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Abstract

We consider the contact between elastically soft solids with randomly rough surfaces in sliding

contact in a fluid, which is assumed to be Newtonian with constant (pressure-independent)

viscosity. We discuss the nature of the transition from boundary lubrication at low sliding

velocity, where direct solid–solid contact occurs, to hydrodynamic lubrication at high sliding

velocity, where the solids are separated by a thin fluid film. We consider both hydrophilic and

hydrophobic systems, and cylinder-on-flat and sphere-on-flat sliding configurations. We show

that, for elastically soft solids such as rubber, including cavitation or not results in nearly the

same friction.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

At present, there is no theory which can accurately describe the

transition from boundary lubrication to hydrodynamic lubrica-

tion for elastic solids with randomly rough surfaces [1, 2]. The

main problem in modeling real contacts is that most surfaces

of practical interest have surface roughness over a large range

of length scales, typically from cm to nm, which results in too

many degrees of freedom to be (actually) handled by numerical

methods, such as the finite element or finite difference

method [3, 4]. Many attempts were made in order to overcome

this computational problem, bymean of spatial averaging [5–8]

or small perturbation techniques [9–11]. Basically, the surface

roughness is effectively removed (integrated out), resulting in

effective equations of motion for fluid flow between elastic

solids with smooth surfaces with the (macroscopic) shape or

curvature of the solid objects under study.

Patir and Cheng (P&C) [5, 6] were the first to adopt the

concept of flow factors into an averaged Reynolds equation.

The flow factors are determined by solving the fluid flow

equation for a small (rectangular) interfacial unit of the

rough surfaces. The flow factors are obtained by averaging

over several realizations of the rough surfaces. The basic

assumption in this approach is that the surface roughness occur

at length scales much shorter than the macroscopic radius of

curvatures of the solid objects. In this case the flow factors

will determine the influence of the surface roughness on the

(average) fluid flow in the macroscopic junction. However, in

this approach the local elastic deformation resulting from the

asperity–asperity (and asperity–fluid) interaction is neglected

(but the macroscopic elastic deformations, e.g. the Hertzian-

like deformation of an elastic ball in contact with a flat, is of

course included), which makes the P&C method incompatible

with any dry contact mechanics theory (to be used in

conjunction with the averaged fluid equation).

Another interesting approach is based on the application

of homogenization techniques to the fluid equation, see [10].

As for the P&C approach, this approach does not consider the

local elastic deformations resulting from the asperity–asperity

and asperity–fluid interactions and therefore cannot accurately

describe mixed lubrication.

Here we will study the influence of surface roughness

on the nature of the transition between boundary lubrication

and hydrodynamic lubrication for soft contacts. In general,

one needs to distinguish between hydrophobic and hydrophilic

systems. Let us introduce the spreading pressure (a line

pressure) [12]

S = γS1S2 − γS1L − γS2L , (1)

where γS1L is the interfacial energy (per unit area) between

solid 1 and the liquid, and similar for γS2L , and where γS1S2

is the solid 1—solid 2 interfacial energy per unit area. When
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Figure 1. Asperity contact for (a) hydrophobic surfaces and
(b) hydrophilic surfaces. For hydrophilic surfaces, most of the
asperity contact regions are separated by thin fluid layers
(schematic).

S < 0 (hydrophobic surfaces), a dewetting transition may

occur in the asperity contact regions (dry asperity con-

tact) [13–15], while for S > 0 (hydrophilic surfaces), the

asperity contact regions tend to be separated by thin fluid layers

as illustrated in figure 1. Qualitatively, we may state that

a short-ranged fluid-mediated attraction or repulsion occurs

between the solid walls depending on if S < 0 or S > 0,

respectively. In the mixed lubrication region this will typically

result in a lower sliding friction for the hydrophilic system as

compared to the hydrophobic system, in qualitative agreement

with experimental data, see figure 2.

In sections 2 and 3 we study the stationary sliding of

an elastic cylinder and a ball on a flat rigid substrate by

neglecting the fluid–asperity interaction, which may be a good

approximation for hydrophobic systems, where the asperity

contact regions may, at low enough sliding velocity, be dry due

to dewetting transitions. In section 4 we will study the effect

of the fluid–asperity interaction for an elastic nominally flat

surface sliding on a flat rigid substrate. In section 5 we discuss

the theory and in section 6 we present results for wiper blades

and tires. The fluid is assumed Newtonian, incompressible and

isoviscous. The cylinder and the ball have isotropic surface

roughness on many different length scales, which we include

in the analysis using a recently developed contact mechanics

theory [18–23]. One interesting result is that for elastically

soft solids such as rubber, including cavitation in the analysis

results in nearly the same result as when cavitation is absent,

i.e. the solution is insensitive to the exact boundary conditions

used when solving the fluid flow equations.

2. Cylinder on flat

We consider first the simplest problem of an elastic cylinder

(length L, radius R, Young’s elastic modulus E and Poisson

ratio ν) with a rough surface sliding on a rigid solid with a

perfectly flat surface. We assume L ≫ R and that the sliding

occurs in the direction perpendicular to the cylinder axis. We

introduce a coordinate system with the x axis along the sliding

direction and with x = 0 on the cylinder axis, see figure 3.

Figure 2. Friction coefficient for silicon rubber sliding on hard
substrate surfaces. For hydrophilic and hydrophobic surfaces.
Reproduced from [32]. Copyright 2007 with permission from
Elsevier.

Figure 3. A rubber cylinder (or ball) with a rough surface in
squeeze-contact with a flat hard substrate (schematic).

The cylinder is squeezed against the substrate by the normal

force FN (see figure 3), and in the contact region between

the cylinder and the substrate a nominal (locally averaged)

pressure occurs:

p0(x) = pcont(x) + pfluid(x), (2)

where pcont is the pressure due to the direct solid–solid

interaction and pfluid is the fluid pressure. Here and in what

follows we measure the pressure relative to the atmospheric

pressure. We consider a stationary case so that

∫ ∞

−∞
dx p0(x) =

FN

L
. (3)

We have [19, 23]

pcont ≈ β E∗ exp

(

−α
ū(x)

hrms

)

, (4)
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where ū(x) is the nominal separation between the surfaces

and where the effective elastic modulus E∗ = E/(1 − ν2)

(E is the Young’s elastic modulus and ν the Poisson ratio).

Equation (4) is valid for large enough ū (typically ū > hrms).

Since an infinite high pressure is necessary in order to squeeze

the solids into complete contact we must have pcont → ∞
as ū → 0. This is, of course, not obeyed by (4), and in

our calculations we use the numerically calculated relation

(see [19, 23]) pcont(ū), which reduces to (4) for large enough

ū. However, in the present applications the contact area is

rather small, and using (4) gives nearly the same result as

for the numerically calculated relation. We also note that, in

the present case, where we have assumed that the spreading

pressure S < 0, there is an effective short-ranged attraction

between the surfaces which may modify the relation between

pcont and ū somewhat (see [24]), but we will assume that this

effect is small in the present case.

The fluid flow is determined by [25]

dpfluid

dx
= 6ηv0

(

1

ū2(x)
−

u∗

ū3(x)

)

. (5)

where η is the fluid viscosity and v0 the sliding velocity. u∗ is a

constant determined below. We will first assume that cavitation

occurs on the exit side of the fluid flow region between the

cylinder and the substrate. This is taken into account by using

the boundary conditions p = 0 (note: we measure pressure

relative to the external or atmospheric pressure) and dp/dx =
0 for x = x1 (see appendix A). In addition we assume that

p(x) → 0 as x → −∞. Integrating (5) gives

pfluid(x) = 6ηv0

∫ x

−∞
dx ′

(

1

ū2(x ′)
−

u∗

ū3(x ′)

)

. (6)

We now study the integral in (6) as a function of x . For

large negative x , the integral is positive and with increasing

x it increases and then, if u∗ is large enough, decreases until

pfluid(x) = 0 for x = x1. Note that the condition dp/dx = 0

for x = x1 implies that u∗ = ū(x1). The elastic deformation

field [25]

ū(x) = u0 +
x2

2R
−

2

π E∗

∫ ∞

−∞
dx ′ p0(x ′)ln

∣

∣

∣

∣

x − x ′

x ′

∣

∣

∣

∣

. (7)

In addition the pressure p0(x) must satisfy the normalization

condition (3). Equations (2), (3), (4), (6) and (7) represent five

equations for the five unknown variables p0, pcont, pfluid, ū and

u0. In the theory presented above, cavitation is assumed to

occur only on the macroscopic scale.

It is convenient to introduce dimensionless quantities. Let

us measure distance (x and ū) in units of R and pressure in

units of E∗. In this case the equations above take the form

p0(x) = pcont(x) + pfluid(x), (8)

pcont ≈ β exp

(

−αū(x)
R

hrms

)

, (9)

pfluid(x) = 6
ηv0

RE∗

∫ x

−∞
dx ′

(

1

ū2(x ′)
−

u∗

ū3(x ′)

)

, (10)

ū(x) = u0 +
x2

2
−
2

π

∫ ∞

−∞
dx ′ p0(x ′)ln

∣

∣

∣

∣

x − x ′

x ′

∣

∣

∣

∣

, (11)

∫ ∞

−∞
dx ′ p0(x ′) =

FN

RL E∗ . (12)

Thus, the problem depends only on three dimensionless

parameters, namely hrms/R, ηv0/RE∗ and FN/RL E∗, and on

the parameters α and β which are determined by the surface

roughness power spectrum C(q).

The frictional stress is given by

σf = σcont + σfluid. (13)

The (nominal) frictional stress resulting from the area of solid–

solid contact is

σcont = σ1
A1

A0
,

where A1 = A(ζ1) is the area of real contact at the highest

magnification and A0 is the nominal contact area. In the

present calculations we have neglected the adhesion between

the solids but, as pointed out before, when the spreading

pressure S < 0 there will be an effective short-ranged

attraction between the surfaces, which (at low sliding velocity)

will tend to increase the contact area A1. This effect can be

taken into account in our formalism [21], but we neglect it

here for simplicity. The shears stress σ1 is assumed to be

independent of the local pressure, which is likely to be a good

approximation for elastically soft materials such as rubber. We

also assume that σ1 is independent of the sliding velocity,

but experiments on silicon rubber sliding on flat dry surfaces

have shown that this is not always a good approximation [26].

As long as A1/A0 ≪ 1, which prevails in the applications

presented below, we have A1/A0 = χpcont/E∗, where χ

depends only on the surface roughness power spectrum C(q),

so that [18]

σcont(x) ≈ χσ1 pcont(x)/E∗. (14)

The frictional shear stress from the fluid

σfluid = η
∂vx

∂z
. (15)

Since the velocity profile

vx(x, z) = v0
z

ū(x)
+ v1(x)

z

ū(x)

(

1−
z

ū(x)

)

,

where

v1 =
ū2

2η

∂pfluid

∂x
,

we get

σfluid = η
v0

ū(x)
±

ū(x)

2

∂pfluid

∂x
,

where the + and − signs refer to the surfaces z = ū(x) and

z = 0, respectively. Using (6) this can also be written as

σfluid =
ηv0

ū(x)

[

1± 3
(

1−
ū(x1)

ū(x)

)]

. (16)
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Figure 4. The contact pressure distribution and the interfacial
separation between an elastic cylinder (elastic modulus E = 10 MPa
and Poisson ratio ν = 0.5) and a nominal flat substrate with the
root-mean-square roughness 1 µm. The cylinder radius R = 1cm
and the loading force per unit length FN/L = 100 N m−1. The
half-width of the Hertz contact area (for flat substrate surface) is
aH = 0.0309 cm and the maximum and average Hertz contact
pressure are 0.2060 MPa and 0.1618 MPa, respectively. The
substrate has a self-affine fractal surface with the fractal dimension
Df = 2.2 and the root-mean-square roughness 1 µm and with
q0 = 1× 104 m−1 and q1 = 0.78× 1010 m−1. The fluid viscosity
η = 0.1 Pa s. Sliding velocity v = 1.0× 10−5 m s−1.

Figure 5. The same as in figure 4 but for the sliding velocity
v = 1.5× 10−3 m s−1.

The friction coefficient3

µ =
L

FN

∫

dx σf(x) =
L

FN

∫

dx (σcont(x) + σfluid(x)) .

(17)

3 We have assumed that the area of real contact between the solids is always

small compared to the nominal contact area, at least in the mixed (and

hydrodynamic) lubrication regime. If this is not the case the equation for

the (locally averaged) fluid stress, given by equations (16) and (29), must be

corrected for the fact that the fluid occupies only part of the sliding junction.

In the roughest treatment of this effect one introduces on the right-hand side

in (16) (and (29)) the additional factor (1 − A(x)/A0)
2, where A(x)/A0 is

the (normalized) area of real contact (which depends on x because of the

macroscopic curvature of the solids). Here one factor of (1− A(x)/A0) takes

into account the reduction in the fluid area and another factor of (1− A(x)/A0)

takes into account that the average fluid film thickness in the non-contact area

is ū/(1 − A(x)/A0) rather than ū (note: the frictional shear stress scales as

∼1/u, where u is the surface separation).

Figure 6. The same as in figure 4 but for the sliding velocity
v = 6.6× 10−3 m s−1.

Figure 7. The same as in figure 4 but for the sliding velocity
v = 0.12 m s−1.

The equations above are conveniently solved numerically

as described in appendix B. In figures 4–7 we show the

solid and fluid pressure distributions (left scale) and surface

separation (right scale) for increasing sliding velocities, v =
1.0 × 10−5, 1.5 × 10−3, 6.6 × 10−3 and 0.12 m s−1. In the

calculation we have assumed the substrate to be rigid, with the

root-mean-square roughness 1 µm and the fractal dimension

Df = 2.2. The rubber has the elastic modulus 10 MPa.

Note that at the lowest sliding velocity the pressure distribution

is Hertzian-like, with a small broadening resulting from the

surface roughness.

Figure 8 shows the friction coefficient, µ, as a function of

the product of the sliding velocity and the fluid viscosity, ηv,

on a log–log scale. The calculation is for the same system as

in figure 4 but for three different root-mean-square roughness

values, 1, 3 and 6 µm. Figure 9 shows the friction coefficient,

µ, and the relative area of real contact, A/A0, as a function of

the sliding velocity (log–log scale).

Figure 10 shows the fraction of the loading force (per unit

length) carried by the fluid and by the asperity contact regions

as a function of the sliding velocity (log–log scale). The

vertical dashed line indicates the velocity where the friction

4



J. Phys.: Condens. Matter 21 (2009) 185002 B N J Persson and M Scaraggi

Figure 8. The friction coefficient, µ as a function of the product of
the sliding velocity and the fluid viscosity, ηv, and a log–log scale.
For the same system as in figure 4 but for three different
root-mean-square roughness values, 1, 3 and 6 µm.

Figure 9. The friction coefficient, µ, and the relative area of real
contact, A/A0, as a function of the sliding velocity (log–log scale).
For the same system as in figure 4.

force is minimal. Note that, when the friction is minimal, the

fraction of the load carried by the asperities is only ≈0.003.
This result depends on the shear stress σ1, but the value we

use is typical for PDMS rubber sliding on smooth hard inert

substrates [26]. Figure 11 shows the friction coefficient, µ, and

the minimum surface separation as a function of the logarithm

of the sliding velocity.

In figure 12 we show the friction coefficient, µ, as a

function of the product ηv, assuming no cavitation (red curve)

and with cavitation (green curve). It is remarkable how small

an effect the cavitation has on the relation µ(v), in spite of

the fact that the fluid pressure distribution, pfluid(x), is rather

different in the two cases. This is illustrated in figure 13 for the

same parameters as in figure 5, but without cavitation.

Note that, even in the absence of cavitation, the fluid

pressure results in a slight tilting of the surface of the sliding

object with respect to the substrate [27]. In fact, the interfacial

separation is very similar with and without cavitation (compare

figures 5 and 13). The average fluid film thickness, when most

Figure 10. The load force (per unit length) carried by the fluid and
the solid contact as a function of the sliding velocity (log–log scale).
For the same system as in figure 4.

Figure 11. The friction coefficient, µ, and the minimum surface
separation as a function of the logarithm of the sliding velocity. For
the same system as in figure 4.

Figure 12. The friction coefficient, µ, as a function of the product ηv

of the sliding velocity v and the fluid viscosity η, without cavitation
(red curve) and with cavitation (green curve) (log–log scale with 10
as basis). For the same system as in figure 4.

5
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Figure 13. The same as in figure 5 (i.e. E = 10 MPa and
v = 1.5× 10−3 m s−1) but without cavitation.

Figure 14. The friction coefficient, µ, as a function of the product ηv

of the sliding velocity v and the fluid viscosity η, without cavitation
(red curve) and with cavitation (green curve) (log–log scale with 10
as basis). The elastic modulus E = 100 MPa and frictional shear
stress σ1 = 10 MPa. The other parameters are as for the same system
in figure 4.

of the external load is carried by the fluid (as in figures 5–7),

is well approximated by the formula ū ≈ (κηv0λ/ p̄)1/2 (with

κ ≈ 0.2), where p̄ is the average fluid pressure in the ‘contact

area’ (see appendix C), which is similar to the Hertz average

pressure for the corresponding static contact problem.

In figures 14 and 15 we show similar results as in figure 12,

but for higher elastic modulus, E = 100 MPa (and σ1 =
10 MPa) and 1 GPa (and σ1 = 100 MPa), respectively. As

expected, in these cases the deviation between the results with

cavitation and with no cavitation is larger than for the case

where elastic modulus E = 10 MPa.

In figure 16 we show, for the case where no cavitation

occurs, the fluid pressure, the asperity contact pressure and the

interfacial separation for the case when the elastic modulus

E = 100 MPa and the sliding velocity v = 0.027 m s−1.

The other parameters are the same as in figures 13 and 5.

Similar results are shown in figure 17 for the case when the

elastic modulus E = 1 GPa and the sliding velocity v =
0.123 m s−1. Note that in this case the fluid pressure profile

Figure 15. The friction coefficient, µ, as a function of the product ηv

of the sliding velocity v and the fluid viscosity η, without cavitation
(red curve) and with cavitation (green curve) (log–log scale with 10
as basis). The elastic modulus E = 1 GPa and frictional shear stress
σ1 = 100 MPa. The other parameters are as for the same system in
figure 4.

Figure 16. The same as in figure 5 but for the elastic modulus
E = 100 MPa and the sliding velocity 0.027 m s−1.

is nearly antisymmetric around the midpoint x = 0. For the

limiting case of a rigid elastic cylinder (and rigid substrate)

the hydrodynamic pressure will be antisymmetric through the

mid-plane of the (symmetric) contact junction, i.e. no net

load will be carried by the fluid. When cavitation is included

in the calculation the fluid will (even for rigid solids) carry

some fraction of the load, but not as much as for elastic solids

(compare figures 12 and 15 and note that the minimal friction

is smaller in the case where the solid walls can deform).

3. Sphere on flat

We consider now the problem of an elastic ball (radius R)

with a rough surface sliding on a rigid perfectly flat surface.

We assume sliding along the x axis (see figure 3). The ball

is squeezed against the substrate by the force FN, and in the

contact region between the ball and the substrate occurs a

6
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Figure 17. The same as in figure 5 but for the elastic modulus
E = 1 GPa and the sliding velocity 0.123 m s−1.

nominal pressure (locally averaged):

p0(x) = pcont (x) + pfluid(x).

The normal load

∫ ∞

−∞
d2x p0(x) = FN. (18)

The contact pressure

pcont(x) = pcont(ū(x)) (19)

is defined in section 2.

The fluid flow is determined by the (isoviscous and

isodense) Reynolds equation [28]:

∇ ·
(

ū(x)3∇ pfluid(x)
)

= 6ηv0
∂ ū(x)

∂x
. (20)

We assume (macroscopic) cavitation, so that the fluid pressure

is everywhere larger than pcav. We measure pressures relative

to the atmospheric pressure and assume pcav = 0. Thus the

following boundary condition must hold:

pfluid → 0 as |x| → ∞ (21)

together with [28]

pfluid > pcav.

The elastic deformation field [25]

ū(x) = u0 + f (x) +
1

π E∗

∫

d2x ′ p0
(

x′)

×
(

1

|x − x′|
−

1

|x′|

)

, (22)

where u0+ f (x) is the interfacial separation for the undeformed

surfaces. We take f (0) = 0 so that u0 is the separation in the

center of the contact region.

It is convenient to introduce dimensionless quantities. Let

us measure length (x and ū) in units of R and pressure in units

of E∗. In these units, for a ball on a flat the equations above

take the form

p0(x) = pcont(x) + pfluid(x), (23)

pcont(x) ≈ β exp

(

−αū(x)
R

hrms

)

, (24)

∇ ·
(

ū(x)3∇ pfluid(x)
)

= λ
∂ ū(x)

∂x
, (25)

ū(x) = u0 + f (x) +
1

π

∫

d2x ′ p0
(

x′)

×
(

1

|x − x′|
−

1

|x′|

)

, (26)

f (x) = 1−
√

1− x2 − y2,
∫ ∞

−∞
d2x p0 (x) =

FN

R2E∗ ,
(27)

which depend on the dimensionless parameters λ =
6ηv0/(E∗ R), FN/(E∗ R2) and on the parameters α and

β which are determined by the surface roughness power

spectrum C(q).

The frictional shear stress is given by (13) with the fluid

contribution

σ fluid(x) = η
∂v(x, z)

∂z

∣

∣

∣

∣

wall

. (28)

The velocity profile in the gap (in the absence of wall slip):

v(x) =
1

2η
∇pfluid(x)z [z − ū(x)]+ v0

z

ū(x)
.

The nominal shear stress acting on the solid walls (see

footnote 3)

σ fluid(x) = ±∇ pfluid(x)
ū(x)

2
+

ηv0

ū(x)
, (29)

where the + and − signs refer to the surface z = ū and z = 0,

respectively. Because of the plane symmetry of the problem,

the resultant friction force acts only along the sliding direction.

The friction coefficient µ is determined by

µ FN =
∫

d2x σf(x), (30)

where the frictional shear stress σf was defined in section 2.

Depending on the lubricant supply, the integration of (29)

should be done over the whole surface or only over the non-

cavitating region. The main difference is the Couette friction

contribution (the term on the RHS of (29) which explicitly

depend on the sliding velocity) (see [29] for more details).

In this work we assume a flooded condition in the cavitation

zone, but the main results are not sensibly affected by this

assumption. The equations above are conveniently solved

numerically as described in appendix D.

In figures 18–22 we show the solid and fluid pressure

distributions and surface separation for increasing sliding

velocities, 1.31× 10−3, 1.18× 10−2 and 2.00 m s−1. We show

two-dimensional cross sections along the sliding direction (x

axis) and normal to the sliding direction (y axis), and also a

three-dimensional plot (xy plane). The parameters used in the

calculation are given in the figure caption of figure 18.

7
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Figure 18. The contact pressure distribution and the interfacial
separation between an elastic ball (reduced elastic modulus
E∗ = 1.6 MPa) and a nominal flat substrate with the
root-mean-square roughness 1.6 µm at three different x–z cross
sections, y = 0, 0.642 and 1.28 mm. The ball radius R = 1 cm and
the loading force FN = 1.3 N. The half-width of the Hertz contact
area is aH = 1.83 mm and the maximum and average Hertz contact
pressure are 0.186 MPa and 0.124 MPa, respectively. The roughness
is a self-affine fractal surface with the root-mean-square roughness
1.6 µm and with q0 = 2× 105 m−1 and q1 = 0.78× 1010 m−1 and
fractal dimension Df = 2.2. The fluid viscosity η = 0.1 Pa s. Sliding
velocity v = 1.31× 10−3 m s−1. The computational range is
[−1.5aH, 1.5aH] × [−1.5aH, 1.5aH] with 129 × 129 grid points.

Figure 19. The same as figure 18 but with y–z cross sections, x = 0,
0.642 and 1.28 mm.

In figures 23, 24 we show the total contact pressure for

different sliding velocities. Note that, independent of if the

fluid pressure is higher or lower than the solid pressure, p0(x)

(the sum of fluid pressure and asperity contact pressure) is

Hertzian-like (with a small broadening at the edges because

of the surface roughness and fluid leakage). This result is,

of course, expected as long as the surface separation is small

compared to the diameter of the Hertzian-like contact region.

Figure 25 shows the friction coefficient, µ, as a function

of the product of the sliding velocity and the fluid viscosity,

ηv, on a log–log scale. The calculation is for the same

system as in figure 18 but for three different root-mean-square

roughness values, 1, 1.6 and 3.6 µm. Note that, as expected,

Figure 20. Fluid and asperity contact pressure surfaces for the same
parameters of figure 18 but for the sliding velocity
v = 11.8× 10−3 m s−1. Because of the contact geometric symmetry,
only half the surface is shown for each field.

Figure 21. The same as figure 18 but for the sliding velocity
v = 2 m s−1.

Figure 22. The same as figure 19 but for the sliding velocity
v = 2 m s−1.

when the surface roughness decreases, the minimum in the

µ = µ(v) curve is shifted to lower velocities. This is easy

to understand since, in the limiting case of perfectly smooth

surfaces, within continuum hydrodynamics, the surfaces will

always be separated by a thin fluid film, and the minimum in

8
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Figure 23. Total pressure, for x–z cross section at y = 0, for
different sliding velocities (1.16× 10−6, 1.31× 10−3, 11.8× 10−3,
2 m s−1). The red line corresponds to the highest velocity. The lower
velocities overlap each other. The input parameters are the same as
figure 18.

Figure 24. Total pressure, for y–z cross section at x = 0, for
different sliding velocities (1.16× 10−6, 1.31× 10−3, 11.8× 10−3,
2 m s−1). The red line corresponds to the highest velocity. The lower
velocities overlap each other. The input parameters are the same as
figure 18.

friction (and the surface separation) is located at zero sliding

velocity.

Figures 26 and 27 show, respectively, the central and the

minimum separation as a function of ηv on a log–log scale.

At high enough sliding velocity the surfaces are everywhere

separated by a thin fluid film and the surface separation is then

nearly independent of the surface roughness amplitude.

Figure 28 shows the fraction of the loading force carried

by the fluid and by the asperity contact regions, and also the

maximum fluid and asperity contact pressures, as a function of

ηv (log–log scale), for the same system as in figure 18. The

vertical dashed line indicates the velocity where the friction

force is minimal. Note that the velocity where the friction

is minimal is much higher than the velocity where the load

carried by the fluid is equal to the load carried by the asperities.

Note, however, that this result depends on the magnitude of the

frictional shear stress σ1 in the asperity contact regions.

Figure 25. The friction coefficient µ as a function of the product of
the sliding velocity and the fluid viscosity, ηv (log–log scale with 10
as basis). For the same system as in figure 18 but for three different
root-mean-square roughness values, 1.0, 1.6 and 3.6 µm and
σ1 = 1 MPa. The vertical dashed lines correspond to the pressure
and separation fields of figures 18, 20 and 21.

Figure 26. The central separation as a function of the product of the
sliding velocity and the fluid viscosity, ηv (log–log scale with 10 as
basis). For the same system as in figure 18 but for three different
root-mean-square roughness values, 1.0, 1.6 and 3.6 µm.

Figure 29 shows the minimum and central separation as a

function of ηv. In the boundary lubrication regime the fluid-

induced deformation of the solid walls is negligible, and in

this case the minimum separation coincides with the central

separation. For high sliding velocities the axial symmetry is

lost and the surface separation takes a ‘horse-ear’ shape.

4. Flat on flat

In the study above we have assumed that the solid–solid

asperity contact regions are dry. This may be a good

approximation for hydrophobic surfaces and at low enough

sliding velocity where any thin fluid film in an asperity contact

region may be removed by a dewetting transition [13–15],

and the discussions in sections 2 and 3 are therefore most

relevant for hydrophobic systems. Here we assume hydrophilic

9
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Figure 27. The minimum separation as a function of the product of
the sliding velocity and the fluid viscosity, ηv (log–log scale with 10
as basis). For the same system as in figure 18 but for three different
root-mean-square roughness values, 1.0, 1.6 and 3.6 µm.

Figure 28. The supported squeezing load carried by the fluid and the
asperity contact and the maximum pressure, as a function of the
sliding velocity (log–log scale with 10 as basis). For the same system
as in figure 18. The vertical dashed line indicates the velocity where
the friction force is minimal.

surfaces. In this case the spreading pressure S > 0 and there

will be an effective short-ranged repulsion acting between the

solid walls, and unless the sliding velocity is very low and

the asperity contact pressure high enough, we expect a thin

fluid film in the asperity contact regions. We consider first

low sliding velocities. In this case the macroscopic shape of

the solid objects is of minor importance for the dependence

of the sliding friction, µ(v), on the velocity v. That is, the

nature of the surface separation at the inlet and at the exit

of the macroscopic (or nominal) contact area has a negligible

influence on µ(v) as compared to the nature of the (mainly

asperity-induced) separation between the solids in the apparent

contact area. In this section we will therefore assume that both

solids have nominally flat surfaces [16, 17].

In the absence of cavitation and elastic deformation, fluid

flow in a symmetric (around some point on the x axis) gap

profile cannot support an external load, i.e. pfluid(x) integrated

over all x will vanish. However, both cavitation (if it occurs)

Figure 29. The minimum and central separation as a function of the
sliding velocity (log–log scale with 10 as basis). For the same system
as in figure 18. The vertical dashed line indicates the velocity where
the friction force is minimal.

and elastic deformation of the solid walls will result in a non-

zero load capacity by the fluid film (see appendix C).

Consider an elastic solid with a randomly rough surface

sliding in a fluid against a flat, rigid, countersurface. Let us

study the interface at the magnification ζ . Let us write the load

acting on the asperities, which appear to be in contact with the

substrate at this magnification, as pcont(ζ )A0. Since a part of

the external load p0A0 is carried by the asperities and another

part by the fluid in the non-contact regions we have

pcont(ζ ) = p0 − pfluid(ζ ), (31)

where pfluid(ζ )A0 is the load (apparently) carried by the fluid

when the system is studied at the magnification ζ . Note that,

when we increase the magnification, the surface area A(ζ ) (the

contact area observed at the magnification ζ ) will decrease and

the load carried by the fluid will increase. At high enough

magnification the surfaces may be completely separated by a

thin fluid film, and at this magnification the total load will

be carried by the fluid (see figure 30). Since for infinite

sized systems there are infinitely high asperities, complete non-

contact will never occur in our model, but from a practical

point of view this difference between the model and reality is

unimportant.

An asperity contact region, which appears to be in perfect

contact with the substrate at the magnification ζ , is in fact

separated from the substrate with the (average) separation u(ζ )

(see figure 31). In addition, during sliding the surface is

slightly tilted relative to the countersurface, resulting in a local

fluid pressure (see appendix C):

p ≈ p∗
fluid + κηv0

λ(ζ )

u2(ζ )
(32)

where κ ≈ 0.2 and where p∗
fluid is the fluid pressure at

the boundary of the (apparent) asperity contact region. The

resolution λ(ζ ) = L/ζ , where L is the linear size of the

system. The (apparent) load carried by the fluid when the

system is studied at the magnification ζ + 1ζ is given by

10
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increasing

magnification ζ 

Figure 30. The asperity contact region between two solids in sliding
contact in a fluid. At high enough sliding velocity, at high enough
magnification the surfaces are observed to be separated by a thin
fluid film.

pfluid(ζ + 1ζ)A0, which must be equal to the (apparent)

load carried by the fluid when the system is studied at the

magnification ζ , pfluid(ζ )A0, plus the load carried by the fluid

in the surface area A(ζ ) − A(ζ + 1ζ) which moves out of

contact when the magnification increases from ζ to ζ + 1ζ .

The surface separation in the newly formed non-contact surface

area is u1(ζ ). Thus, using (32) it follows that

pfluid(ζ + 1ζ)A0 ≈ pfluid(ζ )A0

+ [A(ζ ) − A(ζ + 1ζ)]
[

p∗
fluid(ζ ) + κηv0

λ(ζ )

u21(ζ )

]

(33)

where λ = L/ζ . Here the contact area, A(ζ ), and the

interfacial separation, u1(ζ ), at the magnification ζ , are

assumed to be given by the contact mechanics theory of

Persson (see below), but with the external squeezing pressure

p0 replaced with the reduced squeezing pressure pcont(ζ ) =
p0− pfluid(ζ ), which takes into account that part of the external

load is carried by the fluid. In reality, the fluid pressure

and the asperity contact pressure do not act uniformly at the

interface so the present approach is a mean-field theory. We

will take p∗
fluid(ζ ) to be the average fluid pressure observed at

the magnification ζ so that p∗
fluid(ζ )[A0− A(ζ )] = pfluid(ζ )A0.

Substituting this in (33) gives

p′
fluid(ζ ) ≈ −pfluid(ζ )

A′(ζ )

A0 − A(ζ )
−

A′(ζ )

A0
κηv0

λ(ζ )

u21(ζ )
.

Integrating this equation gives

pfluid(ζ ) ≈
∫ ζ

1

dζ ′
[

−
A′(ζ ′)

A0

]

A0 − A(ζ )

A0 − A(ζ ′)
κηv0

λ(ζ ′)

u21(ζ
′)

.

(34)

The effective frictional stress is given by

σf ≈
A(ζ1)

A0
σ1 +

∫ ζ1

1

dζ

[

−
A′(ζ )

A0

]

ηv0

u1(ζ )
. (35)

magnification ζ 

elastic solid

rigid solid

ζ1

_
u (ζ)

Figure 31. An asperity contact region observed at the magnification
ζ . It appears that complete contact occurs in the asperity contact
region, but upon increasing the magnification it is observed that the
solids are separated by the average distance ū(ζ ).

The highest magnification ζ1 in this equation should be chosen

so that u1(ζ1) is of the order of nanometers, since one cannot

expect fluid continuum mechanics to be valid for fluid films

when the thickness becomes smaller than ∼1 nm, i.e. of

the order of the molecular diameter of the fluid molecules.

In fact, surface force apparatus measurements [31, 34] (and

molecular dynamics calculations [13]) have sometimes shown

deviation from bulk fluid behavior when the trapped fluid film

is several nanometers thick. In principle, such effects (if known

from measurements or computer simulations) can be taken into

account in the formalism developed above, e.g. by using a

viscosity which depends on the magnification (which can be

related to the film thickness, i.e. u = u1(ζ ) can be inverted to

ζ = ζ1(u)). In the numerical simulations presented below we

have chosen ζ1 so that u1(ζ1) = 1 nm, and assumed that the

viscosity is independent of the film thickness for u > 1 nm.

To complete the theory we need to give the equations

from which we can calculate A(ζ ) and u1(ζ ). We will use

contact mechanics theory developed by Persson [18, 20–23],

but with the asperity load A0 pcont(ζ ) now depending on the

magnification ζ (in the original theory there was no fluid at the

interface and the load carried by the asperities was independent

of the magnification). The (apparent) relative contact area

A(ζ )/A0 at the magnification ζ is given by [18, 19]

A(ζ )

A0
=

1

(πG)1/2

∫ pcont

0

dσ e−σ 2/4G = erf
( pcont

2G1/2

)

where pcont = pcont(ζ ) is given by (31) and where

G(ζ ) =
π

4

(

E

1− ν2

)2 ∫ ζq0

q0

dqq3C(q)

where the surface roughness power spectrum [30]

C(q) =
1

(2π)2

∫

d2x〈h(x)h(0)〉e−iq·x

11
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Figure 32. The friction coefficient as a function of the logarithm
(with 10 as basis) of the product between the fluid viscosity η and the
sliding velocity v. For an elastic solid (elastic modulus E = 10 MPa)
with a flat surface in contact with a hard substrate with a self-affine
fractal surface with the fractal dimension Df = 2.2 and the
root-mean-square (rms) roughness 1 µm. The fluid viscosity
η = 0.1 Pa s.

where 〈· · ·〉 stands for ensemble average. Here E and ν are the

Young’s elastic modulus and the Poisson ratio of the rubber.

The height profile h(x) of the rough surface can be measured

routinely today on all relevant length scales using optical and

stylus experiments.

We define u1(ζ ) to be the (average) height separating

the surfaces which appear to come into contact when the

magnification decreases from ζ to ζ − 1ζ , where 1ζ is a

small (infinitesimal) change in the magnification. u1(ζ ) is a

monotonically decreasing function of ζ , and can be calculated

from the average interfacial separation ū(ζ ) and A(ζ ) using

(see [23])

u1(ζ ) = ū(ζ ) + ū′(ζ )A(ζ )/A′(ζ ).

The quantity ū(ζ ) is the average separation between the

surfaces in the apparent contact regions observed at the

magnification ζ , see figure 31. It can be calculated from [23]

ū(ζ ) =
√

π

∫ q1

ζq0

dq q2C(q)w(q)

×
∫ ∞

p(ζ ′)

dp′ 1

p′

[

γ+3(1− γ )P2(q, p′, ζ )
]

e−[w(q,ζ )p′/E∗]2 ,

where ζ ′ = q/q0 and where γ is of order unity (but never

larger than unity; we use γ ≈ 0.4) and where

p(ζ ) = pcont(ζ )A0/A(ζ )

and

w(q, ζ ) =
(

π

∫ q

ζq0

dq ′ q ′3C(q ′)

)−1/2
.

The function P(q, p, ζ ) is given by

P(q, p, ζ ) =
2

√
π

∫ s(q,ζ )p

0

dx e−x2 ,

where s(q, ζ ) = w(q, ζ )/E∗.

Figure 33. The (nominal) frictional shear stress from the solid
contact area and from the fluid as a function of the logarithm (with
10 as basis) of the product between the fluid viscosity η and the
sliding velocity v. For the same system as in figure 32.

When we study the apparent contact area at increasing

magnification, the contact pressure p(ζ ) will increase and the

average separation ū(ζ ), between the surfaces in the (apparent)

contact regions observed at the magnification ζ will decrease.

In figure 32 we show the friction coefficient µ as a

function of the logarithm (with 10 as basis) of the product ηv

between the fluid viscosity η and the sliding velocity v. The

result is for an elastic solid (elastic modulus E = 10 MPa)

with a flat surface in contact with a hard substrate with the root-

mean-square (rms) roughness 1 µm. We have assumed that the

frictional shear stress in the area of real contact is σ1 = 1 MPa.

The area of real contact is now defined as the surface area

where the separation d < 1 nm. Since for hydrophilic surfaces

most likely a monolayer, or two, of the liquid molecules are

adsorbed on the solid walls, there is, of course, no reason for

σ1 to be the same as for hydrophobic surfaces. Note the abrupt

drop in the friction at v ≈ 50 µm s−1. We will denote this

effect as viscous hydroplaning.

In figure 33 we show the (nominal) frictional shear stresses

σcont(ζ1) and σfluid(ζ1), resulting from the solid contact area

and from the fluid regions, respectively, as a function of the

logarithm (with 10 as basis) of ηv. Note the abrupt drop

in the solid frictional shear stress at the onset of viscous

hydroplaning.

In figures 34 and 35 we show the (nominal) contact

pressure, pcont, and the (normalized) area of contact, A/A0,

respectively, as a function of the logarithm (with 10 as

basis) of the magnification. The curves are for the velocities

(from top to bottom) 4.3, 8.9, 18.3, 37.9, 78.5, 162 and

336 µm s−1. Note that, when the velocity is above the

threshold of viscous hydroplaning (i.e. v > 50 µm s−1), at

the highest magnification the nominal contact pressure, and the

area of solid contact both vanish, i.e. all the asperity ‘contact’

regions are separated by more than 1 nm, and (thin) fluid films

exist in all the asperity contact regions, resulting in the small

friction observed for v > 50 µm s−1.

The discussion presented in this section is a first attempt to

address a very complex problem using a new novel approach.
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Figure 34. The (nominal) contact (solid) pressure as a function of
the logarithm (with 10 as basis) of the magnification. For the same
system as in figure 32. The curves are for the velocities (from top to
bottom) 4.3, 8.9, 18.3, 37.9, 78.5, 162 and 336 µm s−1.

The theory can be improved and extended in various ways:

(a) The effective shear viscosity of thin confined fluid

films often depends on the thickness of the film, at

least when the film thickness becomes of the order of

nanometers [13]. Thus, fluid molecules confined between

smooth parallel surfaces are known to form layers parallel

to the surfaces [13, 31]. It is possible, if necessary, to use

a fluid viscosity η which depends on the local fluid film

thickness u = u(x), i.e. η = η(u) [2]. Since the surface

separation u = u1(ζ ) depends on the magnification ζ we

can consider η = η(ζ ) as a function of ζ and using this in

all the expressions above will account for the dependence

of the viscosity on the film thickness. It is also easy to

include a dependence of η on the local pressure or shear

rate, if necessary.

(b) In the study above we have assumed nominally flat

surfaces. However, if the (important) roughness occur on

length scales much smaller than the radius of curvatures

of the nominal surfaces of the (macroscopic) solids under

consideration (e.g. the radius of curvature of a ball in

a ball bearing), then the theory developed below can be

applied to this situation too by solving, together with

equation (34), an (average) mass conservation equation (a

Reynolds-like equation with flow factor corrections), but

this will be shown elsewhere. In this case the contact

pressure and the fluid pressure will depend not only on

the magnification but also on the spatial coordinate x in

the nominal contact area, i.e. pcont = pcont(ζ, x) and

pfluid = pfluid(ζ, x) with

pcont(ζ, x) + pfluid(ζ, x) = p0(x).

The macroscopic (or nominal) contact pressure and fluid

pressure are given by pcont(x) = pcont(ζ1, x) and

pfluid(x) = pfluid(ζ1, x), respectively.

5. Discussion

The theory presented in sections 2 and 3 (and 4) is of the

mean-field type, where the strongly fluctuating asperity contact

Figure 35. The normalized (apparent) contact area A/A0 as a
function of the logarithm (with 10 as basis) of the magnification. For
the same system as in figure 32. The curves are for the velocities
(from top to bottom) 4.3, 8.9, 18.3, 37.9, 78.5, 162 and 336 µm s−1.

pressure is replaced by a slowly varying (locally averaged)

contact pressure pcont(x). In addition, it is assumed that

pcont(x) is related to the local (average) separation ū(x) as

obtained for stationary solids without adhesion. When the

spreading pressure S < 0 an effective adhesion occurs

between the solids. This effect can be taken into account by

using the relations between ū and the squeezing pressure p0,

and between the contact area A and p0, obtained using the

formalism developed in [21], which includes adhesion (which

depends on the interfacial binding energy γ = −S). However,

if S is close to zero, then the adhesional effect will be small.

Thus, the results presented in sections 2 and 3 should hold as

long as the magnitude of S is small enough (but S negative).

In figure 36 we compare the Couette friction coefficient

as measured by Bongaerts et al [32] (for a PDMS rubber ball

sliding on a PDMS disc), with the prediction of the model

of section 3, with a dry shear stress σ1 = 1 MPa. In

our calculation we assume a physically reasonable roughness

power spectral density C(q), with the same rms roughness

amplitude as the measured one. The theory of section 3 does

not include the fluid-induced deformation of asperities (see

section 4), but the agreement between theory and experiment in

the boundary and mixed region is nevertheless relatively good.

The reason for this may be that the asperity contact regions

tend to be dry due to dewetting transitions, as expected for

hydrophobic systems at low sliding velocities.

In the hydrodynamic range the slope of the calculated

relation between v and µ agree perfectly with the measured

slope, but the magnitude differs by about a factor ∼2. The
reason of the latter difference may, at least in part, be related to

the different adopted geometrical set-up in the experiment [32]

as compared to our model. Indeed in our model the ball and

substrate velocities are always constant (say, ball sliding in the

x direction on the flat countersurface), while in the experiment

the ball is rotating (with slip) following a circular track on the

substrate, and this difference can be important when, say, the

ball radius is comparable to the disc radius. Moreover, some

starvation may also affect the set-up and reduce the mean oil
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Figure 36. Friction coefficient for PDMS–PDMS interaction
from [32]. The green curve (theory) corresponds to the predicted
Couette friction from the theory of section 3. Adopted parameter:
reduced elastic modulus 1/E∗ = (1− ν2a)/Ea + (1− ν2b )/Eb,
E∗ = 1.6 MPa, radius R = 0.95 cm, loading force FN = 1.3 N,
sliding-to-roll-ratio 0.5. The roughness is a self-affine fractal surface
with the root-mean-square roughness 3.6 µm and with
q0 = 1× 104 m−1 and q1 = 0.78× 1010m−1 and fractal dimension
Df = 2.2. The computational range is
[−4.25aH, 1.5aH] × [−3aH, 3aH] with 116× 121 grid points.

gap between surfaces; this will directly increase the measured

Couette friction.

In the study above we have assumed that a frictional shear

stress σ1 acts in the area of real (or atomic) contact. This

is a reasonable assumption if the hard solid (substrate) is flat

and smooth (no surface roughness), while the rubber surface

has surface roughness. In this case the same rubber asperities

will be in contact with the substrate at all times and no

(asperity-induced) time-dependent deformation of the rubber

will occur. Thus, as the surface roughness amplitude increases

the area of real contact will decrease and the contribution to

the friction from the asperity contact region will decrease.

On the other hand, when the (hard) substrate is rough, the

friction may increase as the surface roughness increases. This

results from the fact that, as the rubber slides in contact

with a hard substrate asperity, the asperity will generate time-

dependent deformations of the rubber which, because of the

internal friction in the rubber, will contribute to the sliding

friction [18, 33]. If the rubber is very lossy for the relevant

perturbing frequencies, the asperity contribution may dominate

the friction for low sliding velocity (boundary lubrication), in

which case the sliding friction will increase with increasing

surface roughness, even if the area of real (atomic) contact

decreases. The same behavior is also expected even if a fluid

film separates the surfaces, assuming that the film thickness

is much smaller than the substrate roughness amplitude (see

section 6). We note that, while in static contact, the original

system can be replaced by an elastic solid with a smooth

surface in contact with a rigid solid with a rough surface given

by the combined surface roughness of the original system: this

is in general not true for surfaces in relative motion.

For hydrophobic systems, the theory presented in

sections 2 and 3 cannot be applied for perfectly smooth

surfaces. For this limiting case there is likely to be hysteresis in

the µ(v) curve between the case where the velocity increases

from a very small value (corresponding to dry contact) and

the case when the velocity decreases from a high velocity

(corresponding to lubricated contact). The first case has been

studied by Martin et al [27]. It was found that the transition

from dry contact to lubricated contact occurs in a narrow

velocity range (less than a factor of 2 change in the velocity).

This is in sharp contrast to the case studied in section 2

where, even for the smoothest surface, the transition occurs

gradually over nearly two decades in velocity. Martin et al

found that the transition velocity is determined approximately

by the condition that the velocity of ‘forced wetting’ (given

by the sliding velocity v) equals the dewetting velocity vdewet
observed for the case of stationary surfaces (i.e. v = 0). This

assumption results in a transition from dry contact to lubricated

contact as the sliding velocity increases in a narrow velocity

region around [27]

vc ≈
(

|S|4

η3E R

)1/3

.

When the sliding velocity is lowered, the transition to dry

contact is likely to occur at a lower sliding velocity than vc and

will be induced by thermally activated fluctuations, which may

result in the nucleation of the fluid ‘squeeze-out’. In this case

the transition to dry contact should also depend on the speed

with which the velocity is reduced.

In the theory presented in sections 2 and 3 it is assumed

that the area of real contact is dry, i.e. it is assumed that

the sliding velocity in the mixed lubrication region is below

the dewetting velocity in the asperity contact regions. For

hydrophilic surfaces the situation is more complex and the

surfaces are probably nearly never perfectly dry, but at least

one or two monolayers of ‘fluid’ may cover the sliding surfaces

even in the ‘area of real contact’ [13]. This will modify

(as compared to perfectly dry surfaces) the frictional shear

stress in the area of real contact. In addition, for very thin

fluid films (which may never occur for hydrophobic surfaces

due to dewetting already at a finite fluid film thickness), the

viscosity of the fluid may be modified due to layering of

the molecules parallel to the hard substrate, see [2]. Such

layering is known to modify the effective shear viscosity of

the fluid [34] and may also result in ‘quantized’ squeeze-out

of the ‘fluid’ where individual monolayers of fluid molecules

are squeezed out from the interface in abrupt transitions at

rather well-defined critical normal pressures [13, 34]. Clearly,

such effects can be taken into account in the theory of mixed

lubrication for hydrophilic surfaces (section 3) only when these

‘last-monolayers’ properties, which result from the fluid–solid

wall interaction, are known from experiments [13, 34] or

computer simulations (e.g. molecular dynamics) [13].

6. Applications

Here we will briefly consider two applications of the theory

presented above, namely to sliding friction for (a) rubber wiper

blades, and (b) tires on lubricated road surfaces.
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Figure 37. Friction coefficient as a function of ηvL/F (on a log
scale with 10 as basis) for rubber sliding on a hard substrate for three
different loads (per unit length): F/L = 4, 10 and 36 N m−1. The
rubber cylinder has the radius R = 0.001 m and the same surface
roughness as in figure 4. The fluid viscosity η = 0.001 Pa s. With
increasing load, the Hertzian average pressure and the half-width of
the Hertz contact area increases from 0.10 MPa, 20 µm (for
F/L = 4 N m−1), 0.16 MPa, 31 µm (for F/L = 10 N m−1) to
0.31 MPa and 59 µm (for F/L = 36 N m−1).

Figure 38. The relative (projected) contact area as a function of the
logarithm of ηvL/F . For the same system as in figure 37.

Wiper blades

Rubber wiper blades are used to remove water from glass

windows. After some use the rubber blades typically develop

(because of wear) a surface roughness with an rms amplitude

of the order of one micrometer. Consider a rubber cylinder

with radius R = 1 mm sliding on a rigid flat substrate. We

assume the rubber cylinder to have the same surface roughness

as for the system studied in figure 4 (i.e. the rms roughness is

1 µm and the Hurst exponent H = 0.8). In figure 37 we show

the dependence of the friction coefficient µ on the parameter

ηvL/F for three different loads (per unit length): F/L = 4, 10

and 36 N m−1. At high velocity (in the hydrodynamic region)

the three cases give (almost) the same behavior, but they differ

drastically in the mixed lubrication region. For very low sliding

velocities (the boundary lubrication region) the three cases give

Figure 39. The relative (projected) contact area as a function of the
logarithm of the sliding velocity. For the same system as in figure 37.

Figure 40. The same as in figure 37 but with a linear scale.

again similar results, but this holds in the present case only

because the area of real contact is proportional to the load. For

smoother surfaces (or for higher loads) this is no longer the

case as the area of real contact will depend nonlinearly on the

load.

Figures 38 and 39 show, for the same system as in

figure 37, the relative (projected) contact area as a function of

the logarithm of ηvL/F and as a function of v, respectively.

Note that the relative contact area for low sliding velocities

depends nonlinearly on the load, but this is due to the increase

of the nominal contact area A0 with increasing load (A0 ∼
F1/2 for cylinder contact), and A is in fact proportional to the

load in the present case (see above).

In figure 40 we show the same as in figure 37 but on a

linear scale. The results presented in this figure are very similar

to the results obtained by Koenen et al [35, 36] for rubber wiper

blades (see figure 41), although in this application it is likely

that the surfaces are smoother and the rubber elastic modulus

is higher than used in our model calculation. In addition, the

radius of curvature of the rubber edge in contact with the glass

surface is likely to be smaller than R = 1 mm used above.
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0

Figure 41. Friction coefficient as a function of the Sommerfeld parameter ηv/P. Reproduced from [35]. Copyright 2007 with permission
from Elsevier.

Tires

The friction between a tire and a road surface is mainly due

to the time-dependent deformation of the rubber by the road

surface asperities. That is, during slip the road asperities

will generate time-dependent (pulsating) forces acting on

the rubber surface and, because of the internal friction in

the rubber, some part of the deformation energy will be

transformed into heat. Since road surfaces have surface

roughnesses over a large range of length scales (say, from cm to

nm), the tire–road friction will have contributions from rubber

deformations over a wide distribution of length scales.

When the contact between a tire and a road is observed

at increasing magnification, the area of real contact will

monotonically decrease. At some high magnification, typically

corresponding to a resolution (or wavelength λc) of the order

of micrometers, the stresses and the temperature increase

during slip will be so high that bonds in the rubber will

rupture resulting in, for example, micrometer sized cracks

and wear processes. In the theory of rubber friction we have

developed, we only take into account the asperity-induced

deformation of the rubber down to the length scale λc. The

range of surface roughness length scales (or wavelength) which

contributes to the friction will change from one surface to

another in such a way that at the resolution λc the stresses (and

the temperature increase) at the rubber surface corresponds

to the rupture limit. This theory explains why the tire–

road friction varies very little between different (clean and

dry) road surfaces [37, 38], in spite of large changes in the

surface topography and root-mean-square roughness. Thus, a

smoother road surface will (in comparison to a surface with

larger roughness), in general, result in a smaller cutoff λc, and a

larger range of surface roughness wavelength components will

contribute to the friction in such a way that there is only a small

change in the friction in most cases. On the other hand, the

predicted wear rate [39], which depends on λc, may change

tremendously between different surfaces (it tend to decrease

with decreasing surface roughness amplitude, assuming no

change in the ‘sharpness’ of the roughness), which is in good

agreement with experimental observations [38].

The results above are for clean surfaces. If the tire surface

is contaminated by small particles, then the cutoff length λc
may instead be determined by the (typical) particle diameter

D. Similarly, if there is a liquid on the road surface the cutoff

may be determined by the liquid squeeze-out process. In this

case the cutoff will depend on the thickness of the fluid layer,

on the viscosity of the fluid and on the tire rolling and slip

velocities. Thus, in this case the effective cutoff length λc
is not determined by the rupture strength of the rubber and

one now expects (and observes) a much larger spread in tire–

road friction values between different road surfaces, and also

smaller tire tread wear.

For flooded road surfaces and high enough car velocity

(typically above 60 km h−1) there may not be enough time to

squeeze out the water between the tire and the road, resulting in

a thick water film between the tire and the road and a very low

friction (hydroplaning). For thick water films the squeeze-out

is determined by the inertia of the water and does not depend

on the water viscosity. Here we are instead interested in the

much more common case where most of the water is squeezed

out from the tire–road contact regions and where the squeeze-

out dynamics depends on the water viscosity. In section 4

we have shown that in this case viscous hydroplaning may

occur if the slip velocity is high enough. As long as the water

film, which occurs in the asperity contact regions observed at

the magnification ζ , is much thinner than the height of the

asperities, which typically are of order4 hrms(ζ ), the water film

has a negligible influence on the asperity-induced contribution

to the rubber friction. However, when the water film thickness

is of the order of the height of the asperities it will effectively

smooth the road surface so that asperities, which can be

observed at higher magnification, will not induce deformations

of the rubber surface and will hence not contribute to the rubber

friction. Thus, we conclude that the fluid film will introduce

an effective cutoff so that only road surface roughness with

wavelength λ > λc = λ0/ζc (where λ0 is the surface roughness

power spectrum roll-off wavelength) will contribute to the

4 The root-mean-square roughness hrms(ζ ), due to the surface roughness

components with wavevectors q > q0ζ , can be calculated from the surface

roughness power spectrum using h2rms = 2π
∫ q1

q0ζ
dq qC(q).
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Figure 42. The logarithm (with 10 as basis) of the (normalized)
contact area as a function of the logarithm (with 10 as basis) of the
magnification ζ = q/q0 for a rubber block (elastic modulus
E = 10 MPa, Poisson ratio ν = 0.5) sliding on a asphalt road
surface in a fluid with the viscosity η = 0.01 Pa s. Results are shown
for several sliding velocities: v = 2, 3, 5, 7, 10, 14, 21 and 30 m s−1.
Note the reduction in the contact area due to viscous hydroplaning.

rubber friction, where cutoff magnification ζc is defined by the

condition that the contact area A(ζ ) → 0 as ζ → ζc. In

addition, the area of real contact for ζ < ζc will be reduced

due to the fact that part of the load will be carried by the fluid.

This is illustrated in figure 42 which shows the (normalized)

contact area as a function of the magnification ζ = q/q0
(log–log scale), calculated using the theory of section 4 for

a rubber block (elastic modulus E = 10 MPa, Poisson ratio

ν = 0.5) sliding on an asphalt road surface in a fluid with

the viscosity η = 0.01 Pa s. This fluid viscosity is higher

than for clean water but may be typical of contaminated water

on wet road surfaces immediately after raining has started.

In the calculation we have used the measured road surface

power spectrum C(q) and results are shown for several sliding

velocities v = 2, 3, 5, 7, 10, 14, 21 and 30 m s−1. Note the

reduction in the contact area (due to viscous hydroplaning),

which is particularly strong for the two highest slip velocities.

For the present road surface (new asphalt road), for clean water

(viscosity η ≈ 0.001 Pa s) and slip velocities v < 30 m s−1,

the viscous hydroplaning is negligible. However, even in this

case there may be a reduction in the friction from water trapped

(or sealed off) in cavities as discussed in [40].

There will also be a contribution to the friction from

shearing the thin fluid film in the non-contact tire–road

footprint, but this contribution is probably negligible in most

cases. We will present detailed calculations of viscous

hydroplaning for tires elsewhere.

7. Summary and conclusion

We have presented a simple description of the transition from

boundary lubrication at low sliding velocities to hydrodynamic

lubrication at high sliding velocities. Our treatment is

based on a recently developed contact mechanics theory

which takes into account the long-range elastic deformation

of the solids. We first considered the sliding of elastic

cylinders and spheres on nominally flat substrates. In these

treatments the asperity contact regions were assumed to be

dry, as expected for hydrophobic systems at low enough

sliding velocities. The asperity interactions were taken to

depend on the interfacial separation ū(x) as pcont(x) ∼
exp(−αū(x)/hrms) (the Greenwood–Williamson [41] contact

mechanics theory predicts a relation which is Gaussian-like

rather than exponential). We note that this form of the solid–

solid interaction has been found to be in excellent agreement

with experiment [42]. One interesting result of the analysis

in section 2 is that, for elastically soft solids (such as rubber),

the exact boundary condition used when solving the fluid flow

problem has only a very small influence on the calculated

friction. That is, whether cavitation occur or not has only a

small influence on the friction; even without cavitation the fluid

pressure will deform the elastic solids in such a way that the

load capacity of the sliding junction is nearly independent of

whether cavitation occurs or not. For elastically hard solids

this is, of course, not the case and in the limit of rigid solids

the load capacity (in the absence of cavitation) for a sliding

junction, which is symmetric around some point along the

sliding direction, will vanish.

We have also studied the case where the asperity contact

regions tend to be separated by thin fluid films, as always

expected for hydrophilic systems unless the sliding velocity

is extremely small. For this case we assumed nominally flat

surfaces, but the analysis can be easily extended to solid objects

with (nominally) curved surfaces.

We have presented applications to wiper blades and also

briefly discussed tire friction on wet road surfaces. The

theoretical results are in good qualitative agreement with

experimental data for wiper blades, while detailed calculations

for tires on wet road surfaces will be presented elsewhere.

The results presented above may also be applied to many

other systems of interest, e.g. to rubber seals [43] and gel

systems [44, 45].

Finally, we note that an accurate description of

the transition from boundary lubrication to hydrodynamic

lubrication for rough surfaces is a very complex problem, but

we believe that the present treatment captures much of the

important physics, and that it can be improved and extended

in various ways.

Appendix A

If a fluid is in statistical equilibrium with the normal

atmosphere, molecules from the atmosphere (mainly O2 and

N2) are dissolved in the fluid. Thus, if in any region in the

fluid the pressure would fall below atmospheric pressure, the

fluid will be unstable against cavity formation. That is, a

cavity would form containing gas at atmospheric pressure. The

gas molecules in the cavity result from the diffusion of the

atmospheric gas dissolved in the fluid into the cavity. However,

cavitation in a homogeneous liquid is usually a thermally

activated process. The energetic barrier to be overcome is due

to the surface energy of the (small) critical ‘hole’ formed in

the liquid. In order to nucleate a cavity in a short time, a large

negative pressure (tensile stress) may be necessary.
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The energy to form a small spherical hole in a liquid at

the negative pressure p is U(R) = −|p|4π R3/3 + γ 4π R2.

The maximum of U(R) occurs for R = Rc = 2γ /|p| and the
barrier height1E = U(Rc) = 4πγ R2c/3. The probability rate

of cavitation

w ≈ (V/a3)νe−1E/kBT (A.1)

where V/a3 is the number of ‘places’ where a cavity can

form (V is the fluid volume, a of the order of an inter-

atomic distance in the fluid) and ν is a frequency of order

ν ≈ 1012 s−1. In order for cavitation to occur in, say, a volume

V = 1 cm3 and on a timescale of seconds, 1E should be of

the order of electron volts, which gives Rc of the order of a few

nanometers and the pressure p ≈ −10 MPa. Thus, unless the
magnitude of the (negative) pressure is very large, it may take

a long time to nucleate the cavity. However, in most practical

situations the nucleation of a cavity is not a homogeneous

process as assumed above, but occurs at some defect on the

solid walls, or may involve some trapped air bubbles at the

interface resulting, for example, from incomplete wetting.

In the present case the pressure fluctuations induced by the

shortest wavelength roughness are highest, so it may be that

the cavities are induced first at the most narrow constrictions

at the interface (but involving length scales larger than Rc). In

section 3 we showed that the pressure induced in the liquid

at the length scale λ is of order p ≈ κηv0λ/u2. Assuming

u ≈ 1 nm, λ/u ≈ 100 and using η = 0.1 N s m−2 gives the

pressure fluctuation of order 10 MPa already for the sliding

velocity v0 of order 10
−3 m s−1.

It would be very interesting to study (using optical

methods) the (time-dependent) formation of cavities at the

interface between a (transparent) perfectly flat glass surface

sliding in a liquid in contact with a stationary rubber surface

with surface roughness. We note, as a curiosity, that very large

negative pressures (up to −100 MPa for high surface tension
liquids such as water), may occur in (very short, ∼1 nm)
capillary bridges. It has often been stated in the literature that

this should result in cavity formation and the break-down of the

capillary bridges. However, this conclusion is incorrect, since a

capillary bridge is a thermodynamically stable (minimum free

energy) state. Of course, strong density fluctuations (which

may be interpreted as the rapid formation and collapse of small

cavities) may occur in the fluid, but the capillary bridge is

nevertheless stable.

Appendix B

Equations (2)–(4), (6) and (7) in section 2 are conveniently

solved numerically as follows. For zero sliding velocity if

hrms ≪ R we expect the contact pressure to be Hertz-like so

that

pcont ≈ pH =
2FN

π La

[

1−
( x

a

)2
]1/2

,

and we get from (4)

ū =
hrms

α
ln

(

β E∗

pH

)

,

which is our starting value for ū(x). Next we increase the

sliding velocity v0 in (very small) steps 1v as follows:

First put v0 = 0 and put u∗ large enough.

Start

Replace v0 → v0 + 1v. Calculate the fluid pressure

pfluid(x) = pa + 6ηv0

∫ x

−∞
dx ′

(

1

ū2(x ′)
−

u∗

ū3(x ′)

)

, (B.1)

which we integrate until pfluid(x) vanish, which will happen

for some value x = x1 of the x coordinate. Next we replace

u∗ with ū(x1). We introduce the renormalized contact pressure

pnewcont = κpcont and choose κ so that the pressure

p0 = pnewcont + pfluid, (B.2)

when integrated over x gives the loading force per unit length

FN/L. This gives

κ =
FN/L −

∫ x1
−∞ dx ′ pfluid(x ′)

∫ x1
−∞ dx ′ pcont(x ′)

. (B.3)

Note from (7) it follows that ū(0) = u0 and using (4) this gives

u0 =
hrms

α
ln

(

β E∗

pnewcont

)

. (B.4)

We can write ū = u0 + w where

w(x) =
x2

2R
−

2

π E∗

∫ ∞

−∞
dx ′ p0(x ′)ln

∣

∣

∣

∣

x − x ′

x ′

∣

∣

∣

∣

. (B.5)

Finally, we calculate the new contact pressure

pcont = β E∗exp

(

−α
ū(x)

hrms

)

. (B.6)

Return to start

If 1v is small enough, as the procedure outlined above is

iterated n times it will give the properties of the system as the

sliding velocity increases from zero up to n1v.

Appendix C

Consider first a sliding junction where the sliding object has a

flat surface tilted relative to the flat countersurface so the gap

separating the solids has the height u0 at the fluid exit and the

height u1 > u0 at the fluid inlet. Neglecting fluid side-leak

(which anyway is absent for the cylinder geometry studied in

section 2), the average fluid pressure acting on the sliding solid

is

pfluid ≈ pa + κηv0
λ

ū2
(C.1)

where pa is the fluid pressure outside the sliding junction,

ū = (u0 + u1)/2 is the average separation and κ is a number

which only depends on ξ = u1/u0 (see, e.g., [12]):

κ =
3

2

(

ξ + 1
ξ − 1

)2 [

lnξ − 2
ξ − 1
ξ + 1

]

.

18



J. Phys.: Condens. Matter 21 (2009) 185002 B N J Persson and M Scaraggi

If we assume that (ξ − 1)/(ξ + 1) ≪ 1 we have κ ≈
0.5(ξ − 1). From the simulations in section 2 we obtain

ξ ≈ 1.4 for all velocities where the fluid pressure is non-

negligible (figures 5–7). This gives κ ≈ 0.2. Using this we

can calculate the average fluid film thickness from (C1), which

is in good agreement with the values obtained from figures 5–

7, and also with experiment [27]. In fact, Martin et al [27]

have given a simple but crude argument for why κ should be at

least approximately constant, independent of the details of the

system under consideration.

Appendix D

Equations (23)–(27) are solved (numerically) with two

different approaches depending on the lubrication regime,

i.e. on the prevalence of hydrodynamic-driven phenomena

or dry contact-driven phenomena. We denote the algorithm

for boundary lubrication as BLP, and the algorithm for mixed

and hydrodynamic lubrication by MHLS. The computational

domain is a rectangular area and we use a constant grid

size. The x direction is along the sliding direction. Both the

numerical approaches require the discretization of the elastic

integral (26)

ūi j = u0 + fi j +
∑

hk

(

Dhk
i j − Dhk

00

) [

p0
]

hk
, (D.1)

where ūi j is the separation at the grid point (i, j), u0 is the

central separation, fi j is the undeformed shape of the contact

and Dhk
i j is the discrete elastic kernel, with the translational

invariance and symmetry property Dhk
i j = D

h−i,k− j

00 =
D

|h−i|,|k− j |
00 (note: Dhk

i j can be obtained from the classical Love

constant-square-pressure solution for the elastic half space).

[p0]hk is the zero-order expansion of the pressure field in the

point (h, k). We use the convergence criteria:

N1/2

√

∑

i j

(

sn
i j − sn−1

i j

)2

∑

i j

∣

∣

∣
sn−1

i j

∣

∣

∣

< εs

where sn
i j is ūn

i j or [pn
c ]i j or [pn

f ]i j (in this appendix we denote

pfluid as pf and pcont as pc). In the present work we do not

study starvation effects [29] because it does not change the

basic phenomenon.

BLP for boundary lubrication

In the boundary regime, the effect of the fluid on the contact

behavior is almost negligible. Thus, the solution of the dry

contact problem will dominate the solution of the complete

problem. In this case, the main algorithm loop is shown in

figure D.1.

The BLP is an iterative contact solver (m-index loop)

connected to a successive under-relaxation (SUR) process for

the numerical convergence error dumping. To initialize the

calculation, a Hertzian contact pressure or a solution from a

different velocity run can be used. In each iteration, the fluid

solver updates the fluid pressure with the actual approximation

Figure D.1. BLP main loop.

[p′
f]m

i j from the previous separation ūm−1
i j . After a convergence

check and under-relaxation of the fluid pressure (with α f in

the range = 10−1 to 10−3, the higher for smaller roughness),

the load conservation is applied by rescaling fluid and solid

pressure and updating the central separation, as described

in appendix B for the line contact case. With the scaled

pressure fields, the elastic integral is performed, followed by

a convergence error check and under-relaxation of the actual

separation approximation (with αu in the range = 10−1 to

10−3, the higher for smaller roughness). Finally, from the

relaxed separation, the solid pressure is updated and under-

relaxed (αc = 0.5) and the load conservation is performed

again by scaling the pressure fields. In our calculations, a

convergence separation error of 10−5 and a convergence fluid

pressure error of 10−4 was used.

The fluid solver (the l-index loop, inside them-index loop)

is an iterative solver based on the finite difference method to

discretize (25) by mean of central second-order difference for

both sides of the equality. The error relaxation is achieved by

Gauss–Seidel (GS) sweeps along the x direction:

Ei j

[

p′
f

]l

i j
= −

(

Ai j

[

p′
f

]l

i−1, j
+ Bi j[p f ]l−1

i+1, j

+ Ci j

[

p f

]l−1
i, j−1 + Di j [p f ]l−1

i, j+1
)

+ L i j
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Figure D.2. MHLS main loop.

if [p′
f]l

i j > 0 and [p′
f]l

i j = 0 if [p′
f]l

i j < 0. Here [p f ]l−1=0
i j =

[p f ]m−1
i j . For SUR

[p f ]l
i j = [p f ]l−1

i j + α
(

[

p′
f

]l

i j
− [p f ]l−1

i j

)

where α is generally in the range 0.6–0.8. The l-index loop

is stopped after reaching a convergence error of 10−7. The

calculation of frictional fluid stress is trivial. For the asperity–

asperity interaction numerical approach, see [18].

MHLS for mixed and hydrodynamic lubrication

In the mixed and hydrodynamic regimes the asperity contact

plays a minor role because of the increased separation due to

the higher fluid pressure. In this case the BLP algorithm is

not able to relax the residuals and the BLP procedure starts

to diverge as soon as the fluid pressure becomes of the same

order as solid pressure. This is a consequence of the nonlinear

coupling between the fluid pressure and the separation in the

Reynolds equation, which is not adequately handled in the

BLP method. We now describe the MHLS algorithm (see

figure D.2) which is able to handle this situation.

The algorithm is an iterative solver of the Reynolds

equation coupled with the asperity interaction problem

reformulated as a Fredholm problem. For the mixed and

hydrodynamic range, the complete problem solution is driven

(or dominated) by the fluid equation. For large separation

(hydrodynamic range), the MHLS becomes simply an

elastohydrodynamic lubrication (EHL) solver. The algorithm

requires input solution fields (e.g. from a previously obtained

BLP solution, or simply using a Hertzian-like fluid pressure)

in order to initialize the system. The relevant features are

the Reynolds sweep algorithm (RSA), the central separation

updater (CSU) and the Fredholm solver (FS).

The RSA updates the fluid pressure solution by one-

sweep-relaxing of the residuals of the Reynolds equation. By

considering the general m iteration, the residuals of the fluid

equation take the form

Lm
i j = fi+1, j − fi−1, j +

∑

hk

(Dhk
i+1, j − Dhk

i−1, j )([p f ]m

+ [pc]m)hk − [Am
i j [p f ]m

i−1, j + Bm
i j [p f ]m

i+1, j

+ Cm
i j [p f ]m

i, j−1 + Dm
i j [p f ]m

i, j+1 + Em
i j [p f ]m

i, j ], (D.2)

where (25) was discretized by mean of second-order central

difference scheme for both sides of the equality. The

coefficients of (D.2) are

Am
i j =

[

ū3
]m

i−1/2, j

2

λδx

, Bm
i j =

[

ū3
]m

i+1/2, j

2

λδx

Cm
i j =

[

ū3
]m

i, j−1/2
2

λδx

δ2x

δ2y
, Dm

i j =
[

ū3
]m

i, j+1/2
2

λδx

δ2x

δ2y

Em
i j = −

2

λδx

[

[

ū3
]m

i−1/2, j
+

[

ū3
]m

i+1/2, j

+
δ2x

δ2y

(

[

ū3
]m

i, j−1/2 +
[

ū3
]m

i, j+1/2

)

]

(D.3)

and implicitly depend on the fluid solution (through the

Fredholm equation, see below). The fluid pressure is updated

by a Newton–Raphson (NR) step:

∑

ab

[

∂L i j

∂[p f ]ab

]m−1
(

[p f ]m − [p f ]m−1)

ab
= −Lm−1

i j

while if [p f ]m
ab < 0 then [p f ]m

ab = 0.

(D.4)

Observe that (D.4) cannot be solved with direct methods (a

simple matrix inversion does not account for the cavitation

condition, that is, it will solve a fluid equation that is not

valid in all the domain). Depending on a third power,

the coefficients (D.3) will vary on many scales into the

computational domain; this suggests different behaviors of the

fluid equation and so different degrees of coupling with the

solid–solid interaction problem (a common numerical problem

in the EHL community). For this reason, the domain is divided

into three zones, namely a high fluid pressure zone C1, a low

pressure zone C2 and a cavitation zone C3.

Equation (D.4) is computationally simplified by consider-

ing the singularity of the elastic kernel:

−Lm−1
i j =

[

∂L i j

∂[p f ]i−2, j

]m−1
(

[p f ]m − [p f ]m−1)

i−2, j

+

[

∂L i j

∂
[

p f

]

i−1, j

]m−1
(

[p f ]m −
[

p f

]m−1
)

i−1, j

+
[

∂L i j

∂[p f ]i+2, j

]m−1
(

[p f ]m − [p f ]m−1)

i+2, j

+

[

∂L i j

∂
[

p f

]

i+1, j

]m−1
(

[p f ]m −
[

p f

]m−1
)

i+1, j

+
[

∂L i j

∂[p f ]i, j

]m−1
(

[p f ]m − [p f ]m−1)

i, j

(i, j) ∈ C1, (D.5)
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−Lm−1
i j =

[

∂L i j

∂[p f ]i−1, j

]m−1
(

[p f ]m − [p f ]m−1)

i−1, j

+

[

∂L i j

∂
[

p f

]

i+1, j

]m−1
(

[p f ]m −
[

p f

]m−1
)

i+1, j

+
[

∂L i j

∂[p f ]i, j

]m−1
(

[p f ]m − [p f ]m−1)

i, j

(i, j) ∈ C2, (D.6)

−Lm−1
i j =

[

∂L i j

∂[p f ]i, j

]m−1
(

[p f ]m − [p f ]m−1)

i, j

(i, j) ∈ C3, (D.7)

Equations (D.5)–(D.7) are solved for each x line with a

direct method. Observe that the coefficient matrix for the C1
is a pentadiagonal matrix, for C2 it is a tridiagonal matrix

and for C3 it is a single-diagonal matrix. The Ci domains

are accurately determined in order to avoid multi-connected

computational areas, small areas and boundary discontinuities

between Ci and C j .

The residual derivatives are

∂L i j

∂[p f ]i−2, j

≈ D
i−2, j

i+1, j − D
i−2, j

i−1, j +
∑

hk

∂βhk
i j

∂[p f ]i−2, j

[p f ]hk

∂L i j

∂[p f ]i−1, j

≈ D
i−1, j

i+1, j − D
i−1, j

i−1, j − Ai j +
∑

hk

∂βhk
i j

∂[p f ]i−1, j

[p f ]hk

∂L i j

∂[p f ]i, j

≈ −Ei j +
∑

hk

∂βhk
i j

∂
[

p f

]

i, j

[p f ]hk

∂L i j

∂[p f ]i+1, j

≈ D
i+1, j

i+1, j − D
i+1, j

i−1, j − Bi j +
∑

hk

∂βhk
i j

∂[p f ]i+1, j

[p f ]hk

∂L i j

∂[p f ]i+2, j

≈ D
i+2, j

i+1, j − D
i+2, j

i−1, j +
∑

hk

∂βhk
i j

∂[p f ]i+2, j

[p f ]hk

(h, k) = (i, j) , (i − 1, j) , (i + 1, j) , (i, j − 1) , (i, j + 1) ,

where

−
∑

hk

∂βhk
i j

∂[p f ]a,b

[p f ]hk ≈ 3[ū2]i j

(

D
a,b
i, j − D

a,b
0,0

)

×

[[

p f

]

i−1, j
+ [p f ]i+1, j

λδx

+
δ2x

δ2y

[p f ]i, j−1 +
[

p f

]

i, j+1

λδx

− 2

(

1+
δ2x

δ2y

)

[p f ]i, j

λδx

]

+ 3[ū2]i−1, j

(

D
a,b
i−1, j − D

a,b
0,0

) [p f ]i−1, j − [p f ]i, j

λδx

+ 3[ū2]i+1, j

(

D
a,b
i+1, j − D

a,b
0,0

) [p f ]i+1, j − [p f ]i, j

λδx

+ 3[ū2]i, j−1

(

D
a,b
i, j−1 − D

a,b
0,0

) δ2x

δ2y

[p f ]i, j−1 − [p f ]i, j

λδx

+ 3[ū2]i, j+1

(

D
a,b
i, j+1 − D

a,b
0,0

) δ2x

δ2y

[p f ]i, j+1 − [p f ]i, j

λδx

,

where it is implicitly understood that the latter has to be

determined at each m iteration. A SUR is applied at the end

of the relaxation sweep, with a relaxation factor of order 0.1.

The CSU updates the central separation

1ūm
0 = −αc1Fm if 1Fm

c · 1Fm
> 0

1ūm
0 = 0 otherwise

1Fm =
[

FN − δxδy

([

p f

]m + [pc]m
)

i j

]

1Fm
c =

∑

i j

(

[p f ]m + [pc]m
)

i j
−

∑

i j

(

[p f ]m−1+ [pc]m−1)

i j
,

(D.8)

where αc is in the range 10
−2 to 1 (e.g. αc can be put

equal to ūn−1
0 /FN when starting from a previous velocity

step solution). Equation (D.8), without the logical condition,

is widely used by the EHL community to close the system

of equations. Nevertheless, (D.8) cannot be obtained from

equations (23)–(27). However, (D.8) can be understood as a

Taylor expansion to the first order in the numerical step space

with an average step size of αc . This can obviously be a

good average step size only if the error convergence history

for the load conservation relation decreases exponentially. In

our calculation the convergence history never has a monotonic

form and (D.8) does not give the correct step size. The

inequality condition introduces a logical damping into the

convergence history of the contact solutions. The main idea is

to update ū0 only if a divergent behavior is otherwise observed

for the total load.

After the update of the central separation, the shape of

the contact is determined by solving the coupled elastic and

solid contact equations as a Fredholm type of integral equation.

The FS solves the latter by an NR method. Considering that

ūi j > 0, (D.1) can be rewritten as

0 = gi j = −1

+
ū0 + fi j +

∑

hk

(

Dhk
i j − Dhk

00

)

[

p f + pc (ū)
]

hk

ūi j

. (D.9)

By considering the form of the elastic kernel, the Jacobian J

can be approximated

[J]lmi j ≈ δl
i δ

m
j

∂gi j

∂ ūlm

and so

ūl
i j = ūl−1

i j






1+ α f s

gl−1
i j

1+ gl−1
i j −

(

D
i j

i j − D
i j

00

) [

∂pc

∂ ū

]

ūl−1
i j







(i, j) 6= (0, 0)

where α f s is generally between 0.1 to 1 (the higher value for

the hydrodynamic region, where gn
i j → 0). In our calculations,

a target convergence error for fluid pressure field is 5 × 10−7,

with an average gi j of 10
−6. After the update of separation, the

loop restarts from RSA.

In figures D.3 and D.4 we show, respectively, film

thickness and fluid pressure in a comparison between our

numerical results and those of de Vicente et al [29] (we have

removed the asperity–asperity interaction). The agreement is

good, the difference in the maximum pressure may be due

to a finer mesh size and a higher convergence target in our
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Figure D.3. Film thickness as obtained by de Vicente et al [29]
compared with our results (green dots) for the following parameters:
reduced elastic modulus 1/E∗ = (1− ν2a)/Ea + (1− ν2b )/Eb,
E∗ = 5.45 MPa, radius R = 0.95 cm, loading force FN = 3 N,
Uη = 1. The computational range is [−4aH, 1.5aH] × [−3aH, 3aH]
with 220 × 240 grid points.

Figure D.4. Fluid pressure as obtained by de Vicente et al [29]
compared with our results (green dots) for the same parameters of
figure D.3.

calculation; in our results, the difference between the actual

load Fact (numerical integration of pressure field) and the

squeezing load FN is (Fact − FN)/FN = 5 × 10−7. The

mean residual of the fluid equation (to be considered with a

pressure meaning), defined as 1
N

∑

li j 6=0 | li j −pi j

li j
|, is 5 × 10−9

with a maximum residual value of 10−5. The fluid pressure

convergence error is lower than 5× 10−10.
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