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Abstract Most natural surfaces and surfaces of engi-

neering interest, e.g., polished or sandblasted surfaces, are

self-affine fractal over a wide range of length scales, with

the fractal dimension Df ¼ 2:15� 0:15. We give several

examples illustrating this and a simple argument, based on

surface fragility, for why the fractal dimension usually is

\2.3. A kinetic model of sandblasting is presented, which

gives surface topographies and surface roughness power

spectra in good agreement with experiments.

Keyword Self-affine fractal � Surface fragility � Fractal

dimension � Power spectra

1 Introduction

All natural surfaces and surfaces of engineering interest have

surface roughness on many different length scales, sometimes

extending from atomic dimensions to the linear size of the

object under study. Surface roughness is of crucial importance

in many engineering applications, e.g., in tribology [1–4]. For

example, the surface roughness on a road surface influences the

tire–road friction or grip [1]. It is therefore of great interest to

understand the nature of surface roughness in engineering

applications. Several studies of the fractal properties of surface

roughness have been presented, but mainly for surfaces pro-

duced by growth (atomic deposition) processes [5]. Many

studies of surfaces produced by atomistic erosion processes,

e.g., sputtering, have also been presented, see, e.g., [6–8]. In this

article, I will present several examples of power spectra of

different surfaces with self-affine fractal-like surface

roughness. All surfaces have fractal dimensions Df ¼ 2:15�
0:15 and I will give a simple argument, based on surface fra-

gility, for why the fractal dimension usually is \2.3. I also

present a kinetic model of sandblasting, which gives surface

topographies and surface roughness power spectra in good

agreement with experiments.

2 Power Spectrum: Definition

We consider randomly rough surfaces where the statistical

properties are transitionally invariant and isotropic. In this

case, the 2D power spectrum [3, 9]

CðqÞ ¼ 1

ð2pÞ2
Z

d2xhhðxÞhð0Þie�iq�x

will only depend on the magnitude q of the wavevector q.

Here, hðxÞ is the height coordinate at the point x ¼ ðx; yÞ
and h::i stands for ensemble averaging. From CðqÞ; many

quantities of interest can be directly calculated. For

example, the root-mean-square (rms) roughness amplitude

hrms can be written as

h2
rms ¼ 2p

Zq1

q0

dq qCðqÞ ð1Þ

where q0 and q1 are the small and large wavevector cut-off.

The rms slope j is determined by

j2 ¼ 2p
Zq1

q0

dq q3CðqÞ: ð2Þ

For a self-affine fractal surface,
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CðqÞ ¼ C0

q

q0

� ��2ð1þHÞ
: ð3Þ

Substituting this in (1) gives

h2
rms ¼

pC0

H
q2

0 1� q1

q0

� ��2H
" #

ð4Þ

and from (2) we get

j2 ¼ pC0

1� H
q4

0

q1

q0

� �2ð1�HÞ
�1

" #
: ð5Þ

Usually, q0/q1 � 1 and since 0\H\1, unless H is very

close to 0 or 1, we get

j ¼ q0hrms

H

1� H

� �1=2
q1

q0

� �1�H

: ð6Þ

Many surfaces of engineering interest, e.g., a polished steel

surface, have rms roughness of order � 1 lm when probed

over a surface region of linear size L ¼ p=q0� 100 lm.

This gives q0hrms � 0:1; and if the surface is self-affine

fractal, the whole way down to the nanometer region

(length scale a) then q1 ¼ p=a � 1010 m�1 and (6) gives

j � 0:1� 105ð1�HÞ. I use this equation to argue that most

surfaces of interest, if self-affine fractal from the macro-

scopic length scale (say L� 100 lm) to the nanometer

region, cannot have a fractal dimension larger than Df �
2:3 or so, as otherwise the average surface slope becomes

huge which is unlikely to be the case as the surface would

be very ‘‘fragile’’ and easily damaged (smoothened) by the

mechanical interactions with external objects. That is, if we

assume that the rms slope has to be below, say 3, we get

that H [ 0:7 or Df ¼ 3� H\2:3. As we now show, this

inequality is nearly always satisfied for real surfaces.

3 Power Spectra: Some Examples

I have calculated the 2D surface roughness power spectra of

several hundred surfaces of engineering interest. Here, I give

just a few examples to illustrate the general picture which has

emerged. Figure 1 shows the 2D power spectrum of a

sandblasted PMMA surface obtained from 1D-stylus height

profiles. The surface is self-affine fractal for large wave-

vectors, and the slope of the dashed line corresponds to the

Hurst exponent H ¼ 1 or fractal dimension Df ¼ 2. For

q\qr � 105 m�1 (corresponding to the roll-off wavelength

kr ¼ p=qr � 100 lm), the power spectrum exhibits a roll-off

which, however, moves to smaller wavevectors as the

sandblasting time period increases (not shown).

Figure 2 shows the angular averaged power spectrum of a

grinded steel surface. The surface topography was studied on

different length scales using STM, AFM and 1D stylus. Note

that the (calculated) power spectra using the different

methods join smoothly in the wavevector regions where they

overlap. The slope of the dashed line corresponds to the Hurst

exponent H ¼ 0:72 or fractal dimension Df ¼ 2:28

Figure 3 shows the power spectra of two asphalt road

surfaces. Both surfaces are self-affine fractal for large

wavevectors and exhibit a roll-off for small wavevectors

which is related to the largest stone particles (diameter d)

in the asphalt via qr � p=d. The fractal dimension of both

surfaces is Df � 2:20.
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Fig. 1 The 2D power spectrum of a sandblasted PMMA surface

based on height profiles measured using 1D-stylus instrument (based

on experimental data obtained from B. Lorenz, PGI, FZ Jülich,

Germany) (log10 � log10 scale). The slope of the dashed line

corresponds to the Hurst exponent H ¼ 1 or fractal dimension Df ¼ 2
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Fig. 2 The 2D power spectrum of a grinded steel surface (based on

experimental data obtained from A. Wohlers, IFAS, RWTH Aachen,

Germany). The slope of the dashed line corresponds to the Hurst

exponent H ¼ 0:72 or fractal dimension Df ¼ 2:28
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Not only surfaces prepared by engineering methods (e.g.,

sandblasting or polishing) exhibit self-affine fractal proper-

ties with fractal dimensions Df ¼ 2:15� 0:15 but so do most

natural surfaces. Thus, for example, surfaces prepared by

crack propagation are usually self-affine fractal with

Df � 2:2. Here, I give three more examples to illustrate this.

Figure 4 shows the 2D power spectrum of human wrist skin

obtained from AFM measurements. The rms roughness is

hrms � 0:25 lm in the studied wavevector region. The slope

of the dashed line corresponds to the Hurst exponent H ¼
0:89 or fractal dimension Df ¼ 2:11. Figure 5 shows 2D

power spectra of dry and wet cellulose fibers measured using

AFM. The slope of the dashed line corresponds to the Hurst

exponent H ¼ 0:7 or fractal dimension Df ¼ 2:3. Finally,

Fig. 6 shows the 2D power spectrum of adhesive tape after

pull-off, based on optical and AFM measurements. The slope

of the dashed line corresponds to the Hurst exponent H ¼ 0:7

or fractal dimension Df ¼ 2:3.

I have shown above that many engineering and natural

surfaces exhibit self-affine fractal properties in a large

wavevector range with fractal dimension Df ¼ 2:15� 0:15.

A fractal dimension larger than Df ¼ 2:3 is unlikely as it

would typically result in surfaces with very large rms slope,

and such surfaces would be ‘‘fragile’’ and easily smoothed by

the (mechanical) interaction with the external environment.

However, this argument does not hold if the surface is self-

affine fractal in a small enough wavevector region or if the

prefactor C0 in the expression CðqÞ ¼ C0ðq=q0Þ�2ð1þHÞ
is
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Fig. 3 The 2D power spectra of two asphalt road surfaces (based on

experimental data obtained by O. Albohr, Pirelli Deutschland AG,

64733 Höchst/Odenwald, Germany). The slope of the dashed line

corresponds to the Hurst exponent H ¼ 0:80 or fractal dimension

Df ¼ 2:20
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Fig. 4 The 2D power spectrum of human wrist skin obtained from AFM

measurements (based on experimental data obtained by, A. Kovalev and

S.N. Gorb, Department of Functional Morphology and Biomechanics,

Zoological Institute at the University of Kiel, Germany) [10]. The rms

roughness is hrms � 0:25 lm within the studied wavevector region. The

slope of the dashed line corresponds to the Hurst exponent H ¼ 0:89 or

fractal dimension Df ¼ 2:11 (Color figure online)
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Fig. 5 The 2D power spectra of dry and wet cellulose fibers (based

on experimental data obtained by C. Ganser, F. Schmied and C.

Teichert, Institute of Physics, Montanuniversität Leoben, Leoben,

Austria). The surface topography was measured using AFM. The

slope of the dashed lines corresponds to the Hurst exponent H ¼ 0:7
or fractal dimension Df ¼ 2:3 (Color figure online)
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Fig. 6 The 2D power spectrum of pulled adhesive tape based on

optical and AFM measurements (based on experimental data obtained

by: A. Kovalev and S.N. Gorb, Department of Functional Morphol-

ogy and Biomechanics, Zoological Institute at the University of Kiel,

Germany) [11]. The slope of the dashed line corresponds to the Hurst

exponent H ¼ 0:7 or fractal dimension Df ¼ 2:3

Tribol Lett (2014) 54:99–106 101

123



very small. In fact, self-affine fractal surfaces with the fractal

dimension Df ¼ 3 result when a liquid is cooled below its

glass transition temperature where the capillary waves on the

liquid surface get frozen-in. For capillary waves (see, e.g.,

Ref. [2]),

CðqÞ ¼ 1

ð2pÞ2
kBT

qgþ cq2 ð7Þ

where q is the mass density, g the gravitation constant, and c

the liquid surface tension. For q	 q0 ¼ ðqg=cÞ1=2;we have

CðqÞ� q�2 and comparing this with the expression for a self-

affine fractal surface CðqÞ� q�2ð1þHÞ gives H ¼ 0 and

Df ¼ 3. In a typical case, the cut-off q0 � 103 m�1 so the

surface is self-affine fractal over a wide wavevector range,

but the rms roughness and the rms slope are still rather small

due to the small magnitude of C0 ¼ kBT=qg, which results

from the small magnitude of thermal energy kBT . Using

AFM, frozen capillary waves have recently been observed on

polymer surfaces (polyaryletherketone, with the glass tran-

sition temperature T g � 423 K and c � 0:03 J=m) [12]. The

measured power spectrum was found to be in beautiful

agreement with the theory prediction of (7). For this case,

including all the roughness with q [ q0, one can calculate the

rms roughness to be hrms � ðkBT=2pcÞ1=2½lnðq1=q0Þ
1=2 �
1 nm and the rms slope j � ðkBT=4pcÞ1=2

q1 � 1.

4 Simulation of Rough Surfaces: A Simple Erosion

Process

I have argued above that if a surface is self-affine fractal

over a large wavevector region (as it is often the case), it

usually has a fractal dimension \2.3, since otherwise the

rms slope would be so large (	1) as to make the surface

fragile, and very sensitive to the impact of external objects

which would tend to smoothen the surface. Here, I will

consider a simple model of sandblasting, showing that if

one assumes that material removal is more likely at the top

of asperities rather than in the valleys (see Fig. 7), a surface

with relatively low fractal dimension is naturally obtained.

The model studied here has some similarities with growth

models involving random deposition with surface relaxa-

tion. However, instead of adding atoms or particles, I

consider removal of material. In addition, while in growth

models, the surface relaxation is usually interpreted as a

diffusive (thermal) motion of atoms, in the present case

v

sand blasting
particle

sand paper
v

(a)

(b)

brittle substrate

Fig. 7 Sand blasting (a) and lapping with sand paper (b) will roughen

an initially flat surface but in such a way that high and sharp asperities

never form, i.e., the removal of material is easier at the top of

asperities than at the valley. This will result in a rough surface with

low fractal dimension

Fig. 8 Incoming particles (colored arrows) and the blocks removed

by the impact (black squares surrounded by colored rims) for a 1D

version of the simulation model used. For the 2D model I use, if a

particle impact at site ði; jÞ (at position ðx; yÞ ¼ ði; jÞa, where a is the

lattice constant) then one of the blocks ði; jÞ; ðiþ 1; jÞ; ði� 1; jÞ; ði; jþ
1Þ or ði; j� 1Þ is removed. Of these blocks, I assume that either the

block that has the smallest number of nearest neighbors is removed

(with probability 0.5), since this block is most weakly bound to the

substrate, or the highest block is removed (with probability 0.5). In

both cases, if several such blocks exist, I choose randomly the one to

be removed unless the block ði; jÞ is part of the set of blocks, in which

case this block is removed (Color figure online)

Fig. 9 Topography picture of a surface produced by the eroding

process described in Fig. 8 after removing 76,290 layers of blocks.

The surface plane consists of 2,048 9 2,048 blocks. The surface is

self-affine fractal with the Hurst exponent H ¼ 1 (or fractal dimen-

sion Df ¼ 2) (see Fig. 10). The width of the removed particles (or

blocks) is a ¼ 0:1 lm. The surface has the rms roughness hrms ¼
2:1 lm and the rms slope j ¼ 1:04
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thermal effects are not directly involved (but may be

indirectly involved in determining whether the material

removal involves plastic flow or brittle fracture).

We now present a model for sandblasting, where a beam

of hard particles is sent on the surface orthogonal to the

originally flat substrate surface, and with a laterally uni-

form probability distribution. The substrate is considered as

a cubic lattice of blocks (or particles) and every particle

from the incoming beam removes a randomly chosen sur-

face block on the solid substrate. As shown in Fig. 8, if an

incoming particle impacts at site ði; jÞ (at position

ðx; yÞ ¼ ði; jÞa, where a is the lattice constant) then one of

the blocks ði; jÞ; ðiþ 1; jÞ; ði� 1; jÞ; ði; jþ 1Þ or ði; j� 1Þ is

removed. Of these blocks I assume that either (a) the block

that has the smallest number of nearest neighbors is

removed (with probability 0.5), since this block is most

weakly bound to the substrate, or (b) the block at the

highest position is removed (with probability 0.5). In both

cases, if several such blocks exist, I choose randomly the

one to remove unless the block ði; jÞ is part of the set of

blocks, in which case this block is removed. The substrate

surface consists of 2,048 9 2,048 blocks, and I assume

periodic boundary conditions. I note that the processes

(a) and (b) above are similar to the Wolf and Villain [13]

and Family [14] grows models, respectively.

Figure 9 shows the topography of a surface produced by

the eroding process described above (see also Fig. 8), after

removing 76,290 layers of blocks. The surface topography

is practically undistinguished from that of sandblasted

surfaces (not shown). Figure 10 shows the surface rough-

ness power spectrum as a function of the wavevector (on a

log10 � log10 scale). The surface is self-affine fractal with

the Hurst exponent H ¼ 1 (or fractal dimension Df ¼ 2),

which has also been observed for sandblasted surfaces (see

Fig. 1). Even the magnitude of CðqÞ predicted by the the-

ory is nearly the same as observed (see Fig. 1).

The formation of a rough surface by sandblasting a flat

PMMA surface may involve plastic deformation or local

melting of the PMMA surface, rather than removal of

fragments from the surface as assumed in the model above.

We have also calculated the power spectrum for sand-

blasted glass surfaces (where the surface topography was

studied using AFM) and again found the fractal dimension

Df ¼ 2. Glass is more brittle than PMMA, and the erosion

processes may differ somewhat, perhaps involving

removing fragments from glass, rather than plastic defor-

mation or melting as expected for the PMMA surface, but

the self-affine fractal scaling does not seem to depend on

the exact erosion or deformation mechanism involved.

Nevertheless, the aim of the simple model presented above

was not to reproduce exact fractal dimensions but to show

how surfaces with low fractal dimensions naturally result

from a model which favors removing (or plastically

deforming) materials at the top of asperities rather than at

the bottom of valleys. In general, we cannot exclude that

sandblasting of different materials, which may involve

different processes, e.g., removing fragments by brittle

processes, or plastic flow or local melting, will result in

slightly different fractal dimension depending on the actual

process involved.

We now present some more results related to simulation

of rough surfaces by erosion processes. Consider first the

most simple picture of sandblasting where a beam of hard

particles is sent on the surface orthogonal to the originally

flat substrate surface, and with a laterally uniform proba-

bility distribution. The substrate is again considered as a

cubic lattice of blocks (or particles), and every particle

from the incoming beam removes a randomly chosen sur-

face block on the solid substrate. This process, which is

similar to the random deposition model [5], will result in an

extremely rough substrate surface with the Hurst exponent

H ¼ �1 and fractal dimension Df ¼ 4. This follows at

once from the fact that the power spectrum of the generated

surface is independent of the wavevector i.e., CðqÞ ¼ C0 (a

constant) and using the definition CðqÞ� q�2ð1þHÞ we get

H ¼ �1. The fact that CðqÞ is constant in this case follows

from the fact that the height hðxÞ is uncorrelated with hð0Þ
for x 6¼ 0. That is, hhðxÞhð0Þi ¼ hhðxÞihhð0Þi ¼ 0 for

x 6¼ 0. Thus, we get

CðqÞ ¼ 1

ð2pÞ2
Z

d2x hhðxÞhð0Þie�iq�x�hh2ð0Þi:

Let us now consider in more detail, the erosion pro-

cesses (a), (b) and (a ? b) discussed above. In Fig. 11, we

show the power spectrum after removing 76,290, 19,070

a = 0.1 µm

H=1
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Fig. 10 The surface roughness power spectrum as a function of the

wavevector (log10 � log10 scale) after removing 76,290 layers of

blocks (surface topography in Fig. 9). The surface plane consists of

2,048 9 2,048 blocks. The surface is self-affine fractal with the Hurst

exponent H ¼ 1 (or fractal dimension Df ¼ 2). I have assumed the

linear size of the removed blocks to be a ¼ 0:1 lm
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and 2,384 layers of blocks assuming process (a ? b) as in

Fig. 10. For short time of sandblasting, a large roll-off

region prevails which decreases toward zero as the sand-

blasting time increases. The same effect is observed in

experiments (not shown) and reflects the fact that the

correlation length n along the surface caused by the sand-

blasting extends only slowly as the sandblasting time t

increases (as a power law n� t1=z, see Ref. [5]).

In Fig. 12, I compare the surface roughness power

spectrum as obtained using the random removal model

with the random removal with relaxation models (a),

(b) and (a ? b) (see Sect. 4) after removing 19,070 layers

of blocks. The corresponding topography pictures for

processes (a), (b) and (a ? b) are shown in Fig. 13. Note

that the random removal process gives a constant power

spectrum which I have never observed for any real surface.

The random removal with relaxation model (a) gives also

unphysical surface topography with high sharp spikes. The

(a ? b) model gives results in agreement with experiments,

which shows, as expected, that both removal (or smooth-

ing) of high regions (asperity tops) and low coordinated

surface volumes are important in sandblasting.

Note that random removal results in an interface which

is uncorrelated (see above). The columns shrink indepen-

dently, as there is no mechanism that can generate corre-

lations along the interface. The other erosion processes

[(a), (b) and (a ? b)] all involve correlated removal of

material, allowing the spread of correlation along the

surface.

5 Discussion and Summary

Many surfaces of engineering interest have roughness with

anisotropic statistical properties, e.g., surfaces polished or

grinded in one direction. Contact mechanics depends

mainly on the angular averaged power spectrum so in most

studies we are mainly interested in CðqÞ ¼ hCðqÞi. Nev-

ertheless, from measurements of the height profile over a

square (or rectangular) surface area, one can easily calculate

-2 -1  0

log q

-2

 0

 2

 4

 6
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Fig. 11 The surface roughness power spectrum as a function of the

wavevector (log10 � log10 scale) for the erosion process (a ? b), after

removing 2,384 (blue), 19,070 (green) and 76,290 (red) layers of

blocks. The wavevector is in units of 1=a; and the power spectrum is

in units of a4 (Color figure online)
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random
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Fig. 12 The surface roughness power spectrum as a function of the

wavevector (log10 � log10 scale) for all the erosion processes

considered, after removing 19,070 layers of blocks. The wavevector

is in units of 1=a; and the power spectrum is in units of a4

Fig. 13 Topography picture of surfaces produced by the eroding

processes (a), (b) and (a 1 b) after removing 19,070 layers of blocks.

The surface plane consists of 2,048 9 2,048 blocks. The rms

roughness values are in units of a. Random removal without

relaxation gives an extremely rough surface (not shown) with the

rms roughness hrms ¼ 1264a

104 Tribol Lett (2014) 54:99–106

123



the power spectrum as a function of q ¼ ðqx; qyÞ, and study

how it depends on the direction in the q-plane (e.g., along

the qx or qy-axis). This information can be used to obtain the

fractal properties of the surface in different directions. We

note that there are many different ways to determine the

fractal dimension of a self-affine fractal surface, but if the

surface really is self-affine fractal, then all the different

methods should give the same Hurst exponent.

We have studied the surface topography on asphalt road

surfaces, concrete road surfaces, sandblasted PMMA and

glass surfaces, polished and grinded PMMA, steel and

glass surfaces, rubber stoppers and glass and polymer

barrels for syringes and many more surfaces. We have used

AFM, engineering stylus and optical methods, and have

very good experience using AFM and stylus measure-

ments, but sometimes experienced problems using optical

methods to determine the power spectrum. Using the dif-

ferent experimental techniques described above, one can

study the surface roughness on all relevant length scales,

starting at, say, cm down to nm if necessary.

Surface roughness on engineering surfaces is important

for many different properties such as the heat and electric

contact resistance [15, 16], mixed lubrication [17], wear

and adhesion [18]. Thus, for example, one standard way to

reduce adhesion is to roughen surfaces. In wafer bonding,

one instead wants the surfaces to be as smooth as possible

and already surface roughness of order a few nanometer

(when measured over a length scale of � 100 lm) may

eliminate adhesion.

Surfaces produced by brittle crack propagation tend to

be self-affine fractal with the fractal dimension Df � 2:2,

but no generally accepted theory exists which can explain

why [19, 20]. Fractured surfaces are usually very rough on

macroscopic length scales. If such surfaces would have the

fractal dimension Df [ 2:3; they would have huge rms

slope, i.e., very sharp asperities would appear at short-

length scales. It is intuitively clear that sharp asperities

cannot form as they would not survive the cracking pro-

cess, but would result in fragments of cracked material at

the interface (see Fig. 14).

The argument presented in this paper for why the fractal

dimension is close to 2 for most engineering surfaces

assumes that the surfaces are produced by the mechanical

interaction between solids and that the surfaces are fractal-

like in a wide range of length scales. Many examples of

surfaces with fractal dimension Df � 2:5 or larger exist. For

example, the surfaces resulting from electroreduction of Pd

oxide layers have the fractal dimension Df � 2:57 (see Ref.

[21]). In this case, no mechanical interaction with external

objects (which could smoothen the surface) has occurred. In

addition, because of the relative thin oxide layer of the

untreated surface, the self-affine fractal properties will only

extend over a relative small range of length scales. Simi-

larly, electrodeposition may result in surfaces with fractal

dimension much larger than 2. Erosion by ion bombardment

or exposure of a surface to plasma is another way of pro-

ducing rough surfaces with self-affine fractal properties. In

Ref. [8], it was shown that exposing a gold surface to

oxygen or argon plasma produced self-affine fractal sur-

faces with the fractal dimension Df ¼ 2:1� 0:1. Ion bom-

bardment (sputtering) of an iron surface produced a surface

which was self-affine fractal over two decades in length

scales (from 3 to 300 nm) with the fractal dimension Df ¼
2:47� 0:02 (see Ref. [7]). It is not obvious why the gold

and iron surfaces exhibit different fractal properties, but it

may be related to the much higher mobility of Au atoms on

gold as compared to Fe atoms on iron, which would tend to

smooth the gold surface more than the iron surface [22].

To summarize, I have shown that most natural surfaces

and surfaces of engineering interest, e.g., polished or

sandblasted surfaces, are self-affine fractal in a wide range

of length scales, with typical fractal dimension

Df ¼ 2:15� 0:15. I have argued that the fractal dimension

of most surfaces \2.3, since surfaces with larger fractal

dimension have huge rms slopes and would be very fragile

and therefore get easily smoothed by the interaction with

external objects. I have also presented a simple model of

sandblasting and showed that the erosion process I used

results in self-affine fractal surfaces with the fractal

dimension Df ¼ 2, in good agreement with experiments.

It is clear that a good understanding of the nature of the

surface roughness of surfaces of engineering and biological

interest is of crucial importance for a large number of

important applications.

Acknowledgments I thank J. Krim for useful comments on the text.
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Fig. 14 Brittle fracture usually produces self-affine fractal surfaces

with the fractal dimension Df � 2:2. If (hypothetically) the fractal

dimension would be much higher, the surface slope would be very

high too, which would result in sharp asperities broken off and

forming fragments localized at the fracture interface
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