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Abstract — Seals are extremely useful devices to prevent fluid leakage. We present experimental
result which show that the leak rate of seals depend sensitively on the skewness in the height
probability distribution. The experimental data are analyzed using the critical-junction theory. We
show that using the top power spectrum results in good agreement between theory and experiment.
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A seal is a device for closing a gap or making a joint
fluid tight [1]. Seals play a crucial role in many modern
engineering devices, and the failure of seals may result in
catastrophic events, such as the Challenger disaster. In
spite of its apparent simplicity, it is not easy to predict
the leak rate and (for dynamic seals) the friction forces [2].
The main problem is the influence of surface roughness on
the contact mechanics at the seal-substrate interface. Most
surfaces of engineering interest have surface roughness on
a wide range of length scales [3], e.g., from cm to nm,
which will influence the leak rate and friction of seals,
and accounting for the whole range of surface roughness
is impossible using standard numerical methods, such as
the finite-element method.

Randomly rough surfaces have Gaussian height proba-
bility distribution but many surfaces of engineering inter-
est have skewed distributions which may affect the leak
rate of seals. To illustrate this we consider an extreme
case: a rigid solid block with a flat surface in contact with
arigid substrate with periodic “roughness” as in fig. 1. The
substrate surfaces in (a) and (b) have the same root-mean-
square roughness and the same surface roughness power
spectrum, but it is clear that in (a) the empty volume
between the surfaces is larger than in (b), resulting in a
larger leak rate. In the real situation the roughness is not
periodic and the solids are not rigid, but one may expect
a higher leak rate for the situation where the asymmetry
of the height profile is as for case (a).

(3)E-mail: b.persson@fz-juelich.de

Fig. 1: Contact between a rigid block with a flat surface
and a rigid substrate with periodic surface structures. The
two substrate surfaces in (a) and (b) have the same surface
roughness power spectrum. Note that the empty volume
between the surfaces is much larger in case (a) than in case (b).

To study the point discussed above, we have performed
experiments using sandpaper which has a skewed height
probability distribution as in fig. 1(a). We have also
used surfaces with “inverted” surface roughness profile by
producing a “negative” of the sandpaper surface using
silicon rubber. In the latter experiments we squeezed
a silicon rubber ring, which was cross-linked with the
sandpaper surface as the substrate, against a flat glass
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Fig. 2: (Colour on-line) Experimental set-up for measuring
the leak rate of seals. A glass (or PMMA) cylinder with a
rubber ring attached to one end is squeezed against a hard
substrate with well-defined surface roughness. The cylinder is
filled with water, and the leak rate of the water at the rubber-
countersurface is detected by the change in the height of the
water in the cylinder.

surface. By comparing the measured leak rate for this
configuration with that for a silicon ring with flat bottom
surface squeezed against the same sandpaper surface, we
are able to address the problem illustrated in fig. 1.

We briefly describe the leak rate model [3-8] and the
experimental set-up used in this study. Consider the fluid
leakage through a rubber seal, from a high-pressure P,
fluid region, to a low-pressure P, fluid region. In our
experimental study we have used the experimental set-up
shown in fig. 2 for measuring the leak rate of seals. A glass
(or PMMA) cylinder with a rubber ring attached to one
end is squeezed against a hard substrate with well-defined
surface roughness. The cylinder is filled with water, and
the leak rate of the water at the rubber-countersurface is
detected by the change in the height of the water in the
cylinder. Thus P, — P, = pgH, where H is the height of
the water column, and p the mass density of water. For
further experimental details, see refs. [4,7].

Assume that the nominal contact region between the
rubber and the hard countersurface is rectangular with
area L, x L, with L, > L,. We assume that the high-
pressure fluid region is for x <0 and the low-pressure
region for x> L,. We “divide” the contact region into
squares with the side L, = L and the area Ay = L? (this
assumes that N = L, /L, is an integer, but this restriction
does not affect the final result). Now, let us study the
contact between the two solids within one of the squares as
we increase the magnification (. We define ( = L/\, where
A is the resolution. We study how the apparent contact
area (projected on the zy-plane), A((), between the two
solids depends on the magnification (. At the lowest
magnification we cannot observe any surface roughness,
and the contact between the solids appears to be complete

i.e., A(1) = Aj. As we increase the magnification we will
observe some interfacial roughness, and the (apparent)
contact area will decrease. At high enough magnification,
say ( = (., a percolating path of non-contact area will be
observed for the first time. We denote the most narrow
constriction along this percolation path as the critical
constriction. The critical constriction will have the lateral
size A\c = L/(. and the surface separation at this point
is denoted by u.. We can calculate u. using a recently
developed contact mechanics theory [9] (see below). As
we continue to increase the magnification we will find
more percolating channels between the surfaces, but these
will have more narrow constrictions than the first channel
which appears at ( = (., and as a first approximation one
may neglect the contribution to the leak rate from these
channels [6].

A first rough estimate of the leak rate is obtained
by assuming that all the leakage occurs through the
critical percolation channel, and that the whole pressure
drop AP =P, — B, (where P, and P, is the pressure to
the left and right of the seal) occurs over the critical
constriction (of width and length A.~ L/(. and height
u.). We refer to this theory as the critical-junction theory.
If we approximate the critical constriction as a pore with
rectangular cross-section (width and length A\, and height
Ue € Ac), and if we assume an incompressible Newtonian
fluid, the volume flow per unit time through the critical
constriction will be given by (Poiseuille flow)

3
= S AP, (1)
12n

Q

where 7 is the fluid viscosity. In deriving (1) we have
assumed laminar flow and that u. << A, which is always
satisfied in practice. Finally, since there are N =L,/L,
square areas in the rubber-countersurface (apparent)
contact area, we get the total leak rate

g=tv e
Ly12n """

(2)

Note that a given percolation channel could have several
narrow (critical or nearly critical) constrictions of nearly
the same dimension which would reduce the flow along
the channel. But in this case one would also expect more
channels from the high- to the low-pressure fluid side of
the junction, which would tend to increase the leak rate.
These two effects will, at least in the simplest picture,
compensate each other (see ref. [6]). The effective medium
theory presented in ref. [7] includes (in an approximate
way) all the flow channels, but gives results very similar
to the critical-junction theory described above [10].

To complete the theory we must calculate the separation
ue of the surfaces at the critical constriction. We first
determine the critical magnification (. by assuming that
the apparent relative contact area at this point is given
by percolation theory. Thus, the relative contact area
A(¢)/Ao~1—p., where p. is the so called percolation
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Fig. 3: The surface profile h(z) is decomposed into a top hr(z)
and a bottom hg(z) profile.

threshold [11]. Numerical contact mechanics studies, such
as those presented in ref. [6] and ref. [12], typically
give p. between 0.5 and 0.6. For finite-sized systems
the percolation will, on the average, occur for (slightly)
smaller values of p., and fluctuations in the percolation
threshold will occur between different realizations of the
same physical system. Here we use p. = 0.6 to determine
the critical magnification ¢ = (..

The (apparent) relative contact area A(¢)/Ao and the
interfacial separation u;(¢) at the magnification ¢ can be
obtained using the contact mechanics formalism developed
elsewhere [9,13-19]. We define u1(¢) to be the (average)
height separating the surfaces which appear to come
into contact when the magnification decreases from ( to
¢ —A(, where A is a small (infinitesimal) change in
the magnification. Since the surfaces of the solids are
everywhere rough the actual separation between the solid
walls will fluctuate around the average wui({). Thus we
expect uc = au((.), where a < 1 (but of order unity). We
note that « is due to the surface roughness which occur
at length scales shorter than A, see ref. [7].

In the contact mechanics theory of Persson, the surface
roughness enter only via the surface roughness power
spectrum

1
(2m)?

where (...) stands for ensemble average, and where we
have assumed (h) =0. A randomly rough surface has a
Gaussian height probability distribution, P(h), but many
surfaces of practical use have a skewed height distribution.
For this latter case it is useful to introduce the top and
bottom power spectra defined as follows [3]:

Clq) =

/ a2z (h(x)h(0))e= ",

Cr(q) =

(2717)2 /d% (hp(x)hr(0))e 1 4*,

1 —1iq-X
Co(a) = 5z / 02 (s (x)hp (0))e 9%,

where ht(x)=h(x) for h >0 and zero otherwise, while
hp(x)=h(x) for h<0 and zero otherwise. These are
“rectified” profiles; see fig. 3. It is clear by symmetry
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Fig. 4: (Colour on-line) The power spectrum C(g) and the top
C71(g) and bottom Cg(q) power spectrum for a mathematically
generated randomly rough surface with a Gaussian height
probability distribution. The surface is self-affine fractal for
q> 10° m~! with the fractal dimension Df = 2.2 and the root-
mean-square roughness 0.8 ym.

that for a randomly rough surface with Gaussian height
distribution, Ct(q) = Cg(q). If nT and np are the fractions
of the nominal surface area (i.e., the surface area projected
on the zy-plane) where h > 0 and h < 0, respectively, then
we also define C.(q) = Cr(q)/nt and Cj(q) = Cs(q)/np.
Roughly speaking, C} would be the power spectrum
resulting if the actual bottom profile (for h <0) was
replaced by a mirrored top profile (for h>0). A similar
statement holds for Cf. For randomly rough surfaces
with Gaussian height distribution we expect Ci(q) =
Cf(q) = C(q). That this is indeed the case is illustrated
in fig. 4 which shows the calculated C(q), C4(g) and
Cf(¢g) for a mathematically generated randomly rough
surface with a Gaussian height probability distribution.
The surface is self-affine fractal for ¢ >10°m~! with
the fractal dimension Dy = 2.2 and the root-mean-square
roughness 0.8 um.

The contact mechanics theory of Persson can be applied
approximately to surfaces with skewed height distribution.
However in this case, at least for small squeezing pressures,
one should use C7.(q) rather than C(q) in order to better
represent the surface roughness. We will show below
that by using C4(g) we can quantitatively understand
the leak rate of rubber seals squeezed against surfaces
with skewed height probability distribution. We note
that for small squeezing pressures the rubber will only
probe the upper part of the substrate surface roughness
profile. Hence it is clear that the dependence of the
area of contact on the magnification, which determines
the critical magnification where the non-contact area
percolate, will be more accurately described using the
top power spectrum. Referring to fig. 1 it is also clear
that the largest volume of fluid between the surfaces will
occur above the average surface plane, at least for small
squeezing pressures. Finally we note that using the top
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Fig. 5: (Colour on-line) The surface height probability distri-
bution for sandpaper 100 and 120 surfaces with the root-
mean-square roughness amplitudes 40 um and 31 pm. The
two surfaces have the skewness (h®)/(h?)%/? =0.85 and 0.82,
respectively.
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Fig. 6: (Colour on-line) Surface roughness power spectrum
of sandpaper 100 surface. The three curves are the surface
roughness power spectrum C(q) of the original surface (red),
and the top CT(g) (blue) and bottom Cj(gq) (green) surface
roughness power spectrum. The surface has the root-mean-
square roughness 40 um. The fraction of the (projected) surface
area above the average plane is about 0.44.

power spectrum does not mean that we do not account
for the surface roughness below the average plane, but
rather the region below the average plane is assumed to
be replaced by a mirrored top profile.

We have performed experiments using two sandpaper
surfaces (corundum paper, grit size 100 and 120) with the
the root-mean-square roughness 40 pm and 31 ym. From
the measured surface topography we obtain the height
probability distribution P(h) (fig. 5) and the surface
roughness power spectrum shown in figs. 6 and 7, respec-
tively. Note that for both surfaces P(h) is asymmetric with
a tail towards higher h. This is easy to understand: sand-
paper surfaces consist of particles with sharp edges point-
ing above the surface, while the region between the
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Fig. 7: (Colour on-line) Surface roughness power spectrum
of sandpaper 120 surface. The three curves are the surface
roughness power spectrum C(q) of the original surface (red),
and the top CT(g) (blue) and bottom Cg(g) (green) surface
roughness power spectrum. The surface has the root-mean-
square roughness 31 um. The fraction of the (projected) surface
area above the average plane is about 0.45.
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Fig. 8: (Colour on-line) Square symbols: the measured leak
rate for sandpaper 100 substrate (upper symbols) and for
an inverted surface (lower symbols). The solid lines are the
calculated leak rate using the critical-junction theory with the
percolation threshold p. =0.6. In the calculation for the top
curve we used the top power spectrum C7T(g) obtained from
the measured surface topography. For the inverted surface
(bottom curve) we used the bottom power spectrum Cg(q).
The measured rubber elastic modulus £ =2.3MPa and the
fluid pressure difference AP = P, — P, = 10 kPa obtained from
the height of the water column. In the calculations we have
used a=1 (upper curve) and o= 0.8 (lower curve).

particles is filled with a resin-binder making the valleys
smoother and wider than the peaks (as in fig. 1(a)), which
result in an asymmetric P(h) as observed.

In fig. 8 we show the measured leak rate for sandpaper
100 substrate (upper squares) and for an inverted surface
(lower squares). The solid lines are the calculated leak
rate using the critical-junction theory. In the calculation
for the top curve we used the top power spectrum Ci(q)
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Fig. 9: (Colour on-line) Square symbols: the measured leak
rate for sandpaper 120 substrate (upper symbols) and for
an inverted surface (lower symbols). The solid lines are the
calculated leak rate using the critical-junction theory with the
percolation threshold p. =0.6. In the calculation for the top
curve we used the top power spectrum C71(g) obtained from
the measured surface topography. For the inverted surface
(bottom curve) we used the bottom power spectrum Cg(q).
The measured rubber elastic modulus £ =2.3 MPa and the
fluid pressure difference AP = P, — P, = 10 kPa obtained from
the height of the water column. In the calculations we have
used a =1 (upper curve) and o= 0.8 (lower curve).

obtained from the measured surface topography. For the
inverted surface (bottom curve) we used the bottom power
spectrum Cf(g) of the sandpaper surface.

In fig. 9 we show similar results for the sandpaper 120
substrate (upper symbols) and for an inverted surface
(lower symbols). Note in figs. 8 and 9 the huge difference
(roughly two orders of magnitude) between the leak rate
for the two different configurations, involving the original
and inverted surface topographies. Note that the theory
is able to describe the observed effect if the top power
spectrum is used in the analysis (which means using the
bottom power spectrum of the sandpaper surfaces in the
case of the inverted surfaces). However, for the case of
the inverted surfaces the leak rate for large enough
squeezing pressure decreases faster with the squeezing
pressure than is predicted by the theory. We attribute this
to the influence of adhesion on the leak rate. That is, the
asperities of the inverted surface are quite smooth (they
arise from the relative smooth polymer (resin) film in the
valleys between the particles of the original sand paper
surfaces) which allow for effective adhesion between the
rubber and the glass and PMMA surfaces'. We note here
that the glass surfaces were not cleaned chemically and
therefore probably covered by nanometer thick organic
contamination layers?. Thus one expect a dewetting

1The work of adhesion w =+ +72 — 12 between PDMS and
Plexiglas (PMMA) in water has not been measured but can be
estimated to be about 55 mJ/m?2.

2If the glass is clean, water wets it almost completely, and the
work of adhesion between glass and PDMS through water may

transition [20,21] in the asperity contact regions between
the substrate surface and the silicon rubber surface,
resulting in an effective adhesion which pulls the surfaces
in closer contact than expected by just the influence of
the squeezing pressure. Preliminary calculations including
adhesion indeed support this picture and will be reported
on elsewhere.

To summarize, we have compared experimental data
with theory for the leak rate of seals. The theory is
based on percolation theory and a recently developed
contact mechanics theory. The experiments are for
a) silicon rubber with a smooth surface in contact with
two sandpaper surfaces, and b) for silicon rubber surfaces
prepared by cross-linking the rubber in contact with
the sandpaper surfaces, and then squeezing the rough
rubber surfaces against flat glass and PMMA surfaces.
The elastic properties of the rubber and the surface
topography of the sandpaper and PMMA surfaces are
fully characterized. We have shown that using the top
power spectrum in the theory results in good agreement
between theory and experiment.
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