on the root-mean-square
surface roughness amplitude, but is nearly independent of
the fractal dimension Df of the surface. For hydrophobic
rough surfaces we do not detect any contact angle hystere-
sis. Both results can be explained by the strong thermal
fluctuations which occur at the liquid-solid interface on
the nanoscale. On hydrophilic surfaces, however, strong
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Fig. 3. Liquid droplet on flat substrate. The contact angle θ
is between 0 (complete wetting) and π.

contact angle hysteresis has been found due to the higher
energy barrier for interfacial liquid density fluctuations.
These findings may be crucial for the development of ar-
tificial biomimetic superhydrophobic surfaces.

2 Theoretical background

In this section we briefly describe some results from the
theory of the liquid-solid contact angle, which are nec-
essary for the interpretation of the numerical results pre-
sented in Section 4. We emphasize the importance of ther-
mal fluctuations for the contact dynamics at the nanoscale
as compared to micrometer or macroscopic dimensions.

2.1 Flat surfaces

If gravitational effects can be neglected, a liquid droplet
on a flat substrate forms a spherical cap, see Figure 3.
The contact angle θ is determined by the minimization
of the free energy and depends on the interfacial free en-
ergies per unit area: solid/liquid γsl, solid/vapor γsv and
liquid/vapor γlv. Minimizing of the surface free energy,
with the constrain of fixed volume of the droplet, gives
Young’s equation, first proposed by Thomas Young about
two hundred years ago:

γsl + γlv cos θ = γsv. (1)

Complete wetting corresponds to θ = 0, and typically
happens for liquids with low surface tension γlv, and on
solids with high surface energy γsv. Liquids with high sur-
face tension on surfaces with low surface energy tend to
form droplets with high contact angle θ. Equation (1)
was deduced for a substrate which is assumed to be per-
fectly smooth, homogeneous, and rigid. However, in real-
ity, structured or rough surfaces are quite common. So it
is necessary to know how the contact angle behaves on
rough surfaces.
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Fig. 4. Liquid droplet on a rough substrate. At the lowest
magnification ζ the surface appears flat and the liquid contact
angle is θ0. At increasing magnification surface roughness is
observed and the liquid will in general only make contact with
the substrate in some asperity contact regions.

2.2 Rough surfaces: minimum free energy state

Most surfaces of practical interest have roughness on many
different length scales. For simple periodic surface profiles
one may develop accurate analytical treatments of the liq-
uid droplet contact angle (see, e.g., Ref. [34]), but for ran-
domly rough surfaces the situation is much more complex.
For surfaces with random roughness, e.g., self-affine frac-
tal surfaces (see below), one may develop a general theory
based on the study of the system at different magnifi-
cations ζ, see Figure 4. Here ζ = D/λ where D is the
diameter of the droplet-substrate (apparent) contact area
and λ the resolution. One can introduce effective inter-
facial liquid-solid and solid-vapor free energies (per unit
area) γsl(ζ) and γsv(ζ) which depend on the magnification
ζ [35]. At the highest magnification ζ1, corresponding to
nanometer (or atomistic) resolution, these quantities re-
duce to those for the flat surface [36], γsl(ζ1) = γsl and
γsv(ζ1) = γsv. Since the substrate appears flat at the low-
est magnification ζ = 1, the macroscopic contact angle
(corresponding to ζ = 1) is obtained using Young’s equa-
tion with γsl and γsv replaced with γsl(1) and γsv(1), i.e.

γsl(1) + γlv cos θ0 = γsv(1). (2)

The change in the surface free energy (per unit area) when
a liquid with a flat surface is brought in contact with the
substrate is

∆F/A0 = γsl(1) − γsv(1) − γlv = −γlv(1 + cos θ0),

where A0 is the (projected) surface area. Note that in-
creasing the contact angle θ0 corresponds to an increasing
interfacial free energy. Thus, if a liquid drop can occur in
several metastable states on a surface, the state with the
smallest contact angle corresponds to the (stable) minimal
free-energy state.

Using equation (2) it is trivial to derive the results of
the so-called Wenzel [27] and Cassie [28] models. In the
Wenzel model it is assumed that complete contact occurs
at the liquid-solid interface. Thus

γsv(1) = rγsv(ζ1), γsl(1) = rγsl(ζ1), (3)

where r = A/A0 > 0 is the ratio between the surface area
A of the rough substrate, and the projected (or nominal)
surface area A0. Substituting (3) into (2) gives the contact
angle θ0 on the rough surface in terms of the contact angle
θ on the microscopically flat surface of the same material
(Wenzel equation)

cos θ0 = r cos θ. (4)

In the Cassie model [28] it is assumed that some air (or
vapor) remains trapped between the drop and the cavities
of the rough surface. In this case the interface free energy
is

γsv(1) = rγsv(ζ1), (5)

γsl(1) = φrγsl(ζ1) + (1 − φ)(rγsv(ζ1) + γlv), (6)

where φ is the fraction of the (projected) area where the
liquid is in contact with the solid. Substituting (5) and (6)
in (2) gives

cos θ0 = r cos θ − (1 − φ)(1 + r cos θ). (7)

Note that for φ = 1, (7) reduces to (4). In the original
Cassie model it was assumed that r = 1. We note that
while the Wenzel theory is exact if the liquid is in con-
tact with the substrate everywhere within the nominal
liquid-substrate contact area, the Cassie theory is always
approximate and often not very accurate. This is easily
understood from Figure 5 which shows the interface be-
tween a liquid and a solid. φ < 1 is the ratio between
the projected liquid-solid contact area and the nominal
(or apparent) contact area A0. Because the solid surface
is curved, the actual liquid-solid contact area will be A0φs
where s > 1. Analogously, since in general the liquid-vapor
interface is curved (in spite of the fact that the total cur-
vature 1/R1 + 1/R2 may vanish) and tilted (relative to
the average surface plane), the total liquid-vapor interface
area is A0(1− φ)s′, with s′ > 1. Similarly, the solid-vapor
interface area equals A0(1 − φ)s′′, with s′′ > 1. In deriv-
ing (7) it is assumed that s = s′′ = r and s′ = 1.

Of the two states, Cassie and Wenzel, the stable one,
that is the one with lower free energy, is the one with
larger cos θ0. Comparing (4) and (7) shows that the value
of cos θ0 for the Cassie state is larger if 1 + r cos θ < 0 or

cos θ < −1/r. (8)

Since r is a measure of the magnitude of the surface rough-
ness, we may qualitatively state that only for hydrophobic
surfaces (with cos θ < 0 or θ > 90◦) with large enough
roughness (i.e., large enough r = A/A0) will the Cassie
state be the thermodynamically stable state.

The approach described above, where the interface is
studied at different magnifications, is very general and
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Fig. 5. The interface between liquid and solid. φ < 1 is the
ratio between the projected liquid-solid contact area and the
nominal (or apparent) contact area A0. Because the solid sur-
face is curved, the actual liquid-solid contact area will be A0φs,
where s > 1. Similarly, since in general the liquid-vapor in-
terface is curved (in spite of the fact that the total curvature
1/R1+1/R2 may vanish) and tilted (relative to the average sur-
face plane) the total liquid-vapor interface area is A0(1−φ)s′,
with s′ > 1. Similarly, the solid-vapor interface area equals
A0(1 − φ)s′′, with s′′ > 1.

a similar approach has recently been developed for the
contact mechanics between elastic solids with randomly
rough surfaces [37] (see also Ref. [38]).

It is well known that the roughness of a hydropho-
bic solid (with θ > 90◦ on the flat substrate) enhances
its hydrophobicity. If the contact angle of water on such
flat solids is of the order of 100◦ to 120◦, on a rough
or microtextured surface it may be as high as 150◦ to
175◦ [26, 38, 39]. Both the Wenzel model and the Cassie
model can explain this effect.

Let us consider the simplest surface roughness con-
sisting of a periodic rectangular roughness profile as illus-
trated in Figure 6(a) (xz-plane). The free energy (per unit
surface area) for the Cassie state shown in the figure is

γC = [(a+ 2h)γsv + aγlv + bγsl] /(a+ b).

The free energy for the Wenzel state (complete contact) is

γW = (a+ b+ 2h)γsl/(a+ b).

Using (1) we can write the difference in free energy as

γC − γW = γlv[a(1 + cos θ) + 2h cos θ]/(a+ b).

Thus, the Cassie state has a lower free energy than the
Wenzel state if

cos θ < −

(

1 +
2h

a

)−1

, (9)

which is satisfied only if for the flat surface θ > 90◦, and
if the ratio h/a is large enough. Note that in this case
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Fig. 6. (a) Liquid drop (in the Cassie state) in contact with a
surface with periodic surface roughness. (b) Even if the Cassie
state (incomplete liquid-solid contact) is the ground state, with
an applied pressure p one can squeeze the droplet into the
Wenzel state.

r = A/A0 = (a + b + 2h)/(a + b) so the (approximate)
criteria (8) reduces to

cos θ < −

(

1 +
2h

a+ b

)−1

,

which is of similar general form as (9). In Nature strongly
hydrophobic surfaces are often obtained by covering the
surface with thin, long (so that h/a ≫ 1) hydrophobic
fibers. Thus, insects which move on top of water, e.g.,
water spiders (see Fig. 7) have a high density of thin
wax-coated hair on their legs. In addition, the hair fibers
have nanoscale roughness which traps air and enhances
the hydrophobicity [40]. In this case the water-leg contact
will be in the Cassie state even when the insect is squeezed
towards the water by the weight of the insect.

2.3 Rough surfaces: activation barriers and hysteresis

Consider a cylindrical cavity as in Figure 6(b) and assume
first the Cassie state as in the figure. Let us apply a pres-
sure p to the droplet. In this case the liquid will bend
inwards in the cavity and if the applied pressure is larger
than a critical value pc, the liquid will be squeezed into
the cavity (we assume that the air in the cavity can leave
the cavity, e.g., diffuse into the liquid). It is easy to show
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Fig. 7. Water spiders have thin hydrophobic (wax-coated)
hairs with nanoscale roughness which trap air and enhance
hydrophobicity.

that the pressure is

pc = −2γlv cos θ/R, (10)

where R is the radius of the cavity. To prove this relation,
note that the pressure work to squeeze the liquid a dis-
tance h′ into the cavity (see Fig. 6) is given by pcπR

2h′ and
this must equal the change in interfacial free energy which
equals 2πRh′(γsl − γsv). Using these equations and (1)
gives (10).

From (10) it follows that if θ < 90◦ (hydrophilic in-
teraction), pc < 0 and the liquid will be spontaneously
sucked into the cavity and will fill out the cavity. If θ > 90◦

(hydrophobic interaction), pc > 0 and for nanometer-sized
cavities, the pressure pc ∼ 100MPa, so very high pressures
are necessary for squeezing the liquid into narrow cavities.
However, if the liquid is squeezed into the cavity and com-
pletely fills the cavity, then the resulting Wenzel state is
(at least) metastable. However, for nanometer-sized cav-
ities thermal fluctuations may give rise to strong local
fluctuations between the Cassie (empty cavity) and Wen-
zel (filled cavity) states. This is easy to understand since
the energetic barrier (for a hydrophobic system) for going
from the Cassie state to the Wenzel state will be of order
ε ∼ pcπR

2h = −2πRhγlv cos θ, and strong fluctuations on
macroscopic time scales will occur as long as ε ≈ 0.7 eV
or less, and strong fluctuations on the nanosecond time
scale occur if ε ≈ 0.4 eV or less (note: the rate to jump
over a barrier of height ε is w = ν exp(−ε/kBT ) where
typically ν ≈ 1012 s−1; at room temperature w ≈ 1 s−1 if
ε ≈ 0.7 eV and w ≈ 109 s−1 if ε ≈ 0.4 eV). In a typical case
this condition is satisfied as long as R and h are of order
of one nanometer or less. In our computer simulations we
do indeed observe very strong thermal fluctuations at the
liquid-solid interface, in particular for rough hydrophobic
surfaces, see Section 4.2.1.

The Wenzel droplets are highly pinned, and the tran-
sition from the Cassie to the Wenzel state results in the
loss of the anti-adhesive properties generally associated
with superhydrophobicity. However, for nanodroplets on

rough hydrophobic surfaces, we find that the Wenzel state
is unstable: if the droplet is pressed into complete contact
with the substrate (Wenzel-like state) and then let free, it
quickly jumps back to the Cassie-like state due to strong
thermal fluctuations. For a macroscopic droplet on sur-
faces with long wavelength roughness, the energetic bar-
rier towards flipping from the Wenzel to the Cassie state
may be so large that, even if the Cassie state is the min-
imum free energy configuration, the system may remain
trapped in the (metastable) Wenzel state for all time pe-
riods of physical relevance.

2.4 Cassie and Wenzel states for randomly rough
surfaces

In this section we discuss under which condition one ex-
pects the Cassie state or the Wenzel state to prevail. Con-
sider a rough surface and let z = h(x) be the height of the
surface at the point x = (x, y). A randomly rough sur-
face can be obtained by adding plane waves with random
phases

h(x) =
∑

q

B(q)ei[q·x+φ(q)] ,

where φ(q) are independent random variables, uniformly
distributed in the interval [0, 2π[, and with B(q) =

(2π/L)[C(q)]1/2, where L = A
1/2
0 is the linear size of the

surface. The surface roughness power spectrum is

C(q) =
1

(2π)2

∫

d2x 〈h(x)h(0)〉eiq·x. (11)

Here h(x) is the surface height profile and 〈· · · 〉 stands for
ensemble average. We have assumed that 〈h(x)〉 = 0. We
assume that the statistical properties of the rough surface
are isotropic, so that C(q) only depends on the magnitude
q = |q| of the wave vector q.

For randomly rough surfaces the normalized surface
area r = A/A0 is given by (see Appendix A)

r =

∫ ∞

0

dx
(

1 + xξ2
)1/2

e−x, (12)

where

ξ2 =

∫

d2q q2C(q) = 2π

∫ ∞

0

dq q3C(q) = 〈(∇h)2〉 (13)

is the square of the average slope.
The fraction of the surface where the surface slope s <

s0 is given by (see Appendix A)

P (s0) = 1 − e−(s0/ξ)2 .

Note that as ξ → 0 (corresponding to a flat surface)
P (s0) → 1 which is expected because the slope of a flat
surface is zero and hence smaller than any finite value s0.
Assume that a liquid exhibits the contact angle θ on the
perfectly flat substrate. The fraction of the surface where
the slope |∇h(x)| < | tan θ| is given by

P (tan θ) = 1 − e−(tan θ/ξ)2 . (14)
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Fig. 8. The fraction P of the surface area where the abso-
lute value of the slope is smaller than | tan θ| as a function of
| tan θ|/ξ. See text for details.

This function is shown in Figure 8. If we assume that the
liquid surface in the liquid-solid non-contact region is flat
and parallel to the average substrate surface plane, then
we expect the liquid to only occupy the region where the
slope is smaller than tan θ. Note that more than 90% of the
surface area will have a slope below | tan θ| if | tan θ|/ξ >
1.5 and in this case the Wenzel state will tend to prevail,
while more than 90% of the surface will have a slope above
| tan θ| if | tan θ|/ξ < 0.3 and in this case the Cassie state
will tend to prevail. For the system we study below ξ < 2
(see Fig. 12) and for the hydrophobic system θ ≈ 103◦ we
get | tan θ|/ξ > 2.2. Thus, one would expect the Wenzel
state to prevail. However, the numerical data (see below)
tend to suggest that the system is in a Cassie-like state.
We attribute this to the strong fluctuations at the liquid-
solid contact which occurs at the nanoscale, which are
particularly important for nanoscale droplets.

3 Simulation method

We have used Molecular Dynamics (MD) to study the
contact angle and contact angle hysteresis. Here we briefly
describe the system we studied and how we generated the
rough substrate surfaces.

3.1 Molecular-dynamics model

We have used MD calculations to study the influence of
surface roughness on liquid droplet contact angle and con-
tact angle hysteresis. We have studied hydrocarbon liq-
uid droplets on different self-affine fractal surfaces. The
nanodroplets contained 2364 octane molecules C8H18 at
T = 300K, which is between the melting and boiling
points of octane. The fractal surfaces were generated by
adding plane waves with random phases (see Sect. 2.4
and Ref. [41]). Periodic boundary conditions are applied
along the x and y directions. The periodically repeated

Fig. 9. 3D side view snapshot of an octane liquid droplet on
a hydrophobic and rough substrate. The rigid substrate com-
prises 200 × 30 atoms disposed on a square lattice with lat-
tice constant a = 2.53 Å. These atoms have been randomly
displaced along the z-coordinate, orthogonal to the wall, so
to reproduce the desired roughness. The Lennard-Jones solid-
liquid interaction potential V (r) = 4ǫ[(r0/r)12 − (r0/r)6],
with r0 = 3.28 Å, ǫ = 4 meV for hydrophobic substrate and
ǫ = 8 meV for hydrophilic substrate.

cell forms a rectangle Lx × Ly with Lx = 506 Å and

Ly = 75.9 Å (see Fig. 9). The (non-contact) cylindri-

cal droplet diameter is about 104 Å, and the size of the
droplet-substrate contact area varies (for the hydrophobic
system) from ≈ 115 Å (case (a) in Figure 10) to ≈ 60 Å
(case (c)).

For most real surfaces usually there is a roll-off wave
vector q0, below which the power spectrum C(q) of the
surface is approximately constant. For q > q0 we as-
sume that the power spectrum has the power law behavior
C(q) ∼ q−2(H+1) [41] corresponding to a self-affine fractal
surface with the fractal dimension Df = 3 −H. Different
fractal surfaces are obtained by changing the root-mean-
square (rms) roughness amplitude σ, and the fractal di-
mension Df . The roll-off wave vector for the rough sur-
face is q0 = 2π/L, with L = 38 Å, and the magnitude
of the short-distance cut-off wave vector q1 = π/a, where
a = 2.53 Å is the substrate lattice constant. In the present
work, we are mainly interested in how the rough structure
of the substrate influences wetting. A curved upper wall
has been used to speed up the formation of the droplet in
the initial preparation [42] and to limit the gas-phase vol-
ume so that the droplet cannot (fully) evaporate. In some
simulations we used a flat upper wall in order to be able
to push the droplet towards the substrate a bit more, in
order to study the evolution of the receding contact angle.

The lubricant molecules are described through the Op-
timized Potential for Liquid Simulation (OPLS) [43, 44];
this potential is known to provide density and viscosity
of hydrocarbons close to the experimental one. Each oc-
tane molecule comprises four units (particles), each parti-
cle corresponding to one chemical group CH2, CH3. The
interaction between particles of different molecules is de-
scribed by Lennard-Jones potentials. The intramolecular
interactions include two body forces that keep the bond
length C–C close to 1.53 Å, three body forces imposing a
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Fig. 10. Snapshots for different root-mean-square roughness.
(a) the droplet is in contact with the flat substrate. (b) and
(c) are for rough substrates with the root-mean-square am-
plitude σ = 2.3 Å and σ = 4.8 Å, respectively. Adapted from
reference [11].

preferred angle of 115◦ between the carbon atoms, and
four body forces favoring a well-defined torsion of the
molecules. The four body forces apply to the sequence
of carbon atoms C–C–C–C [45].

We used the Lennard-Jones interaction potential be-
tween droplet atoms and substrate atoms. The L.-J. pa-
rameters for a hydrophobic surface are chosen such that
the Young contact angle is about 100◦ when a droplet
sits on the flat surface. Because of the periodic boundary
conditions and the size of our system, the liquid droplet
forms a cylinder with the central line along the y-axis,
see Figures 9 and 10. We fit the density profile of the
droplet to a cylinder (see Fig. 11), and obtain the con-
tact angle θ = 103◦ for the droplet in contact with the
flat hydrophobic substrate, while for the flat hydrophilic
substrate θ = 39 ± 3◦.

3.2 Multiscale rough surfaces

Many solid surfaces in nature, e.g., surfaces prepared by
fracture (involving crack propagation), tend to be nearly
self-affine fractal. Self-affine fractal surfaces have multi-
scale roughness, sometimes extending from the lateral size
of the surface down to the atomic scale. A self-affine frac-
tal surface has the property that if part of the surface is
magnified, with a magnification which in general is ap-
propriately different in the direction perpendicular to the
surface as compared to the lateral directions, the surface
“looks the same” [46] i.e., the statistical properties of the
surface are invariant under this scale transformation.

Fig. 11. Determination of the contact angle θ for the flat
substrate. Side view. Adapted from reference [11].
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Fig. 12. The average slope ξ and the ratio A/A0 between the
actual A and the nominal (or projected) A0 surface area, as
a function of the root-mean-square roughness σ, when Hurst
exponent H = 0.8, and as a function of Hurst exponent H for
σ = 3 Å.

The most important property of a randomly rough sur-
face is the surface roughness power spectrum C(q). We
assume that the statistical properties of the surface are
translational invariant and isotropic so that C(q) depends
only on the magnitude q = |q| of the wave vector q. For a
self-affine surface the power spectrum has the power law
behavior C(q) ∼ q−2(H+1), where the Hurst exponent H is
related to the fractal dimension Df = 3−H. Of course, for
real surfaces this relation only holds in some finite wave
vector region q0 < q < q1. Note that in many cases there is
roll-off wave vector q0 below which C(q) is approximately
constant. We have generated self-affine fractal surfaces by
adding plane waves with random phases and appropriately
chosen weights, as described in detail in references [41,46].

In Figure 12 we show the average slope ξ and the ratio
A/A0 between the surface area A and the nominal (or
projected) A0 surface area, as a function of the root-mean-
square roughness σ when the Hurst exponent H = 0.8,
and as a function of the Hurst exponent H for σ = 3 Å.
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Fig. 13. The contact angle as a function of the root-mean-
square roughness σ. The circle points are numerical results
from the simulations, while the square points are obtained from
the Cassie model (see Eq. (7)). Each data point is an average
over several snap shot configurations. The fractal dimension is
Df = 2.2. Adapted from reference [11].
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Fig. 14. The contact angle θ as a function of Hurst exponent
H for the rms roughness σ = 3 Å. The circles and squares have
the same meaning as that in Figure 13 The fractal dimension
is Df = 3 − H. Adapted from reference [11].

4 Numerical results

We present numerical results for the contact angle and
contact angle hysteresis for both hydrophilic and hy-
drophobic systems. The substrate surfaces are assumed
to be self-affine fractal, but we have varied the fractal di-
mension and the root-mean-square roughness amplitude.

4.1 Static contact angle on hydrophobic surface

The apparent contact angle, θ0, as a function of the root-
mean-square (rms) roughness, is shown in Figure 13 with
the fractal dimension Df = 2.2. There is a strong increase
in θ0 with increasing rms roughness amplitude. Figure 14
shows how θ0 depends on the Hurst exponent H = 3−Df .
Note that θ0 is almost independent of H.
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Fig. 15. The contact angle θ as a function of the normalized
surface area A/A0 when the root-mean-square amplitude σ in-
creases for fixed Hurst exponent (H = 0.8, solid circles) (from
Fig. 13) and when the Hurst exponent decreases for a fixed
root-mean-square amplitude (σ = 3 Å, solid squares) (from
Fig. 14).

Accordingly to the Wenzel equation, the apparent con-
tact angle θ0 depends only on the surface roughness via the
ratio r = A/A0. Figure 12 shows that as H decreases from
1 to 0.4 (i.e., Df increases from 2 to 2.6), A/A0 increases
by ∼ 50%. However, the MD calculations show that the
apparent contact angle θ0 is almost independent of the
fractal dimension, see Figure 14. This is also illustrated in
Figure 15 which shows the contact angle as a function of
the (normalized) surface area A/A0 for both cases. Thus
the Wenzel equation cannot be used in the present situ-
ation. This is consistent with a visual inspection of the
liquid-substrate interface which shows that on the rough
substrates, the droplet is “riding” on the asperity tops of
the substrate, i.e., the droplet is in a Cassie-like state. In
order to quantitatively verify this, we have calculated the
distances u(x, y) between the bottom surface of the liquid
drop and the rough substrate surface in the (apparent)
contact area. From the distribution [47]

P (u) = 〈δ[u− u(x, y)]〉

of these distances (see Fig. 16(a)) we obtain the fraction
ψ of the (projected) surface area where contact occurs

ψ =

∫ u1

0

duP (u),

where u1 is a cut-off distance to distinguish between con-
tact and no-contact regions, which has to be comparable
to the typical bond distance (we use u1 = 4 Å). Note that,
due to the thermal fluctuations, ψ = ψ0 for flat surface is
less than 1. Using the normalized φ = ψ/ψ0, the Cassie
model (with r = 1) predicts the variation of the contact
angle with σ and H given in Figures 13 and 14 (square
points).

Figure 13 shows that the apparent contact angle θ0
increases strongly with increasing rms roughness am-
plitude, at fixed fractal dimension Df = 2.2, while it
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Fig. 16. (a) The height probability distribution for hydropho-
bic surface both flat (squares) and rough (circles). (b) The
height probability distribution for hydrophilic surface both flat
(squares) and rough (circles).

is nearly independent of the fractal dimension Df (see
Fig. 14). Since increasing the fractal dimension at con-
stant rms roughness amplitude mainly increases the short-
wavelength roughness, we conclude that the nanoscale
wavelength roughness does not matter so much in deter-
mining the contact angle for hydrophobic surfaces, while
the long-wavelength roughness plays an important role.
We attribute this fact to the strong thermal fluctuations in
the height (or width) u of the liquid-solid interface which
occur at the nanoscale even for the flat substrate surface.
Note also that in our model the wall-wall interaction is
long-ranged, decaying effectively as ∼ 1/u3, so there will
be a contribution to the interfacial energy also for non-
contacting surfaces which, of course, is not rigorously in-
cluded in the macroscopic Cassie model.

4.2 Dynamic contact angle: Contact angle hysteresis

The advancing contact angle θa is measured when the
solid/liquid contact area increases, while the receding con-
tact angle θr is measured when the contact area shrinks.
If the difference θa − θr is non-zero, the liquid-substrate
system exhibits contact angle hysteresis.

Fig. 17. The advancing contact angle θa evolution for hy-
drophobic nanodroplet. θa is measured when the solid/liquid
contact area increases.

Fig. 18. The receding contact angle θr evolution for hydropho-
bic nanodroplet. θr is measured when the solid/liquid contact
area shrinks.

4.2.1 Hydrophobic surfaces

Figures 17 and 18 show the time evolution of the ad-
vancing contact angle θa and receding contact angle θr,
respectively, for a nanodroplet on a rough, hydropho-
bic substrate. The former has been obtained by placing
the droplet close to the substrate, so that the drop will
spontaneously spread under the adhesive interaction with
the substrate. The contact angle evolves in time from
θ = 180◦ (non-contact) in Figure 17(a) to its asymptotic
value θa = 140◦, reached after 3 ns in Figure 17(h).

The receding contact angle was simulated by squeez-
ing the droplet into a pancake-like shape with the up-
per wall. The interaction between the atoms of the upper
wall and drop atoms is given by the repulsive term of a
Lennard-Jones potential, i.e. V (r) = 4ǫ0(r0/r)

12. The lack
of attraction with the top surface allows us to suddenly
pull the wall up, leaving the drop in the configuration
of Figure 18(a). The free drop increases the contact an-
gle up to the asymptotic value θr. Figure 19 shows the
time evolution of the contact angle for these two cases.
Note the strong time oscillations of the contact angle
which are due to the rearrangement of the liquid molecules
at the solid-liquid interface. The corresponding energy
barriers are small compared to the thermal fluctuations
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Fig. 19. The advancing (circles) and receding (squares) con-
tact angle θ, for hydrophobic substrate, as a function of time.
The root-mean-square roughness of the substrate is rms =
4.8 Å. ǫ = 4 meV and r0 = 3.28 Å. The thermal equilibrium
contact angle has been reached after a few nanoseconds, irre-
spective of whether the initial contact angle is larger or smaller
than the equilibrium angle.

(see Sect. 2.3). However, after a few nanoseconds we find
that both the receding and advancing contact angle fluctu-
ate around the same average value; thus no contact angle
hysteresis is observed for the hydrophobic system.

To be sure that in any system there is no contact
angle hysteresis, we performed extensive simulations on
various substrates with different root-mean-square (rms)
roughness amplitudes (see Fig. 20(a)), and with different
Hurst exponents H (see Fig. 20(b)). The receding contact
angle reaches its asymptotic value within about 2 or 3
nanoseconds. In Figure 20 one can see a relatively broad
range of receding contact angles for substrates wih differ-
ent rms roughness. Conversely, substrates with different
Hurst exponents show nearly the same contact angle. The
root-mean-square roughness is mainly determined by the
long-wavelength roughness of the surface. Increasing the
fractal dimension Df signifies that the short-wavelength
roughness increases. Thus, one can see that the contact
angle is more sensitive to the long-wavelength roughness
of the substrate than to the short-wavelength roughness.
This agrees with the results in Figures 13 and 14.

A comparison of these results with those of the corre-
sponding simulations for the advancing contact angle con-
firms that there is no hysteresis. This is in drastic contrast
to simulation studies we have performed for hydrophilic
surfaces (see below), where surface roughness results in
strong pinning of the boundary line; for such surfaces it is
therefore impossible to study static droplet contact angles
(as observed on macroscopic time scales) using molecular
dynamics.

Comparing the form of P (u) for the flat and the rough-
est surfaces shows that the system is in a Cassie-like state,
but at the nanoscale the difference between the Cassie
state and the Wenzel state is not so large due to the
thermal fluctuations. That is, already for the flat sur-
face strong thermal fluctuations at the interface result
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Fig. 20. The time evolution of the receding contact an-
gle for hydrophobic droplets, on substrates with (a) various
root-mean-square (rms) roughness while the Hurst exponent
H = 0.8, and (b) various Hurst exponent H while the root-
mean-square (rms) roughness = 3 Å.

in nanosized regions where the separation between the
solid and the liquid is much larger than the natural (low-
temperature) binding separation. When the substrate is
rough the fluctuations become even larger and the system
is in a state which is more Cassie-like than Wenzel-like.
This also explains why no hysteresis is observed: The Wen-
zel state is probably the (low-temperature) energy mini-
mum state (see Sect. 2.4), but squeezing the droplet into
a pancake shape does not push the system permanently
into the Wenzel state (where pinning effects may be very
important) because even if it went into this state tem-
porarily, the free-energy barrier separating the Cassie and
Wenzel states is so small that thermal fluctuations would
quickly kick it back to the Cassie-like state.

4.2.2 Hydrophilic surfaces

Let us now consider the case where the liquid droplet con-
tact angle on the flat surface is θ < 90◦ (hydrophilic sys-
tem). We choose the energy parameter and the equilibrium
distance in L.-J. potential, associated with the liquid-solid
atom interaction, as ǫ = 8meV, r0 = 3.28 Å, respectively.
This gives θ ≈ 70◦. Figures 21, 22 and 23 for hydrophilic
droplet are analogous to Figures 17, 18 and 19, respec-
tively, for hydrophobic droplet. In Figure 21 we show the
time dependence of the advancing contact angle for the
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Fig. 21. Advancing contact angle evolution for hydrophilic
nanodroplet. The root-mean-square roughness of the substrate
is rms = 4.8 Å. The energy parameter and the equilibrium
distance in L.-J. potential are ǫ = 8 meV and r0 = 3.28 Å.

Fig. 22. Receding contact angle evolution for hydrophilic nan-
odroplet. The root-mean-square roughness of the substrate is
rms = 4.8 Å. The energy parameter and equilibrium parameter
in L.-J. potential are ǫ = 8 meV and r0 = 3.28 Å.

hydrophilic nanodroplet. The root-mean-square roughness
of the substrate is rms = 4.8 Å.

In Figure 22 we show the time evolution of the receding
contact angle for the hydrophilic nanodroplet.

Figure 23 shows the advancing (circles) and reced-
ing (squares) contact angle θ as a function of time, on
a hydrophilic substrate with root-mean-square roughness
(rms) = 3 Å. Note that the thermal-equilibrium contact
angle cannot be reached on the time scale of the sim-
ulations. Note also that the fluctuations in the contact
angle are much smaller than for the hydrophobic system
(Fig. 19). This is, of course, due to the fact that for the hy-
drophilic system the liquid-substrate interaction is much
stronger, and the barriers for the rearrangement of liquid
molecules at the substrate-liquid interface much higher
than for the hydrophobic system.

Finally, in Figure 16(b) we show the height probabil-
ity distribution for the hydrophilic surface for both the
flat (squares) and rough (circles) hydrophilic surface. Note
that the fluctuations in the liquid-solid separation at the
interface is much smaller on the hydrophilic surface than
on the hydrophobic surface (Fig. 16(a)).
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Fig. 23. The advancing (circles) and receding (squares) con-
tact angle θ, for the hydrophilic substrate, as a function
of time. The root-mean-square roughness of the substrate is
rms = 3 Å, and the L.-J. substrate-liquid interaction parame-
ters ǫ = 8meV and r0 = 3.28 Å.

5 Discussion

In most practical cases it is not possible to modify the sur-
face roughness without simultaneously affecting the chem-
ical nature of the surface. While this is obvious for crys-
talline materials, where surface roughening will result in
the exposure of new lattice planes with different intrinsic
surface energy, it may also hold for amorphous-like ma-
terials, where surface roughening may result in a more
open atomic surface structure, with an increased fraction
of (weak) unsaturated bonds. In our model study a sim-
ilar effect occurs, and some fraction of the change in the
contact angle with increasing root-mean-square amplitude
may be associated with this effect. However, the most im-
portant result of our study, namely that the contact angle
is mainly determined by the long-wavelength roughness,
should not be affected by this fact.

Another reason for why the short-wavelength (atomic)
roughness may influence the liquid contact state differ-
ently from the long-wavelength roughness has to do with
the fact that the natural separation between the molecules
in a liquid is usually considerably larger than the atom-
atom separation on the substrate surface. This implies
that the fluid molecules cannot “follow” the atomic scale
roughness (see Fig. 24) so that the fluid molecules will nat-
urally be in a Cassie-like state with respect to the shortest
substrate roughness wavelength components, determined
by the substrate nearest-neighbor atom-atom separation.

It is important to note that the discussion in this pa-
per is also relevant for the contact between macroscopic
liquid drops and rough substrates. That is, if the solid-
liquid interface is studied with nanometer resolution λ,
then the strong fluctuations (in time and space) at the
liquid-solid interface discussed above will also be observed
for a macroscopic droplet, and the interfacial energy γsl(ζ)
for ζ = D/λ (where D is the diameter of the nominal con-
tact area between the (macroscopic) liquid droplet and
the substrate) will be the same as obtained above for nan-
odroplets at the same resolution λ.
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Fig. 24. The natural separation between the molecules in
a liquid is usually considerably larger than the atom-atom
separation on the substrate surface. This implies that the
fluid molecules cannot “follow” the atomic-scale roughness
so that the fluid molecules will naturally be in a Cassie-like
state with respect to the shortest substrate roughness compo-
nents determined by the substrate nearest-neighbor atom-atom
separation.

6 Summary and conclusion

We have discussed under which condition the Wenzel or
Cassie state is favorable on randomly rough surfaces. We
performed molecular-dynamics simulations to study con-
tact angle and the contact angle hysteresis on hydropho-
bic and hydrophilic surfaces. The contact angle on hy-
drophobic surfaces depends strongly on the root-mean-
square roughness of the substrate, but is nearly indepen-
dent of the fractal dimension. For hydrophobic surfaces,
there is no contact angle hysteresis due to strong ther-
mal fluctuations at the nanoscale. For hydrophilic sur-
faces we observe contact angle hysteresis due to pinning
effects resulting from the much higher energy barriers for
rearrangement of liquid molecules at the solid-liquid inter-
face. This indicates that on randomly rough hydrophobic
surfaces the Cassie-like state often prevails, at least for
nanoscale droplets. We have found that thermal fluctua-
tions play an important role at the nanoscale, which leads
to the enhanced hydrophobicity by surface roughness. It
is of particular importance to design and build superhy-
drophobic surfaces.

Appendix A. Distribution of surface slopes

for randomly rough surfaces

In this appendix we derive the distribution of surface
slopes for randomly rough surfaces. We discuss under
which conditions one expects the Wenzel and Cassie states
to prevail.

The surface area A and the average surface slope ξ

Consider a randomly rough surface and let h(x) denote
the height profile measured from the average plane so that
〈h(x)〉 = 0, where 〈. . .〉 stands for ensemble averaging, or
(equivalently) averaging over the surface area. We assume
that h(x) is a Gaussian random variable characterized by
the power spectrum

C(q) =
1

(2π)2

∫

d2x 〈h(x)h(0)〉e−iq·x.

Note that if we write

h(x) =

∫

d2q h(q)eiq·x,

where

h(q) =
1

(2π)2

∫

d2xh(x)e−iq·x,

then
〈h(q)h(q′)〉 = δ(q + q′)C(q). (A.1)

Sometimes it is also convenient to use

〈h(q)h(−q)〉 =
A0

(2π)2
C(q), (A.2)

where A0 is the surface area. In deriving (A.2) we have
used that

δ(q − q) =
1

(2π)2

∫

d2x ei(q−q)·x =
A0

(2π)2
.

If the surface roughness amplitudes h(q) are assumed
to be Gaussian random variables, one can show that the
(normalized) surface area is [48]

r =
A

A0
=

∫ ∞

0

dx
(

1 + xξ2
)1/2

e−x,

where

ξ2 =

∫

d2q q2C(q) = 2π

∫ ∞

0

dq q3C(q).

Let us calculate the rms surface slope. We get

〈(∇h)2〉 =

∫

d2qd2q′(iqα)(iq′α)〈h(q)h(q′)〉ei(q+q
′)·x.

Using (A.1) this gives

〈(∇h)2〉 =

∫

d2q q2C(q) = ξ2.

Thus, for a Gaussian random surface both the average
slope and the increase in the surface area are determined
by the parameter ξ. For non-random surfaces this is no
longer the case.

Surface slope probability distribution

Let h(x, ζ) denote the height profile after having smoothed
out surface roughness with wavelength shorter than λ =
L/ζ. For example, we may define

h(x, ζ) =

∫

q<q1

d2q h(q)eiq·x,

where q1 = qLζ (where qL = 2π/L). We will refer to ζ
as the magnification. Thus, when we study the surface at
the magnification ζ we will only detect surface roughness
with wavelength components larger than λ = L/ζ.
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We will now derive an equation of motion for the sur-
face slope probability distribution function

P (s, ζ) = 〈δ(s −∇h(x, ζ))〉.

We assume that the surface roughness amplitudes h(q) are
independent random variables. In this case, if we write

h(x, ζ + δζ) = h(x, ζ) + δh,

we get

P (s, ζ + δζ) = 〈δ(s −∇h(x, ζ + δζ))〉 =
∫

d2s′〈δ(s′ −∇δh)〉〈δ(s − s′ −∇h(x, ζ))〉 =

∫

d2s′〈δ(s′ −∇δh)〉P (s − s′, ζ). (A.3)

But

〈δ(s′ −∇δh)〉 =
1

(2π)2

∫

d2q〈eiq·(s′−∇δh)〉 =

1

(2π)2

∫

d2q

(

1 −
1

2
〈(q · ∇δh)2〉

)

eiq·s′ =

δ(s′) +
1

2
〈(∇αδh) (∇βδh)〉

∂

∂s′α

∂

∂s′β
δ(s′).

Substituting this result into (A.3) and expanding the left-
hand side to linear order in δζ gives

∂P

∂ζ
(s, ζ) =

1

2δζ
〈(∇αδh) (∇βδh)〉

∂

∂sα

∂

∂sβ
P (s, ζ). (A.4)

But

〈(∇αδh) (∇βδh)〉 =

∫ qL(ζ+δζ)

qLζ

d2qd2q′

×(iqα)(iq′β)〈h(q)h(q′)〉e(q+q
′)·x =

∫ qL(ζ+δζ)

qLζ

d2q qαqβC(q) =

1

2
δαβ

∫ qL(ζ+δζ)

qLζ

d2q q2C(q) =

πδαβqLδζq
3C(q).

Thus

1

2δζ
〈(∇αδh) (∇βδh)〉 =

π

2
δαβqLq

3C(q).

Substituting this result in (A.4) gives the following
diffusion-like equation for P (s, ζ):

∂P

∂ζ
= D(ζ)∇2

sP, (A.5)

where

∇2
s =

∂

∂sα

∂

∂sα
,

where the “diffusivity”

D(ζ) =
π

2
qLq

3C(q), (A.6)

with q = qLζ.

Solution of the diffusion equation

The function P (s, ζ) describes the probability to observe
a surface slope or gradient s = ∇h(x) when the system is
studied at the magnification ζ. When the system is studied
at the lowest magnification ζ = 1 the surface appears flat
and smooth so that the gradient vanishes, i.e.

P (s, 1) = 〈δ(s −∇h(x, 1))〉 = δ(s). (A.7)

We also require that there is no infinite high slopes, i.e.

P (s, ζ) → 0, as |s| → ∞. (A.8)

Let us determine the solution to (A.5) which obeys
the “initial” condition (A.7) and the boundary condi-
tion (A.8). It is clear that the solution is given by

P (s, ζ) =
1

πs21
e−(s/s1)

2

, (A.9)

where the width parameter s1(ζ) depends on the magni-
fication

s21 = 4

∫ ζ

1

dζ ′D(ζ ′) = 2π

∫ ζqL

qL

dqq3C(q) = ξ2(ζ).

Note that P is normalized
∫

d2sP (s, ζ) = 1,

and that the width of the Gaussian distribution P in-
creases with increasing resolution, i.e., when the surface
is studied at higher and higher resolution, steeper and
steeper surface slopes will be detected.

Distribution function P(s0, ζ)

In what follows we will need the fraction P (s0, ζ) of the
total surface area where the slope s < s0, where s0 is a
fixed number between zero and infinite. Let A⊥(ζ) be the
surface area, projected on the xy-plane, where the surface
slope s < s0. We then have

P (s0, ζ) = A⊥(ζ)/A0.

Using the definition

P (s, ζ) = 〈δ(s −∇h(x, ζ))〉

=
1

A0

∫

d2x δ(s −∇h(x, ζ)),

we get

P (s0, ζ) =

∫

s<s0

d2sP (s, ζ).

Using (A.9) this gives

P (s0, ζ) = 1 − e−(s0/s1)
2

. (A.10)
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Fig. 25. A fluid in contact with a rough substrate. The contact
angle θ is determined by Young’s equation.

Surface area with slope below tan θ

Consider a liquid in contact with a rough substrate. The
contact angle θ is determined by Young’s equation

cos θ =
γsv − γsl

γlv
,

where γsl, γsv and γlv are the solid-liquid, solid-vapor and
liquid-vapor interfacial energies, respectively. Note that if
n is the normal to the solid surface and z the normal to
the liquid surface, which we assume to be parallel to the
average surface plane (see Fig. 25), then cos θ = −z · n.
Since

n =
(−∇h, 1)

(1 + (∇h)2)
1/2

,

we get

cos θ = −
(

1 + (∇h)2
)−1/2

, | tan θ| = |∇h|.

Thus, using (A.10) the fraction of the surface where the
surface slope is below tan θ is

P (tan θ) = 1 − e−(tan θ/ξ)2 . (A.11)
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