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Abstract We study the contact mechanics of a smooth

hard cylinder rolling on a flat surface of a linear visco-

elastic solid. Using the measured viscoelastic modulus of

unfilled and filled (with carbon black) nitrile rubber, we

compare numerically exact results for the rolling friction

with the prediction of a simple analytical theory. For the

unfilled rubber, the two theories agree perfectly while some

small difference exists for the filled rubber. The rolling

friction coefficient depends nonlinearly on the normal load

and the rolling velocity.

Keywords Rubber friction � Rolling friction � Polymer �
Viscoelasticity

1 Introduction

Rubber friction is a topic of huge practical importance, e.g.,

for tires, rubber seals, wiper blades, conveyor belts, and

syringes [1–16]. Many experiments have been performed

with a hard sphere or cylinder rolling on a flat rubber sub-

strate [17–20]. Nearly the same friction force may be

observed during sliding as during rolling, assuming that the

interface is lubricated and that the sliding velocity and fluid

viscosity are such that a thin lubrication film is formed with a

thickness much smaller than the indentation depth of the ball,

but larger than the amplitude of the roughness on the surfaces

[17]. The results of rolling friction experiments have often

been analyzed using a very simple model of Greenwood and

Tabor [17], which, however, contains a (unknown) factor a,

representing the fraction of the input elastic energy lost as a

result of the internal friction of the rubber.

Several (analytical) theoretical studies have been pre-

sented for the rolling and sliding friction involving visco-

elastic solids, which, however, are based on a simplified

description of the rubber rheology, i.e., on a single term

Prony series. The case of cylinder contact has been ana-

lytically treated by Hunter [21] and Goriacheva [22], and

the approach lately approximately extended to the case of

three-dimensional contact by enforcing a two-dimensional

reduction in the problem [23]. However, the relaxation

spectrum of real polymers is usually very wide and the

rolling friction of real rubber compounds cannot be pre-

dicted using those existing exact theories. This limitation

also applies to recent numerical models based on the effi-

cient boundary element formulation of the contact problem

[24], where the single relaxation time rheology is adopted.

Recently, one of us (BNJP) has developed a Fourier ser-

ies-based approach for the prediction of rolling friction for

real rubber materials [25]. This approach, accurate to linear

order in the loss tangent, is able to predict quantitatively

reliable results, as shown for both line [25] (see also in the

following) and point contacts [26], with negligible compu-

tational effort. The theory can be applied to solids with

arbitrary viscoelastic modulus. For a cylinder rolling on a

viscoelastic solid characterized by a single relaxation time,

Hunter [21] has obtained an exact result for the rolling fric-

tion, and the analytical theory [25] agrees very well with the

result of Hunter. Unfortunately, the approach in Ref. [25]

does not allow us to determine the traction and the dis-

placement fields occurring at the contact.
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Full numerical solutions of the viscoelastic contact

problem, of interest for many tribological applications,

have only very recently been presented for smooth and

rough contacts, see e.g., Ref. [26]. This should not surprise

at all, due to the numerical complexity of the underlying

problem, which is even more pronounced in case of real

(multiscale) rough contacting surfaces. As a result, the

hysteretic rubber friction coming from local sliding con-

tacts can be, nowadays, only effectively calculated based

on homogenized contact mechanics theories [3].

In this study, we compare the analytical theory of Ref.

[25] with exact numerical results. In particular, in Sect. 2,

we describe our numerical approach; in Sect. 3, we briefly

describe the analytical approach of Ref. [25] as applied to

cylinder on flat. Section 4 presents the numerical com-

parison of the two models. Section 5 contains the summary

and conclusion.

2 Rolling Friction: Numerical Theory

We consider the line contact case with a rigid cylinder,

with perfectly smooth surface, rolling on an isotropic vis-

coelastic half-space, see Fig. 1. In order to determine the

surface deformation of the viscoelastic half-space, we

assume that quasi-static bulk dynamics holds, i.e., inertia

effects are neglected. If a stress rzðx; tÞ acts on the surface

of a semi-infinite viscoelastic solid, it will result in a nor-

mal surface displacement uzðx; tÞ. The latter is linearly

related to rzðx; tÞ via an equation which is particular simple

when the spatial and time coordinates are Fourier trans-

formed [3]:

uzðq;xÞ ¼ Mzzðq;xÞrzðq;xÞ; ð1Þ

where

Mzzðq;xÞ ¼ �
2ð1� m2Þ

qEðxÞ ;
ð2Þ

and where EðxÞ is the frequency-dependent (complex)

Young’s modulus. In what follows, we will assume that the

Poisson’s ratio mðxÞ is independent of frequency. This

assumption is a good approximation in most cases (see e.g.,

Ref. [25]), and it means that the dynamics of relaxation in

orthogonal directions proceeds equally in time. If a rigid

cylinder is sliding in steady state on a semi-infinite rubber

solid, we have

rzðx; tÞ ¼ rzðx� vtÞ

which gives

rzðq;xÞ ¼ dðq � v� xÞrzðqÞ: ð3Þ

For the cylinder geometry with the cylinder axis along the

y-direction, rzðxÞ is independent of y, and we write

rzðxÞ ¼ �pðxÞ so that

rzðqÞ ¼ �pðqxÞdðqyÞ: ð4Þ

Using (1)–(4) gives

uzðq;xÞ ¼
2ð1� m2Þ
jqxjEðxÞ

pðqxÞdðqyÞdðqxvx � xÞ:

Thus, we get:

uzðx; tÞ ¼
Z

d2qdx uzðq;xÞeiðq�x�xtÞ

¼
Z

dx
2ð1� m2Þ
jxjEðxÞ pðx=vxÞeixðx=vx�tÞ: ð5Þ

Now because of causality, one can write

1

EðxÞ ¼
1

Eð1Þ þ
Z1

0

ds
HðsÞ

1� ixs
; ð6Þ

where the spectral density HðsÞ is a positive real function

of the rubber relaxation time s. Note that we can also write

1

EðxÞ ¼
1

Eð1Þ 1þ
Z1

0

dt CðtÞeixt

2
4

3
5; ð7Þ

where

CðtÞ ¼ Eð1Þ
Z1

0

ds
HðsÞ

s
e�t=s:

We write

pðqxÞ ¼
1

2p

Z
dx0 p x0ð Þe�iqxx0 : ð8Þ

Substituting (7) and (8) in (5) gives

uzðx; tÞ ¼
ð1� m2Þ
pEð1Þ

Z
dx0
Z

dx
1

jxjpðx
0Þ

� eiax=vx þ
Z t

0

dt0 C t0ð Þeibðt0Þx=vx

2
4

3
5;

ð9Þ

Fig. 1 Smooth rigid cylinder in steady rolling contact with a

viscoelastic solid with nominally flat surface. Schematic
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where a ¼ x� x0 � vxt and bðt0Þ ¼ x� x0 � vxðt � t0Þ.
Now consider the integral

J ¼
Z1

�1

dx
1

jxje
iax=vx :

We write x=vx ¼ qx and get

J ¼ 2

Z1

0

dqx

cosðaqxÞ
qx

:

This integral diverges. The problem arises from the small

wavevector region qx ! 0 and reflects the infinite size of

the system. For a finite (but very large) solid with linear

dimension L, we must replace the lower integration limit

with p=L; so that

J ¼ 2

Z1

p=L

dqx

cosðaqxÞ
qx

:

Let us denote jajqx ¼ n so that

J ¼ 2

Z1

jajp=L

dn
cosn
n

:

For large (but fixed) L, this will give

J � const:� 2logjaj:

Using this result in (9) gives

uzðx; tÞ ¼ u0 �
2ð1� m2Þ
pEð1Þ

Z
dx0 pðx0Þ �

"
logjx� x0 � vxtj

þ
Z t

0

dt0 Cðt0Þlogjx� x0 � vxðt � t0Þj;
#

where u0 is a constant. In what follows, we study the

system in a coordinate system fixed to the cylinder which

correspond to replacing x! xþ vxt. We also denote the

velocity of the cylinder with vx ¼ v0 and the high-fre-

quency modulus Eð1Þ with E1. We consider long times

t!1 where the sliding is steady state, where uðx; tÞ ¼
uðxÞ (in the moving reference frame) is time independent.

With these assumptions, we get

uzðxÞ ¼ u0 �
2ð1� m2Þ

pE1

Z
dx0 pðx0Þ

�
"

logjx� x0j þ
Z1

0

dt0 Cðt0Þlogjðx� x0 � v0t0Þj
#
:

ð10Þ

Eq. (10) is based on a Green’s function formulation of the

bulk viscoelastic deformation problem, similarly to Ref.

[26]. The derivation above is for a homogeneous visco-

elastic half-space, but can be easily generalized to a layered

material, which introduce in (2) an additional factor Sðq;xÞ
which is known analytically (see e.g., Ref. [27]). In this

work, differently from what reported in Ref. [26], the line

contact condition allows us to derive an exact discrete

formulation of Eq. (10) [28], hence avoiding numerical

issues coming from its integration over a wide range of

relaxation times describing real rubbers.

The rolling friction coefficient:

lR ¼ �
1

fN

Z
dx p xð Þh0 xð Þ;

where hðxÞ ¼ const:� ðR2 � x2Þ1=2 � const.þ x2=2R is

the cylinder surface height.

The constant u0 in (10) can be implicitly calculated with

the load balance equation

Z1

�1

dx0 pðx0Þ ¼ fN; ð11Þ

where fN ¼ FN=Ly is the cylinder load per unit length.

Equations (10) and (11) together with the relation between

the interfacial separation and the nominal pressure given by

the Persson’s contact mechanics theory [29] have to be

solved to determine the unknown variables pðxÞ, uðxÞ and

u0. Here, we use such small surface roughness that it has a

negligible influence on the rolling friction result, which is

therefore essentially exact.

3 Rolling Friction: Analytical model

If a solid is exposed to a perpendicular surface stress or

pressure pðx; tÞ ¼ pðx� vtÞ, a tangential (friction) force

will act on the solid given by[25]

Ff ¼
2 2pð Þ2

v

Z
d2q

x
q

Im
1

EeffðxÞ
jpðqÞj2; ð12Þ

where x ¼ q � v and Eeff ¼ E=ð1� m2Þ. In principle, m
depends on frequency but the factor 1=ð1� m2Þ varies from

4=3 � 1:33 for m ¼ 0:5 (rubbery region) to � 1:19 for m ¼
0:4 (glassy region), and we can neglect the weak depen-

dence on frequency. Within the assumptions given above,

Eq. (12) is exact. Note that even if we use pðqÞ calculated

to zero order in tand, the friction force (12) will be correct

to linear order in tand. We also note that the present

approach is very general and flexible. For example, instead

of a semi-infinite solid, the theory is easily generalized to

layered materials, e.g., a thin viscoelastic film on a hard flat

substrate.
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Consider a hard cylinder (radius R and length Ly � R)

rolling on a viscoelastic solid. The same result is obtained

during sliding if one assume lubricated contact and if one

can neglect the viscous energy dissipation in the lubri-

cation film. When determining the friction force to linear

order in tand, we can neglect dissipation in the calcula-

tion of the contact pressure pðxÞ, which is therefore

described by the Hertz solution. Thus, if we introduce a

coordinate system with the y axis parallel to the cylinder

axis and with the origin of the x axis in the middle of

the contact area (of width 2a), then the contact stress for

�a\x\a:

pðxÞ ¼ 2fN

pa
1� x

a

� �2
� �1=2

; ð13Þ

where fN ¼ FN=Ly the load per unit length of the cylinder.

The half-width of the contact area in the Hertz contact

theory is

a ¼ 4fNR

pEeff

� �1=2

; ð14Þ

where we take Eeff to be jEeffðxÞj with x ¼ q � v. Substi-

tuting the Fourier transform of (13) in (12) and dividing by

FN gives the friction coefficient [25]:

lR ¼
8fN

p

Z 1
0

dqx Im
1

EeffðqxvÞ
1

ðaqxÞ2
J2

1ðqxaÞ; ð15Þ

where J1ðxÞ is the Bessel function of the first kind.

At this point, we empathize that (12) is basically exact,

and if one could calculate the contact pressure pðxÞ [or

rather the Fourier transform pðqxÞ] exactly, then (12)

should give the exact result, e.g., the result of Hunter for

the cylinder case when assuming the simple viscoelastic

modulus consisting of a single term Prony series. Note that

the contact pressure will not be symmetric around the

midpoint when the dissipation in the rubber is included in

the analysis. Still, to linear order in tand, one can neglect

this effect [since (12) is explicitly already linear in tand],

and the analysis below and in Ref. [25] shows that this is a

remarkable accurate approximation, which is an interesting

result in its own right, and makes it possible to apply the

theory to a wide set of problems.

4 Numerical Results

Here, we compare the results of the numerical procedure

developed in Sect. 2 with the predictions of the rolling

friction model [25] presented in Sect. 3. Due to the extre-

mely reduced computational requirements of the rolling

friction model presented in Sect. 3, with respect to any

classical numerical formulation of the viscoelastic contact

problem1, it is of particular interest to quantify the accu-

racy of the approach presented in Sect. 3 in the case of real

rubber rheologies. Indeed, while in the case of (unrealistic)

simple rheologies, i.e., characterized by a single relaxation

time, the theory is very accurate (see Refs. [25, 26]), there

is no proof in the literature of its accuracy for a rheology

described by several relaxation times.

We have measured the viscoelastic modulus of an

unfilled and filled (with carbon black) nitrile rubber. In Fig.

2, we show for both materials the real and imaginary part

of the complex function 1=EðxÞ as measured (dots) and

Fig. 2 Real and imaginary part of the complex function 1=EðxÞ as

measured (dots) and fitted by Prony series (dashed blue and red

curves). For filled (thick line) and unfilled rubber. In log10 � log10,

with 1=EðxÞ in Pa�1 and x in s�1. For the reference temperature,

T = 20 �C (Color figure online)

Fig. 3 Spectral density HðsÞ as a function of the relaxation time s on

a log10 � log10 scale. For both filled and unfilled rubber, H sð Þ is Pa�1

with s in s. For the reference temperature, T = 20 �C

1 It can be easily shown that the discrete formulation of the

viscoelastic line contact kernel presents an analytical formulation as

it occurs for the elastic case. This largely simplifies the viscoelastic

integration.
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fitted by Prony series (dashed blue and red curves) obtained

by approximation (6) with:

1

EðxÞ �
1

Eð1Þ þ
XN

n¼1

HðsnÞ
1� ixsn

;

where N is the number of relaxation times. In Fig. 3, we

show the spectral density HðsÞ for both the filled and

unfilled rubber. Note that the distribution of relaxation

times is very wide and cannot be characterized by a simple

single relaxation time as often assumed.

In Figs. 4 and 5, we report, respectively, the rolling

friction as a function of the sliding velocity for the unfilled

and filled rubber compound. In particular, the red curves

are calculated from the numerical theory developed in

Sect. 2, whereas the black solid and dashed curves repre-

sent, respectively, the rolling friction as calculated from the

analytical theory (Sect. 3) with the measured complex

elastic modulus E xð Þ data and from E xð Þ as calculated

from the Prony series fitting of the 1=EðxÞ measurements.

The latter set of data is also used in the numerical exact

theory (red curve).

For the unfilled rubber compound, there is a remarkable

agreement between the analytical theory of Sect. 3 and the

numerical theory of Sect. 2. For the filled rubber, the match

is less accurate, and we suspect that the fitting algorithm

has been not perfectly successful to accurately determine

the rubber relaxed elastic modulus, which is used in our

model in the filled case. Due to the sensibility to such a

parameter, this could generate a deviation from the results

calculated with the Persson’s approach [25]. Indeed, it is

well know that rubber with filler particles (e.g., carbon

black or silica particles) exhibits a strongly nonlinear vis-

coelastic response, undergoing strain softening already at a

strain of order *1 %. A causal linear response function

can be written as a Prony series, but this is not the case

when the response is nonlinear (see e.g., [30]). Hence, the

analytical model, which makes use of the measured fre-

quency space characterization of the rubber, is expected to

provide an accurate rolling friction prediction, almost

independently the filling state of the rubber. Differently, we

suspect that the accuracy of the numerical model, as well as

of all existing models based on the space of time formu-

lation of viscoelasticity, can suffer to some extent of the

nonlinearity of the rubber rheology when using Prony

series fitting.

For the unfilled sample, in Fig. 6 we show the contact

pressure field for some representative values of sliding

velocity. The different stages of viscoelastic response are

highlighted. The strong asymmetry of the contact pressure

fields with respect to the Hertzian shape, prevailing in the

rubber transition regime, may suggest a certain restriction

of accuracy of Eq. (15) in predicting rolling friction. It

would be therefore very interesting to compare p qð Þj j2¼
fNJ1 qað Þ= pqað Þj j2 with respect to the numerically exact

results. In particular, in Fig. 7, we show the square of the

Fourier transform of the contact pressure (unfilled sample)

for representative values of sliding velocities belonging to

the rubber transition regime, and corresponding to the

pressure curves shown in Fig. 6. Note that all p qð Þj j2
curves converge to the same value for q � 0, as expected

since p q ¼ 0ð Þ ¼ fN= 2pð Þ. Most interestingly, despite the

strong asymmetrical shape of the pressure curves in the

transition regime (Fig. 6), in the Fourier space, the inac-

curacy resulting from such asymmetry is notably reduced,

as expected by previous arguments.

Note that the rolling friction exhibits a very strong

temperature dependence (not shown), given by the WLF

shift factor aT: reducing the temperature by 10 �C typically

Fig. 4 Rolling friction as a function of the rolling velocity for an

unfilled rubber compound, similar to the one described in Fig. 2. For

T = 20 �C, R ¼ 1 mm and fN ¼ 117 N=m

Fig. 5 Rolling friction as a function of the rolling velocity for an

filled rubber compound, similar to the one described in Fig. 2. For

T = 20 �C, R ¼ 1 mm and fN ¼ 117 N=m
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results in a shift of the rolling friction curve toward lower

velocities by approximately one decade. At low frequen-

cies (or low rolling velocities), the unfilled rubber is elas-

tically much softer than the filled rubber. Thus, the half-

width a0 of the static Hertz contact region at low rolling

velocities is much larger for the unfilled rubber than for the

filled rubber. At high rolling velocities, these values

becomes much smaller owing to the stiffening of the

effective elastic modulus at high frequencies.

5 Summary and Conclusion

We have compared the prediction of an exact numerical

study for the rolling friction of a hard cylinder on a smooth

flat surface of a viscoelastic solid, with the prediction of an

analytical theory. The analytical theory is a very general

and flexible approach to calculate the rolling resistance of

hard objects on viscoelastic solids. We have shown that to

a very good approximation the theory can be applied to

real rubber materials with real complex viscoelastic

modulus EðxÞ. The theory can be applied to both spheres

and cylinders rolling on semi-infinite viscoelastic solids, or

on a thin viscoelastic film adsorbed on a rigid flat substrate,

or even more complex situations for which the Mzzðq;xÞ -

function can be calculated. For a cylinder rolling on a

viscoelastic solid characterized by a single relaxation time

s, Hunter has obtained an exact solution for the rolling

resistance, and for this limiting case, it was shown already

in Ref. [25] that the analytical theory gives almost the same

as the result as obtained in the exact treatment. Inversely,

the theory can also be adopted to test the accuracy of the

fitting process used to determine, from the measured

complex elastic modulus, the terms describing the Prony

series (e.g., the relaxed elastic modulus), as usually

required by the viscoelastic calculations made in the space

of lengths.
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