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Relation between Interfacial Separation and Load: A General Theory of Contact Mechanics
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I study the contact between a rigid solid with a randomly rough surface and an elastic block with a flat
surface. I derive a relation between the (average) interfacial separation u and the applied normal squeezing
pressure p. I show that, for nonadhesive interaction and small applied pressure, p ~ exp(—u/u,), in good

agreement with recent experimental observations.
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When two elastic solids with rough surfaces are
squeezed together, the solids will, in general, make contact
not everywhere in the apparent contact area but only at a
distribution of asperity contact spots [1-4]. The separation
u(x) between the surfaces will vary in a nearly random way
with the lateral coordinates X = (x,y) in the apparent
contact area. When the applied squeezing pressure in-
creases, the average surface separation u = (u(x)) will
decrease. In most situations, however, it is impossible to
squeeze the solids into perfect contact corresponding to
u = 0. The space between two solids has a tremendous
influence on many important processes, e.g., heat transfer
[5], contact resistivity [6], lubrication [7], sealing [8],
optical interference [9], etc. In this Letter, I will present a
very simple theory for the (average) separation u as a
function of the squeezing pressure p. I will show that, for
randomly rough surfaces at low squeezing pressures, p ~
exp(—u/ugy), where the reference length u, depends on the
nature of the surface roughness but is independent of p,
which is in good agreement with experiments [9].

We consider the frictionless contact between elastic
solids with randomly rough surfaces. If z = h;(x) and
hy(x) describe the surface profiles, E;, and E, are
Young’s elastic moduli of the two solids, and »; and »,
are the corresponding Poisson ratios, then the elastic con-
tact problem is equivalent to the contact between a rigid
solid (substrate) with the roughness profile A(x) = h;(x) +
h,(x), in contact with an elastic solid (block) with a flat
surface and with Young’s modulus £ and Poisson ratio v

chosen so that [10]
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Introduce a coordinate system xyz with the xy plane in
the average surface plane of the rough substrate and the z
axis pointing away from the substrate; see Fig. 1. The
separation between the average surface plane of the block
and the average surface plane of the substrate is denoted by
u, with u = 0. When the applied squeezing force p in-
creases, the separation between the surfaces at the interface
will decrease, so we can consider p = p(u) as a function
of u. The elastic energy U, (u) stored in the substrate
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asperity-elastic block contact regions must equal the
work done by the external pressure p in displacing the
lower surface of the block towards the substrate, i.e.,

f * du' Aop(u') = Uy () (1)
or
_ i dUel

where A is the nominal contact area. Equation (2) is exact
and shows that, if the dependence of the surface separation
u on the squeezing pressure p is known, e.g., from finite
element calculations or molecular dynamics, one can ob-
tain the elastic energy U, stored in the asperity contact
regions [11]. This is an important result as Uyg () is rele-
vant for many important applications.

Theories show that, for low squeezing pressure, the area
of real contact A varies linearly with the squeezing force
PpAo and that the interfacial stress distribution and the size

hard substrate

FIG. 1 (color online). An elastic block squeezed against a rigid
rough substrate. The separation between the average plane of the
substrate and the average plane of the lower surface of the block
is denoted by u. Elastic energy is stored in the block in the
vicinity of the asperity contact regions.
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distribution of contact spots are independent of the squeez-
ing pressure [12,13]. That is, with increasing p, existing
contact areas grow and new contact areas form in such a
way that, in the thermodynamic limit (infinite-sized sys-
tem), the quantities referred to above remain unchanged. It
follows immediately that for a small load the elastic energy
stored in the asperity contact region will increase linearly
with the load, i.e., Ug(u) = uyAyp(u), where u is a char-
acteristic length which depends on the surface roughness
(see below) but is independent of the squeezing pressure p.
Thus, for small pressures, (2) takes the form

__dp
p(u) = —uy du
or
plu) ~ =/ 3)

in good agreement with experimental data for the contact
between elastic solids when the adhesional interaction
between the solids can be neglected [9]. We note that
the result (3) differs drastically from the prediction of
the theory of Bush, Gibson, and Thomas [14] and that
of Greenwood and Williamson (GW) [15], which for
low squeezing pressures (for randomly rough surfaces
with  Gaussian height distribution) predict p(u) ~
u~“exp(—bu?), where a =1 in the theory of Bush,
Gibson, and Thomas and a = 5/2 in the GW theory.
Thus, these theories do not correctly describe the interfa-
cial spacing between contacting solids. This is not surpris-
ing, because these approaches assume a rigid substrate
surface covered with flexible asperities. In reality, the
bulk of the solids whose surfaces are in contact is not rigid.
Furthermore, there exists a hierarchy of asperities on many
length scales, all of which can distort.

The elastic energy U, in the simplest approximation
takes the form [11,13,16,17]

o T q1
Ug = AoE 27 dqq*P(q)C(q), 4)
40
where E* = E/(1 — v?) and where P(q) = A({)/A, is the
relative contact area when the interface is studied at the
magnification ¢ = g/qy. The surface roughness power
spectrum [18]

Clg) =

o fd2x<h xh(0))e 14X,

where (- - ) stands for ensemble average. For high squeez-
ing pressures, perfect contact occurs at the interface, and in
this case P = 1 and with y = 1, Eq. (4) is exact. Below, we
will focus mainly on low squeezing pressures and for this
case y < 1 (but of order unity) to take into account that the
elastic energy stored in the contact region (per unit surface
area) is less than the average elastic energy (per unit
surface area) for perfect contact [11]. We will use the
contact mechanics theory of Persson, where for elastic

nonadhesive contact the function [19,20]

P(g) = } s, 5)
where s(g) = w(q)/E*, with
q -1/2
w(q)=(w dq’q’3C(q’>) . (©)
40

Using (5) gives
oP 2 d dp o0
u \/— du®
Substituting (4) and (7) in (2) gives

—Jmy / dqq*C (q)W(q)e’[W‘q“’/E*]zZ—p

(N

plu) = »

or

pdp

PR
Integrating this from u = 0 (complete contact, correspond-
ing to p = o) to u gives

u=fmy dqq2C(q w(q) / dp ;e b@p/ET,

—Jmy dqqzC(q)W(q)e b(@p/E

(®)
For very small pressures, we get from (8):
u = —uglog(p/p,)
or
p=p.e ", ©)
where
=7y [ dagictamia) (10)
and where the cutoff p, is determined by
p. = €E" exp(—(logw)), (11
with
€= exp< ] " dx2x logxe_"2> ~ 0.7493
0
and where
7 dgq?C(q)w(q) logw
(logwy — 11994 q)w(q)logw(q) 12

o1 dgq*C(q)w(q)

If we assume that the substrate surface roughness is self-
affine fractal for go < g < ¢, we get [18]

H <h2>< > 2(H+1)
do ’

Clg) =——" (13)

where H = 3 — Dy, where Dy is the fractal dimension.
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The mean of the square of the substrate surface height
profile is (h?) = h2,. Substituting (13) in (10) gives

Uy = hrms/ar (14)
where
2H(1 — H)\1/2 /
a = (¥> yfql 0 dxg(x), (15)
T 1
with

g(x) — fo(xz _ x2H)71/2'

Substituting (13) in (12) gives
<10gw> = - log(qohrms) —logpB, (16)

where

1™ dxg(0) loglyg !l (0 = 1)]
2 f‘l“/qo dxg(x)

Substituting (14), (16), and (11) in (9) gives

logB

a7
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FIG. 2 (color online). The parameters & and 8 as a function of
the Hurst exponent H for three different values of the ratio

q1/4o-

p = BeqohumE e @/ hms (18)
or

u= a7 : hrms log(BEQOhrmsE*/p)- (19)

In Fig. 2, we show the parameters o (for y = 1) and B asa
function of the Hurst exponent H for three different values
of the ratio q,/qy. Most surfaces which are self-affine
fractal have the Hurst exponent H > 0.5 (or the fractal
dimension D <2.5). For such surfaces, the parameters
« and B are nearly independent of the ratio g, /g, between
the highest g, and smallest g, wave vector included in the
analysis. Asphalt road surfaces [18] or surfaces prepared
by crack propagation [21] or by bombardment with parti-
cles typically have H =~ 0.8 (or the fractal dimension Dy =
3 — H = 2.2), for which case ¢ = 1 and 8 = 0.5. In this
case, we have

p = 0.5€qqhyp E* e/ Vhms (20)
or
u= yhrms 10g(0~55‘10hrmsE*/P), (21)

where we have reintroduced the factor of .

In Fig. 3, we show the relation (for y = 1) between the
(natural) logarithm of the squeezing pressure p and the
interfacial separation u for an elastic solid squeezed
against a rigid, self-affine fractal surface with the Hurst
exponent H = (.8, as calculated directly from (8) by nu-
merical integration. The dashed line shows the large-
distance asymptotic behavior given by (21). Note that
deviation from this logarithmic relation occurs only for
u < h.,, and that there is a sharp increase in the squeezing

log (p/ E¥)

u/hems

FIG. 3. The relation between the (natural) logarithm of the
squeezing pressure p and the interfacial separation u for an
elastic solid squeezed against a rigid, self-affine fractal surface
with the Hurst exponent H = 0.8. The surface has the rms
roughness ., = 6 pum, and the upper and lower cutoff wave
vectors are g; = 7.8 X 10 m~!and go = 1 X 10* m™!, respec-
tively.
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pressure for u < k. Both of these facts are in accordance
with the experimental data presented in Ref. [9]. Note that
the slope of the dashed line in Fig. 3 is close to —1, as
expected from (21), and that the dashed curve for u = 0
gives log(p/E*) = —3.8 or p/E* = 0.02, which is the
same as the prediction of (21): 0.5€ggh,ms = 0.02. I have
performed calculations of the p(u) relation using several
measured surface roughness power spectra C(g), but the
general form is always as in Fig. 3, and the slope of the line
(using y = 1) in the linear region is always close to —1.

Pei et al. [22] have performed a finite element computer
simulation of the contact mechanics for a polymer surface,
using the measured surface topography [9] as input,
squeezed against a flat surface. They found that for a large
separation p ~ exp(—u/yhyys), with y = 0.4, which is
consistent with our numerical and analytical results.

The theory presented above can be easily generalized in
various ways. Thus, it is possible to include the adhesional
interaction [23,24]. In this case, the work done by the
external pressure p will be the sum of the stored
(asperity-induced) elastic energy plus the (negative) adhe-
sional energy; i.e., the right-hand side of (1) will now be
U, + U,y The theory can also be applied to study how the
spacing u({) depends on the magnification. Here u({) is
the (average) spacing between the solids in the apparent
contact areas observed at the magnification . It can be
obtained from the equations above by replacing g, with
go{ and the nominal squeezing pressure p with p({) =
pAo/A(L). The quantity u({) is of crucial importance for
lubricated seals [25]. The results of these generalizations of
the theory will be presented elsewhere.

Finally, we note that the observation of an effective
exponential repulsion has important implications for tri-
bology, colloid science, powder technology, and materials
science [9]. For example, the density or volume of granular
materials has long been known to have a logarithmic
dependence on the externally applied isotropic pressure
or stress, as found, for example, in the compression stage
during processing of ceramic materials [26]. Recent work
on the confinement of nanoparticles has also indicated an
exponential force upon compression [27], suggesting that
this relationship could be prevalent among quite different
types of heterogeneous surfaces.
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