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Abstract

We study the sliding of elastic solids in adhesive contact with flat and
rough interfaces. We consider the dependence of the sliding friction on the
elastic modulus of the solids. For elastically hard solids with planar surfaces
with incommensurate surface structures we observe extremely low friction
(superlubricity), which very abruptly increases as the elastic modulus decreases.
We show that even a relatively small surface roughness may completely kill the
superlubricity state.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Friction between solid surfaces is a common phenomenon in nature and of extreme importance
in biology and technology [1]. At the most fundamental level friction is (almost) always due
to elastic instabilities at the sliding interface. At low sliding velocity an elastic instability
first involves (slow) elastic loading, followed by a rapid rearrangement, where the speed of the
rearrangement is much faster than, and unrelated to, the loading (or sliding) velocity. During the
fast rearrangement the elastic energy gained during the loading phase is converted into irregular
heat motion. The exact way the energy is ‘dissipated’ usually has a negligible influence on the
sliding friction force, assuming that the dissipation occurs so fast that no memory of it remains
during the next elastic loading event. There are many possible origins of elastic instability;
e.g., it may involve individual molecules or, more likely, group of molecules or ‘patches’ at the
interface which we have denoted by stress domains [2-5]. The most fundamental problem in
sliding friction is to understand the physical origin and nature of the elastic instabilities.
Elastic instabilities occur only if the lateral corrugation of the interaction potential between
the solid walls is high enough, or the elastic modulus of the solids small enough. Roughly
speaking, elastic instabilities can only occur if a characteristic elastic energy is smaller than a
characteristic binding (or rather barrier height) energy. To understand this, consider the simple
model illustrated in figure 1. In (a) a particle or atom is moving in a corrugated (substrate)
potential. Connected to the particle there is a spring (spring constant k) which is pulled with
velocity v. If the spring is soft enough, or the potential barrier height U is high enough,
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(a) —— (b)

Figure 1. (a) A particle moving in a corrugated potential. The particle is connected to a spring which
is pulled with velocity v. (b) Stick—slip motion with a soft spring, ka> < U. (c) Continuous sliding
with a stiff spring, ka®> > U. (d) Elastically stiff solid sliding on a rigid corrugated substrate. (e)
Elastically soft solid sliding on a rigid corrugated substrate: here the atoms can rearrange to occupy
binding positions.

ie. U > ka?, the particle will perform stick—slip motion (figures 1(a), (b)), involving slow
elastic loading followed by rapid slip and dissipation of the (elastic) spring energy. In this
case the (time averaged) force on the particle is independent of v. However, in the opposite
case U < ka® (figure 1(c)), the particle will follow the drive with a velocity which is always
comparable to v. In particular, when the drive is on top of the barrier so will the particle be
(figure 1(c)). In this case no rapid motion will occur and the (time averaged) friction force
acting on the particle is proportional to v.

In a more realistic situation one must consider the whole interface. In this case, depending
on the elasticity and lateral barriers and the size of the contact area, elastic instabilities may or
may not occur [6]. Assume first that an elastically very stiff solid slides on a rigid corrugated
substrate (figure 1(d)). In this case the atoms at the bottom surface cannot adjust to the
corrugated substrate potential, and (for an incommensurate system) as some atoms move
downhill other atoms move uphill in such a way that the total energy is constant. Thus, no
elastic instabilities will occur during sliding, resulting in a very low sliding friction; this state
has been termed superlubric [7]. However, when the block is elastically soft (figure 1(e)), the
atoms can rearrange themselves so that at any moment in time almost all the atoms occupy
positions close to the minima of the substrate potential. During sliding, rapid jumps will occur
from time to time where a particle changes potential well. In this case the friction is high and
(at zero temperature) remains finite as the sliding velocity v — 0.

It is well known that elastically hard solids tend to exhibit smaller sliding friction than
(elastically) soft materials [8]. One extreme example is diamond, which under normal
circumstances exhibits very low kinetic friction coefficient, of the order of 0.01, when diamond
is sliding on diamond. This can be explained by the near absence of elastic instabilities because
of the elastic hardness of the material. However, if clean diamond is sliding on clean diamond
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Figure 2. An elastic bar with two binding sites (bump). The corresponding binding cavities of the
substrate do not match exactly the positions of the binding sites, causing a competition between the
energy cost to stretch the elastic bar and the binding energy.

in ultrahigh vacuum, a huge friction (friction coefficient of the order of ; &~ 10) is observed [9].
The reason is that the clean surfaces have dangling bonds (which are passivated by hydrogen
and oxygen in the normal atmosphere) so that the interaction between the two diamond surfaces
is very strong and elastic instabilities (and wear processes) can occur, resulting in a very large
friction.

It is important to note that even if solids are too stiff for elastic instabilities to occur on short
length scale the ratio between the effective elasticity and the amplitude of the lateral corrugation
of the binding potential may decrease when the system is studied at a longer length scale,
which may make elastic instabilities possible on a longer length scale [10, 11]. To illustrate
this, in figure 2 we show a one-dimensional (1D) case, where an elastic bar (cross section
area A) with two binding sites (bumps) is in contact with a substrate with two binding sites
(cavities). When the binding sites on the elastic bar overlap with the binding sites (cavities)
on the (rigid) substrate, the binding energy U is gained. In order to gain this binding energy
the segment of the elastic bar between the bumps (length L) must elongate by the distance b.
Thus the strain in the segment is b/L and the elastic energy stored in the elongated segment
is Uy = VE(b/L)?/2, where the volume V = LA. Thus, U, = AEb?/(2L), which
decreases as the length of the segment L increases. It follows that only when L > AEb?/(2U)
will the bound state have a lower energy than the non-bound state. Thus, only on a large
enough length scale will the solid be elastically soft enough for elastic instabilities to occur.
In most practical cases one is not interested in a 1D situation but rather in semi-infinite solids,
which are intermediate between the 2D and 3D case. For surfaces with randomly distributed
binding centres this situation is much more complex than for the 1D case because the effective
elasticity changes as quickly with the lateral length scale as does the effective amplitude of the
lateral corrugation of the binding potential (which from random walk arguments [1] scales as
L) [10, 11]. A detailed analysis of this situation indicates, however, that if no elastic instability
can occur at short length scale it is very unlikely that elastic instabilities will occur on any length
scale of practical importance, except perhaps in the context of earthquakes [10, 11]. If instead
of randomly distributed binding sites one assumes incommensurate surfaces, one would expect
even weaker pinning effects, and it can be argued that in this case the ratio between the effective
elasticity and the amplitude of the lateral corrugation of the binding potential increases as ~L
so that if no elastic instabilities occur at short length scale they cannot occur at any length
scale [12]. Below we will present numerical results where elastic instabilities do occur also for
(nearly) incommensurate structures, but in these cases one of the solids is elastically very soft
so that instabilities can occur on a short length scale.

The discussion above has focused on clean surfaces and zero temperature. Temperature is
unlikely to have any drastic influence on superlubricity. However, it may have a strong influence
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on sliding dynamics when elastic instabilities occur. As soon as 7 > 0 K, thermal noise is able
to activate jumps over the barrier, i.e. to provoke premature jumps before the (zero-temperature)
instability point is reached. It has been shown experimentally [5, 13] and theoretically [3, 14]
that this has a crucial influence on friction dynamics at low sliding velocity. Similarly, weakly
bound adsorbed atoms and molecules have a large influence on the sliding dynamics, and may
strongly increase the friction force [15] as the mobile adsorbates can adjust themselves in the
corrugated potential between the block and the substrate, giving rise to strong pinning effects.
In this paper we will not address the role of adsorbates or non-zero temperature, but we will
focus on the simplest case of clean surfaces at zero temperature.

Recently, superlubricity has been observed during sliding of graphite on graphite: in the
experiment described in [16] a tungsten tip with a graphite flake attached to it is slid on an
atomically flat graphite surface. When the flake is in registry with the substrate stick—slip
motion and large friction are observed. When the flake is rotated out of registry, the forces felt
by the different atoms start to cancel each other out, causing the friction force to nearly vanish,
and the contact to become superlubric.

Graphite and many other layered materials are excellent dry lubricants. The most likely
reason for this is that the solid walls of the sliding objects get coated by graphite flakes or
layers with different orientation so a large fraction of the graphite—graphite contacts will be in
the superlubric state. This will lead to a strong reduction in the average friction. However, the
coated solid walls are unlikely to be perfectly flat and it is important to address how surface
roughness may influence the superlubric state. In this paper we will show that even a relatively
small surface roughness may kill the superlubric state.

Lubrication by graphite flakes may even occur for diamond-like carbon (DLC) coatings,
which may exhibit very low friction. Indeed, Liu ez al [17] have observed that a graphitized
tribolayer is formed on top of diamond-like carbon coatings. Thus, the excellent lubrication
properties of DLC films might also be caused by superlubric graphite contacts. We also note
that DLC films are very hard and this will reduce the chance for elastic instabilities to occur®.

In this paper we present atomistic molecular dynamics calculations of the sliding dynamics
for contacting elastic solids with (nearly) incommensurate surface lattice structures. We
consider both flat and rough surfaces. We consider the dependence of the sliding friction on the
elastic modulus of the solids. For elastically hard solids with flat surfaces and incommensurate
surface structures we observe extremely low friction (superlubricity), which very abruptly
increases as the elastic modulus is diminished. We show that even a small surface roughness
may completely kill the superlubric state. In order to study large systems we use a recently
developed multiscale approach [19] to contact mechanics where the number of dynamical
variables scales like ~N?2 rather than as ~N?, where N x N is the number of atoms in the
nominal contact area.

2. Multiscale molecular dynamics

Let us discuss the minimum block size necessary in a computer simulation for an accurate
description of the contact mechanics between two semi-infinite elastic solids with nominally

4 The properties of diamond-like carbon (DLC) films depend strongly on the preparation method and operation
conditions. Thus, only DLC films produced from discharge plasmas containing much hydrogen will exhibit a low
friction (i ~ 0.001-0.003). This is believed to result from the passivation of carbon dangling bonds by the hydrogen
atoms. Without hydrogen, in an inert atmosphere the friction is huge (of the order of unity) because of a high
concentration of very reactive carbon dangling bonds. In the normal atmosphere, most dangling bonds are passivated
and the friction lower but still much higher than for diamond or for DLC films produced from plasmas containing much
hydrogen. See [18].
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Figure 3. Schematic structure of the model. (a) The fully atomistic model. (b) The multiscale
smartblock model, where the solid in (a) is coarse grained by replacing groups of atoms with bigger
‘atoms’.

flat surfaces. Assume that the surface roughness power spectrum has a roll-off wavevector
q = qo corresponding to the roll-off wavelength Ag = 27/¢go. In this case the minimum block
must extend L, &~ Ap and L, ~ A along the x and y directions. Furthermore, the block must
extend at least a distance L, &~ A in the direction perpendicular to the nominal contact area,
since the surface roughness with wavelength A affects the elastic block up to such a distance.
Thus, the minimum block is a cube with the side L = Ay.

As an example, if Ay corresponds to 1000 atomic spacings, one must at least consider
a block with 1000 x 1000 atoms within the xy contact plane, i.e., one would need to study
the elastic deformations in a cubic block with at least 10° atoms. However, it is possible to
drastically reduce the number of dynamical variables without loss of accuracy if one notes that
an interfacial roughness with wavelength A will give rise to a deformation field in the block
which extends a distance A into the solid, and which does not have any significant variation
over distances much smaller than A. Thus when we study the deformation a distance z into the
block we do not need to describe the solid on the atomistic level, but we can coarse-grain the
solid by replacing groups of atoms with bigger ‘atoms’ as indicated schematically in figure 3.
If there are N x N atoms in the nominal contact area one need n &~ InN ‘atomic’ layers in the
z-direction. Moreover the number of atoms in each layer decreases in a geometric progression
every time the coarse graining procedure is applied, so that the total number of particles is of
the order of N? instead of N*. This results in a huge reduction in the computational time for
large systems. This multiscale approach may be implemented in various ways, and in [19] we
outline the procedure we have used in this paper, which we refer to as the smartblock.

The model presented above should accurately describe the deformations in the solids
as long as the deformations vary slowly enough with time. However, the phonons with
short wavelength cannot propagate in the coarse grained region because the model does not
implement enough degrees of freedom for them. The short wavelength phonons get scattered
back when they reach the coarse grained region, and this cannot be avoided within a standard
molecular dynamics approach. However, this is not a serious limitation for the present work:
the static friction and the onset of sliding are still unaffected; moreover, the superlubric sliding
at low speed does not dissipate energy into phonons. On the other hand, if one had to study the
spectrum of dissipated phonons, more advanced techniques to adsorb the energy of the phonons
without back scattering have to be considered [20, 21]. The only dissipation mechanism that
we employed in our simulations is a Langevin thermostat at 7 = 0 K (i.e. a viscous friction
term) acting only on the atoms of the block far from the contact region.
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Figure 3 illustrates a case where the block is in the form of a cube with atomically flat
surfaces. It is possible to obtain curved surfaces of nearly arbitrary shape by ‘gluing’ the upper
surface of the block to a hard curved surface profile. This was described in detail in [22]. The
elastic modulus and the shear modulus of the solid can be fixed at any value by proper choice
of the elongation and bending spring constants for the springs connecting the atoms (see [22]
and [19]).

We note that with respect to contact mechanics, when the slopes of the surfaces are small,
i.e. when the surfaces are almost horizontal, one of the two surfaces can be considered flat,
while the profile of the other surface has to be replaced by the difference of the two original
profiles [23]. Thus, if the substrate has the profile z = h;(x) and the block has the profile
z = h»(x), then we can replace the actual system with a fictive one where the block has an
atomically smooth surface while the substrate profile h(x) = h,(x) — h;(x). Furthermore, if
the original solids have the elastic modulus E; and E,, and the Poisson ratio v; and v,, then
the substrate in the fictive system can be treated as rigid and the block as elastic with the elastic
modulus E and Poisson ratio v chosen so that (1 — v?)/E = (1 — vlz)/El + (- v%)/Ez.

The results presented below have been obtained for an elastic flat block sliding on a rigid
substrate. We considered both flat and rough substrates. The atoms in the bottom layer of the
block form a simple square lattice with lattice constant @. The lateral dimensions L, = N,a
and L, = Nya. For the block, N, = N, = 48. Periodic boundary conditions are applied in the
xy plane. The lateral size of the block is equal to that of the substrate, but for the latter we use a
different lattice constant b ~ a /¢, where ¢ = (1++/5)/2 is the golden mean, in order to avoid
the formation of commensurate structures at the interface. For the substrate, N, = N, = 78.
The mass of a block atom is 197 amu and the lattice spacing of the block is a = 2.6 A, to get
the same atomic mass and density of gold. The lattice spacing of the substrate is b = 1.6 A.
We consider solid blocks with different Young’s moduli from £ = 0.2 GPa up to 1000 GPa.
The Poisson ratio used for the block is v = 0.3.

The atoms at the interface between the block and the substrate interact with the potential

U(r) = 4e [(:0)12 —a (?’)6] , (1)

where 7 is the distance between a pair of atoms. When o« = 1, equation (1) is the standard
Lennard-Jones potential. The parameter € is the binding energy between two atoms at the
separation » = 2'/¢;. When we study contact mechanics and friction without adhesion
we put « = 0. In the calculations presented below we have used r, = 3.28 A and
€ = 40 meV, which (when o« = 1) gives an interfacial binding energy (per unit area) [24]
Ay ~ de/a* ~ 237 meV A

As an illustration, in figure 4 we show the contact between a flat elastic block (top) and
a randomly rough rigid substrate (bottom). Only the interfacial block and substrate atoms are
shown. The substrate is a self-affine fractal with the root-mean-square roughness 3 A (see
section 3). Note the elastic deformation of the block, and that non-contact regions occur in
the ‘deep’ valleys of the substrate. Actually, the real contact area is smaller than the nominal
contact area.

3. Self-affine fractal surfaces

Consider a solid with a nominally flat surface. Let x, y, z be a coordinate system with the x, y
plane parallel to the surface plane. Assume that z = h(x) describes the surface height profile,
where X = (x, y) is the position vector within the surface plane. The most important property
characterizing a randomly rough surface is the surface roughness power spectrum C(q) defined
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Figure 4. The contact between an elastic block with a flat surface and a rough rigid substrate.
Only the interfacial layers of atoms are shown. The elastic modulus of the block is E = 100 GPa.
The substrate is a self-affine fractal with the root-mean-square roughness 3 A, fractal dimension
Dy = 2.2 and roll-off wavevector g9 = 3qr, where q;, = 2m/L,. The substrate and block
interfacial atomic layers consisted of 78 x 78 and 48 x 48 atoms, respectively. The applied pressure
p = 10 GPa. Note the elastic deformation of the block, and that the real contact area is smaller than
the nominal contact area.

by [22, 25]

Clg) =

Gy / d’x (h(x)h(0))e'I™. )

Here (- - -) stands for the ensemble average and we have assumed that 4 (x) is measured from
the average surface plane so that () = 0. In what follows we will assume that the statistical
properties of the surface are isotropic, in which case C(g) will only depend on the magnitude
q = |q| of the wavevector q.

Many surfaces tend to be nearly self-affine fractal. A self-affine fractal surface has the
property that if part of the surface is magnified, with a magnification which in general is
appropriately different in the perpendicular direction to the surface as compared to the lateral
directions, then the surface ‘looks the same’, i.e., the statistical properties of the surface are
invariant under this scale transformation [25]. For a self-affine surface the power spectrum has
the power-law behaviour

C(q) ~ q—Z(H-H)’

where the Hurst exponent H is related to the fractal dimension Dy of the surface via H =
3 — D¢. Of course, for real surfaces this relation only holds in some finite wavevector region
qo < q < qi, and in a typical case C(q) has the form shown in figure 5. Note that in many
cases there is a roll-off wavevector gy below which C(gq) is approximately constant.

In our calculations we have used self-affine fractal surfaces generated as outlined in [25].
Thus, the surface height is written as

hx) = | B(ge! XL, 3)
q

where, since h(x) is real, B(—q) = B(q) and ¢(—q) = —¢(q). If ¢(q) are independent
random variables, uniformly distributed in the interval [0, 27z [, then one can easily show that
higher order correlation functions involving /(x) can be decomposed into a product of pair
correlations, which implies that the height probability distribution P, = (§(h — h(x))) is
Gaussian [25]. However, such surfaces can have arbitrary surface roughness power spectrum.
To prove this, substitute (3) into (2) and use that

<ei¢(q’)ei¢(q”)) = 8¢ —q’
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Figure 5. Surface roughness power spectrum of a surface which is a self-affine fractal for
qo < q < qi1. The long-distance roll-off wavevector go and the short distance cut-off wavevector
g1 depend on the system under consideration. The slope of the log C — log ¢ relation for ¢ > go
determines the fractal exponent of the surface. The lateral size L of the surface (or of the studied
surface region) determines the smallest possible wavevector g7, = 27 /L.

gives

1 oo
C — d2 B N2 1(q—q)~x= B / 25 _ /.
@ (271)2/ x? (@)Pe ? @)P3(q - q)
Replacing

A
> o / &g,
(27)?
q
where A is the nominal surface area, gives

C@) = = |B@)P.
(2m)?
Thus, if we choose
B(g) = 27/L)[C@]'"?, )
where L = A(l)/ 2, then the surface roughness profile (3) has the surface roughness power

spectrum C(q). If we assume that the statistical properties of the rough surface are isotropic,
then C(q) = C(g) is a function of the magnitude ¢ = |q|, but not of the direction of q.
The randomly rough substrate surfaces used in our numerical calculations were generated
using (3) and (4) and assuming that the surface roughness power spectra have the form shown
in figure 5, with the fractal dimension D¢y = 2.2 and the roll-off wavevector gy = 3¢qr, where
qr. = 2m/L,. We have chosen gy = 3¢, rather than go = ¢ since the former value gives
some self-averaging and less noisy numerical results. We also used ¢; = 2w /b = 78¢¢. The
topography of the substrate with the root-mean-square roughness amplitude 3 A used in our
numerical calculations is shown in figure 6.

4. Numerical results

In this section we present the results of molecular dynamics calculations of sliding of elastic
blocks on rigid substrates. In all cases, unless otherwise stated, the upper surface of the block
moves with the velocity v = 0.1 m s~!, and the (nominal) squeezing pressure p is one-tenth of
the elastic modulus E of the block, i.e. p = 0.1E. The reason for choosing p proportional to
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Figure 6. Fractal surface of the substrate with the large cut-off wavevector ¢; = 2 /b = 78 g. For
a square 124.8 A x 124.8 A surface area. The fractal dimension Dy = 2.2 and the root-mean-square
roughness amplitude is 3 A.
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log,o E (Pa)

Figure 7. The static (curve 1) and kinetic (curve 2) friction coefficients as a function of the elastic
modulus E of the block, for the flat substrate. In the calculation we have assumed the squeezing
pressure g = 0.1 E and the sliding velocity v = 0.1 m s~

E is twofold. First, we consider solids with elastic modulus which varies over several orders
of magnitude, and it is not possible to use a constant p as this would result in unphysical large
variations in the elastic deformation of the block. Second, if two elastic solids are squeezed
together with a given load, then as long as the area of real contact is small compared to
the nominal contact area the pressure in the contact areas will be proportional to the elastic
modulus of the solids [22]. Initially, when the block is pulled laterally it deforms loading elastic
energy and the shear force between the surfaces increases gradually. The shear force reaches
a maximum F; at the onset of sliding. We used such a maximum shear force to calculate the
static friction coefficient: us = Fy/Fn, Fx = pA being the normal force. During the sliding
the shear force oscillates in time. We defined the kinetic friction coefficient as the ratio between
the time averaged shear force and the normal load, i.e. u; = fk/ .

Let us first assume that both the block and the substrate have atomically smooth surfaces.
Figure 7 shows the static and the kinetic friction coefficients as a function of the elastic modulus
E of the block. Note the relatively abrupt decrease in the friction when the elastic modulus
changes from E; ~ 0.7 GPa to E; ~ 2 GPa. For E > E; practically no instabilities occur and
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Figure 8. (a) The shear stress as a function of time for the flat substrate. The elastic modulus of the
block is E = 0.8 GPa. (b) The same as above but for the elastic modulus of the block £ = 2 GPa.

the friction is extremely small, while for E < E relatively strong elastic instabilities occur
at the sliding interface, and the friction is high. For E = 0.2 GPa the static friction us, > 2.
This calculation illustrates that the transition from high friction to superlubricity can be very
abrupt; in the present case an increase in the elastic modulus by only a factor of ~3 (from 0.7
to 2.1 GPa) decreases the kinetic friction by a factor of ~10°.

In figure 8 we show the time variation of the shear stress as a function of time when
the elastic modulus of the block equals (a) £ = 0.8 GPa and (b) E = 2 GPa. The elastic
modulus of the stiffer solid is above the superlubricity threshold, and no (or negligible) elastic
instabilities occur; the stress is a periodic function of time, with the period corresponding to
the displacement 0.2 A. For the softer solid strong elastic instabilities occur during sliding, the
shear stress is less regular (and the arrangement of the interfacial block atoms more disordered)
than for the stiffer solid, and the (average) period is longer than 0.2 A.

The regular pattern with period 0.2 A in figure 8(b) can be understood as follows. For
our system, in the sliding direction there are eight block atoms for every 13 substrate atoms.
Assume first that the block (and the substrate) are perfectly stiff. In this case, the position of
the eight block atoms will take eight uniformly spaced positions within the substrate unit cell
(lattice constant b); see figure 9. Thus, a shift of the block with the distance b/8 will take the
system to a (geometrically) equivalent configuration. Hence, since b = 1.6 A we expect the
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Figure 9. Commensurability ratio 8/13 between one-dimensional chains. The upper image shows
the period of eight block atoms (light blue), i.e. 13 substrate atoms (yellow). The lower image is
obtained by shifting the block for 1/13 of its lattice spacing. Block atoms occupy the same positions
relatively to the substrate’s hollows.

4t

log Hy

81 0.1A 1

10t 0A (flay A

8 9 10 11 12
log;o E (Pa)

Figure 10. The kinetic friction coefficients for an elastic block sliding on rough substrates, as a
function of the logarithm of elastic modulus E of the block. Curves 1-5 (from top to bottom)
correspond to the root-mean-square roughness amplitudes of the fractal substrate 3, 1,0.3,0.1 A and
0 (flat substrate).

periodicity of the shear stress to be /8 = 0.2 A. When the block has a finite elasticity but
above the superlubricity threshold, the atoms will relax somewhat in the substrate potential, but
the configuration of the system will still repeat itself with the same period b/8.

Let us now consider the influence of surface roughness on the sliding dynamics. In
figure 10 we show the kinetic friction coefficients for an elastic block sliding on a rough
substrate, as a function of the logarithm of elastic modulus E of the block. The curves from
top to bottom correspond to the substrate root-mean-square roughness amplitudes 3, 1, 0.3,
0.1 A and 0 (flat substrate). For the substrate with the largest roughness, no superlubricity state
can be observed for any elastic modulus up to E = 10'? Pa.

In figure 11 we show the kinetic friction coefficient as a function of the root-mean-square
roughness amplitude of the substrate. The elastic modulus of the block E = 100 GPa. Note
the strong decrease in the friction when the root-mean-square roughness amplitude decreases
below 0.3 A, which corresponds to a peak-to-peak roughness of roughly one atomic lattice
spacing.

Figure 12(a) shows the average (or nominal) shear stress as a function of time for the rough
substrate with the root-mean-square roughness 3 A, and for the elastic modulus of the block
E = 100, 50 and 20 GPa. Note that in addition to major slip events several small slip events
occur in all cases. These events correspond to local slip at some asperity contact regions before
the major slip involving the whole contact area. In all cases, the time dependence of the shear
stress remains periodic with the period 2.6 A, which corresponds to the lattice spacing of the
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Figure 11.
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The kinetic friction coefficient as a function of the root-mean-square roughness
amplitude of the substrate. The elastic modulus of the block £ = 100 GPa.

Figure 12. (a) The shear stress as a function of time for the rough substrate with root-mean-square
roughness amplitude 3 A. The elastic modulus of the block is £ = 100, 50 and 20 GPa. (b) The
same as above but for the elastic modulus of the block E = 10 and 5 GPa.
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Figure 13. The average displacement of the interfacial atoms of the block as a function of time. The
root-mean-square roughness amplitude for the substrate is 3 A. The elastic modulus of the block is
E =100, 10 and 5 GPa.

block. Note also that for the elastically softer block (£ = 20 GPa) the stress noise increases
after each major slip event; this is caused by the elastic waves (heat motion) excited during the
(major) rapid slip events and not completely adsorbed by the thermostat.

Figure 12(b) shows the same as in (a) but now for the elastic modulus of the block £ = 10
and 5 GPa. In this case the decrease of the elastic modulus of the block results in the increase
of both the static and kinetic friction.

Figure 13 shows the average displacement of the interfacial atoms of the block (in the
sliding direction) as a function of time. The root-mean-square roughness amplitude for the
substrate is 3 A. The elastic modulus of the block is E = 100, 10 and 5 GPa. Note that the slip
distance for the major slip events increases as the elastic modulus of the block decreases, and
that for the elastically hardest solid (E = 10'! Pa) about a half of the forward displacement
occurs between the major slip events.

Figure 14 shows the average position of the interface block atoms in the z-direction
(perpendicular to the sliding direction) as a function of time. Results are shown for the rough
substrate with the root-mean-square roughness amplitude 3 A. The elastic modulus of the
block is £ = 100, 50, 20, 10 and 5 GPa. When the elastic modulus decreases, because of the
adhesive interaction the block interfacial atoms come (on average) closer to the rigid substrate,
embracing the substrate asperities. This increases the real area of contact between the surfaces
and results in a higher friction.

Figure 15(a) shows the shear stress as a function of time for the rough substrate (root-
mean-square amplitude 3 A) and for the stiff block (E = 100 GPa). The solid curve is with the
adhesion included, while the dashed curve is without the attractive part in the Lennard-Jones
potential, i.e. with « = 0 in equation (1). Note that without adhesion the major slip is not so
pronounced as for the case with adhesion. Still the time dependence of the shear stress remains
periodic with the same period 2.6 A, corresponding to the lattice spacing of the block. Without
adhesion, the shear stress curve is nearly symmetric around the zero-stress axis, and the kinetic
friction coefficient (determined by the average shear stress divided by the squeezing pressure)
is about 150 times smaller than when the adhesive interaction is included.

In figure 15(b) we show the average displacement of the interface block atoms (in the
sliding direction) as a function of time for the same systems as in (a). For the case without
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Figure 14. The average position of the interface block atoms in the z-direction (perpendicular to the
sliding direction), as a function of time during sliding. The root-mean-square roughness amplitude
of the substrate is 3 A. The curves from top to bottom correspond to the elastic modulus of the block
E =100, 50, 20, 10 and 5 GPa.

adhesion the major slip is not as abrupt as when adhesion is included. At every moment there
is some lateral motion of the block interfacial atoms.

Figure 16(a) shows the shear stress as a function of time for the rough substrate (root-
mean-square amplitude 3 A) and for the elastic block with the elastic modulus E = 10 GPa.
The solid curve is with adhesion included, while the dashed curve is without the attractive part
in the Lennard-Jones potential, i.e. with &« = 0 in equation (1). Figure 16(b) shows the average
displacement of the interface block atoms (in the sliding direction) as a function of time for the
same systems as in (a). For the case without adhesion the major slip is not as abrupt as for the
case with adhesion, and the sliding motion is nearly steady. In both cases, the time dependence
of shear stress remains periodic with the period 2.6 A determined by the lattice spacing of the
block. For the case with adhesion two small slips and a major slip can be observed in each
period, and the kinetic friction is high. For the case without adhesion no elastic instability
occurs, and the kinetic friction is very small.

The roughness-induced increase of friction can be understood by considering that the real
contact involves only small regions, as shown in figure 4. The compensation of the lateral
forces that guarantees superlubricity between incommensurate surfaces (see figure 1) does not
happen at the boundaries of the contact regions, nor can it happen on very small contacts with
high curvature. Thus, the friction force should increase with increasing length of the boundaries
between the contact and non-contact regions. This is completely different from what happens
between commensurate walls or between walls with very strong interactions, e.g. metals with
cold-welded microjunctions, where the real area of contacts determines the friction force.

The surfaces used in our simulations are self-affine fractals up to the atomic scale, but in
general the cut-off wavevector ¢; can be smaller, so that the typical size of the contact areas can
be larger and the friction can be lower. In other words, the root-mean-square surface roughness
alone is not enough to determine the amount of friction: a surface profile with wider mountains
and valleys has to provide less friction than a surface profile dominated by short wavelength
corrugation. In the same way, a surface with higher fractal dimension will have more roughness
at the smallest wavelength, providing higher friction for the same root-mean-square roughness
and cut-off wavevector ¢g;. In particular for high fractal dimensions the friction must depend
dramatically on the cut-off wavevector.
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Figure 15. (a) The shear stress as a function of time calculated for the rough substrate (root-mean-
square amplitude 3 A) and for the stiff block (E = 100 GPa). Curve 1 is calculated including
adhesion, while curve 2 is obtained without the attractive part in the Lennard-Jones potential,
i.e. with « = 0 in equation (1). (b) The average displacement of the interface block atoms (in
the sliding direction) as a function of time for the same systems as in (a).

5. Pressure dependence of the frictional stress

During sliding, the atoms at the sliding interface will experience energetic barriers derived
from both the adhesive interaction between the atoms on the two opposing surfaces, and from
the applied load. Thus, we may define an adhesion pressure p,q, and as long as p,q > p, where
p is the pressure in the contact area derived from the external load, the frictional shear stress
will be nearly independent of the applied load. Let us illustrate this with the system studied
in section 4. Let us first consider the limiting case where the elastic modulus of the block is
extremely small. In this case, in the initial pinned state (before sliding) all the block atoms will
occupy hollow sites on the substrate, as indicated by atom A in figure 17. During sliding along
the x-direction, the atom A will move over the bridge position B and then ‘fall down’ into the
hollow position C (we assume overdamped motion). The minimum energy for this process is
given by the barrier height §¢ (the energy difference between the sites B and A) plus the work
pa’Sh against the external load, where a is the block lattice constant and 84 the change in the
height between sites B and A (which depends on p). Thus the frictional shear stress oy is
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Figure 16. (a) The shear stress as a function of time for the rough substrate (root-mean-square
amplitude 3 A) and for the block elastic modulus E = 10 GPa. Curve 1 is calculated including
adhesion, while curve 2 is obtained without the attractive part in the Lennard-Jones potential,
i.e. with « = 0 in equation (1). (b) The average displacement of the interface block atoms (in
the sliding direction) as a function of time for the same systems as in (a).

determined by ora*b = e + pa28h, or
o1 = 8¢/(ba®) + psh/b = (pu + p)Sh/b,
where we have defined the adhesion pressure p,q = 8¢/(a*8h).

In our case 8¢ ~ 3 meV and 87 ~ 0.008 A giving p,q &~ 10'° Pa. Thus, in the present
case, only when the local pressure in the contact regions becomes of the order of ~10 GPa, or
more, will it start to influence the shear stress. This result is in accordance with our simulation
results. Thus, for smooth surfaces, the shear stress acting on the block with the elastic modulus
E = 0.5 GPa, squeezed against the substrate with the pressure p = 50 and 150 MPa, is
identical (= 1 MPa) within the accuracy of the simulations.

For inert materials such as rubber the adhesive pressure may be of similar magnitude as
obtained above. Since the contact pressure for rubber in most cases is below 10 MPa, one
may expect that the shear stress in the areas of real contact will be independent of the load.
Recently, a strong dependence of the (apparent) shear stress on the squeezing pressure was
observed for smooth Plexiglas balls sliding on very smooth silicon wafers covered by silane
layers [26]. However, as one of us has argued elsewhere [27], this does not reflect a fundamental
dependence of the shear stress on the squeezing pressure, but has another origin.
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Figure 17. A block atom moving (or jumping) from the hollow site A over the bridge site B to the
hollow site C. The maximum energy position along the trajectory is at site B.

6. Summary and conclusion

We have studied the sliding of elastic solids in adhesive contact with flat and rough interfaces.
We considered the dependence of the sliding friction on the elastic modulus of the solids. For
elastically hard solids with planar surfaces with incommensurate surface structures we observe
extremely low friction (superlubricity), which very abruptly increases as the elastic modulus
decreases. Thus, at the superlubricity threshold, an increase in the elastic modulus by a factor
of ~3 resulted in the decrease in the frictional shear stress by a factor ~10°. We have shown
that even a relatively small surface roughness may completely kill the superlubricity. For flat
surfaces the shear stress is independent of the perpendicular (squeezing) pressure as long as the
pressure p is below the adhesive pressure p,q, which typically is of the order of several GPa.
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