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ABSTRACT: In this contribution, a simple rubber friction law is presented. The model can be

used for tire and vehicle dynamics calculations [19]. The friction law is tested by comparing

numerical results to the full rubber friction theory [6] and to experimental data.
A two-dimensional tire model is introduced. The model combines the rubber friction law

with a simple mass-spring description of the tire body. The tire model is very flexible and can

be applied to different maneuvers. It can be used for calculating l-slip curves, the self-aligning

torque, braking and cornering, or combined motion (e.g., braking during cornering). The

theory predictions are compared to measured data from indoor tire testing on sandpaper

substrate. Simulations of antilock braking systems (ABS) using two different control

algorithms are also presented.
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Introduction

Rubber friction is a crucial topic, especially for practical applications.
Examples are tires, wiper blades, rubber seals, syringes, or conveyor belts [1–
18]. In most theoretical studies, rubber friction is described using very simple
phenomenological models, e.g., the Coulomb friction law with a friction
coefficient, which may depend on the local sliding velocity. However, rubber
friction depends on the history of the sliding motion (memory effects). As we
have shown previously [6], memory effects are very important for an accurate
description of rubber friction. When rubber is sliding on a hard rough substrate,
the history dependency of friction is mainly due to frictional heating in the
rubber-substrate contact regions. Many experimental studies have shown the
influence of frictional heating on rubber friction as an apparent dependence of
the rubber friction on the normal load.

Many articles have been published related to tire dynamics, e.g., in the
context of antilock braking models. The central point in tire dynamics is the
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road-tire interaction, thus the rubber friction. Hence, unless this friction is
accurately described, no tire model will provide an accurate picture of the tire
dynamics, independent of the tire-body description detail level. Usually, the
road-tire friction is described only in a very approximate way. Many
sophisticated finite element models for tire dynamics describe the frictional
interaction only via a static and a kinetic rubber friction coefficient. In other
studies, the dynamic behavior of the whole tire is described by simply using
interpolation formulas. The most famous example is the well-established
‘‘Magic Formula’’ [4]. However, this approach requires a very large set of
measurements to characterize the tire properties and is very expensive and time-
consuming. In addition, it can not describe the influence of the sliding history
(memory effects) on tire dynamics.

In section Rubber Friction, we present a general introduction to rubber
friction. Under Phenomenological Rubber Friction Law, we propose a very
simple rubber friction law that includes memory effects. The simplified model
gives almost identical results as the full model [see 6,19]. Under Rubber
Compound Viscoelastic Modulus and Surface Roughness Power Spectrum, we
present experimental results for the tread rubber viscoelastic modulus and the
surface roughness power spectrum of the sandpaper road track, respectively,
used in our study. Under 1D Tire Model, we compare the results of a simple
one-dimensional (1D) tire model with experimental data. Under 2D Tire Model,
a two-dimensional (2D) tire model is presented where the rubber-road friction
theory (including the flash temperature effect) is combined with a simple 2D
description of the tire body. We assume that the most important aspect of the tire
body is its distributed mass and elasticity, both of which are fully considered in
the model. An advantage of the 2D model over a full three-dimensional (3D)
model is that any footprint pressure distribution, e.g., a measured pressure
distribution, can be easily imposed. In a 3D tire model, the pressure distribution
is fixed by the model itself. As shown in Ref. [6], the 2D tire model allows
explicit studies on the sensitivity of the tire dynamics to the characteristics of
the footprint pressure distribution. In section ABS Braking Simulations, we also
present simulations of antilock braking system (ABS) braking using two
different control algorithms. We end with Summary and Conclusions.

Rubber Friction

Rubber friction depends on the history of the sliding motion, because the
temperature in the rubber-road asperity contact regions at time t depends on the
sliding history for all earlier times t0 , t due to frictional heating. This
dependency is called memory effect, which is essential for an accurate
description of rubber friction. The effect is illustrated in Figs. 1 and 2 for rubber
tread blocks sliding on different surfaces. The calculated kinetic friction
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coefficient for stationary sliding without flash temperature is shown by the blue
curve, whereas the red curve includes the flash temperature, as a function of the
velocity v of the bottom surface of the rubber block. The black lines represent
the effective friction during nonstationary sliding, experienced by a rubber tread

FIG. 1 — Kinetic friction coefficient (stationary sliding) as a function of the logarithm (with 10 as
basis) of the sliding velocity for a tread rubber on an asphalt road surface. The blue line, marked
cold, is without the flash temperature. The red line, marked hot, is including the flash temperature.
The black curves are showing the effective friction, experienced by a tread block, when it goes
through the footprint, for the car velocity of 27 m/s and for several slip values (0.005, 0.0075, 0.01,
0.03, 0.05, 0.07, and 0.09). The experienced friction of the tread block follows first the cold rubber
branch of the steady-state kinetic friction coefficient. And after, when the block has slipped a
distance of order the diameter of the macroasperity contact region, and the flash temperature has
fully evolved, the hot rubber branch is followed.

FIG. 2 — Kinetic friction coefficient (nonstationary sliding) as a function of the logarithm (with 10
as basis) of the sliding velocity for a sandpaper surface and a different rubber compound than in
Fig. 1 for a car velocity of 16.66 m/s and for several slip values (0.07, 0.15, and 0.8). The
experienced friction of the tread block follows first the cold rubber branch of the steady-state kinetic
friction coefficient. Then, when the block has slipped a distance of order the diameter of the
macroasperity contact region, the hot rubber branch is followed.
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block during braking at various slips. Note that some finite sliding distance is
necessary to fully develop the flash temperature effect. The initial friction acting
on the tread block follows the blue curve according to ‘‘cold-rubber.’’ In this
case, the flash temperature is negligible. For larger slip distances the friction
follows the hot branch (red curve). Therefore, it is not possible to describe
rubber friction accurately using only a static and a kinetic friction
coefficient, as is usually done even in advanced finite-element tire dynamics
models. In fact, as shown above, the friction cannot even be described by a
function l(v) that depends on the instantaneous sliding velocity v(t), but the
friction depends on v(t0) for all times t0 � t (memory effect).

The results in Fig. 1 are for a tire on an asphalt road surface, where the so-
called macroasperity contact regions (see below) are relatively large, because of
the large sand particles on the road surface. For other substrates, such as safety
walk or sandpaper, the size of the macroasperity contact regions can be very
small. In this case, even a very small slip distance will result in motion along the
hot-rubber branch. This is illustrated in Fig. 2 for nonstationary sliding
experienced by a rubber tread block during braking at various slip values (0.07,
0.15, and 0.8) on the sandpaper corundum P80 substrate used in the tire
dynamics measurements presented later.

To give a preparation to what follows, the rubber friction theory is
reviewed. More details are given in Refs. [5,6]. In the theory, the road asperities
cause viscoelastic deformations of the rubber surface that result in energy
dissipation. An asperity contact region with the diameter d generates time-
dependent (pulsating) deformations of the rubber. The deformation is
characterized by the frequency x ¼ v/d, where v is the sliding velocity. The
viscoelastic deformations, and most of the energy dissipation, extend into the
rubber by a characteristic distance of order d. Therefore, most of the energy
dissipation occurs in a volume element of order d3. To have a large asperity-
induced contribution to the friction, the frequency x should be close to the
maximum of the tan d¼ Im E(x)/Re E(x) curve. Here, E(x) is the viscoelastic
modulus of the rubber. In reality, there will be a wide distribution of asperity
contact sizes. This means that there will be a wide range of deformation
frequencies, lets say, from x0 to x1, as shown in Fig. 3. A large friction requires,
that tan d is as big as possible for all these frequencies.

Usually, the viscoelastic modulus of rubber-like materials depends strongly
on the temperature T. An increase in temperature by 108C may shift the tan d
curve to higher frequencies with one frequency decade. In general, this will
reduce the viscoelastic contribution to the rubber friction, as shown in Fig. 3.

The distribution of asperity sizes is usually very wide for real surfaces. A
good picture of a rough surface is to think about it as big asperities on top of
which occur smaller asperities on top of which occur even smaller asperities,
and so on. This is shown in Fig. 4, where roughness occurs on two length scales.
To obtain the total energy dissipation during sliding on a real surface, the sum of
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the contribution from asperity-induced deformations of the rubber on all

relevant length scales is needed. Note that different decades in length scales

may be equally important [5].

Temperature has a significant influence on rubber friction. The most

important contribution to rubber friction is the viscoelastic energy dissipation.

Viscoelastic energy dissipation results in local heating of the rubber in the

region where the energy dissipation occurs leading to local temperature

increases that become larger when smaller and smaller asperity contact regions

are observed. This in time and space local temperature increase is referred to as

the flash temperature. The flash temperature has an extremely significant effect

on the rubber friction, as illustrated in Figs. 1 and 2, wherein the calculated

steady-state kinetic friction coefficient is shown, when a block of tread rubber is

sliding on an asphalt road surface. The upper curve is the result without taking

the flash temperature into account. This means the temperature is assumed to be

the same as the background temperature T0 everywhere. The lower curve

includes the flash temperature. Note that for sliding velocities v . 0.001 m/s,

the flash temperature results in a decrease of the sliding friction. For velocities v

FIG. 4 — Energy dissipation per unit volume. It is highest in the smallest asperity contact regions.

FIG. 3 — When the temperature increases, the tan d ¼ ImE /ReE spectrum shifts to higher
frequencies. In general, this results in a decrease of the viscoelastic contribution to the rubber
friction. It is assumed that the road asperities cause pulsating frequencies in the range between x0

and x1.
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, 0.001 m/s, the produced heat has enough time to diffuse away from the

asperity contact regions, resulting in a negligible flash temperature effect.

The concept of the macroasperity contact region is very important for the

rubber friction theory. Studying the footprint contact region between a tire and a

road surface at different magnifications f shows the following: at low

magnification, the road surface seems smooth and the contact between the

tire and the road appears to be complete within the footprint area. This is

illustrated in Fig. 5a. However, increasing f, noncontact regions can be detected

(Fig. 5b). At high enough magnification, isolated contact regions can be

observed (Fig. 5c). When the magnification increases even further, contact

regions break up into even smaller contact regions (Fig. 5d). We denote the

contact regions observed in Fig. 5c as the macroasperity contact regions with

the average diameter D while the corresponding magnification is denoted by fc.

Formally, fc is defined to be the magnification where the second derivative of

log P(f) with respect to log f has its first maximum with increasing f (see

[6,20]). When the nominal pressure in the tire-road contact region is small

enough, the macroasperity contact regions are well separated. But the separation

between the microasperity contact regions within the macroasperity contact

regions are in general rather small. When the flash temperature effect is

calculated, the produced heat by the microasperity contact regions is smeared

out uniformly within the macroasperity contact regions. For road surfaces D »

FIG. 5 — Contact region between a tire and a road surface. At low magnification f , 1, it appears
that the tire is in complete contact with the road. But increasing the magnification, the contact area
decreases continuously, as indicated in the figure.
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0.1–1 cm, and the fraction of the tread block surface occupied by the
macroasperity contact regions is typically between 10 and 30%.

It is assumed that only the surface roughness with wavevectors q , q1 has a
contribution to the friction in the theory developed in Ref. [6]. For clean road
surfaces, the cut-off wavevector q1 is determined by degradation of material.
That is, the local stress and temperature in the asperity contact regions on the
length scale 1/q1 are so high that the rubber bonds break, resulting in a thin
modified (dead) layer of rubber at the surface region of thickness »1/q1. In
another approach by Kluppel and Heinrich [8], a different mechanism for
obtaining q1 is presented.

Modified surface layers have indeed been detected on rubber tread blocks
[21]. In Fig. 6, we show scanning electron microscopy images of the surface
region of a tire tread block at two different magnifications. In the high-
magnification image (bottom), a »1 lm thick layer of modified rubber can be

FIG. 6 — Scanning electron microscopy images of the surface region of a car tire tread block at low
magnification (top) and at higher magnification (bottom). Acknowledgment is made to Marc Masen,
Imperial College London, for providing the images.
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observed. Note that in this layer, no filler particles (carbon black) can be
observed. Energy-dispersive x-ray spectroscopy analysis showed an increased
concentration of oxygen compared to the bulk material. The increase of oxygen
in the surface region suggests that the rubber reacts chemically with the
environment and is undergoing oxidation processes during sliding. This is
indeed expected because of the high (flash) temperatures and large stresses in
the rubber-road asperity contact regions during slip. Using indentation
experiments [21], the viscoelastic properties of the modified surface layer were
studied, showing that the surface layer is much softer than the bulk, with a long-
time (relaxed) modulus »1000 times smaller than in the bulk, whereas the
short-time response indicated an »5 times softer surface layer. Furthermore, the
viscoelastic spectral density exhibited much slower relaxation processes (longer
relaxation times) than in the bulk. From this, the following can be concluded:

(1) The rubber friction after run-in is rather insensitive to the road surface
roughness on clean roads. This has been found in different experimental
studies (see [22]) and can be understood as follows. The cut-off q1 on
surfaces with smoother and less sharp roughness, or for surfaces where the
roughness occurs at shorter length scales, will be larger, i.e., the cut-off
wavelength k1 ¼ 2p/q1 will be smaller than for road surfaces with larger
roughness in such a way that the temperature and stress increase in the
asperity contact regions observed at the resolution k1 or magnification f¼
q1/q0 are roughly the same on all surfaces. This means that a larger range
of roughness will contribute to the rubber friction on ‘‘smoother’’ surfaces
compared to rougher surfaces. From this, it follows that the friction

after run-in may vary much less between different clean road surfaces

than expected from the variation of the magnitude of the surface

roughness.

(2) The cut-off q1 may be determined by the nature of the road surface
contamination. In this case, if the cut-off is fixed, e.g., by the size of the
contamination particles, a much larger change in the friction coefficient
can be observed between different road surfaces, and for tires with
different types of tread rubber.

For clean surfaces, q1 is determined by the thickness of a thin modified
(dead) layer (see Fig. 6) that is generated by the high stresses and temperatures
at the tread rubber surface during run-in. This process is likely also related to
rubber wear. Rubber wear occurs during slip and leads to a contamination of the
track by small wear elements. This may have some effect on the sliding friction.
It is also well known to occur when a car brakes or accelerates on a road,
leaving black strips of rubber particles on the road surface. However, we do not
expect that the wear particles have a large effect on the investigated friction.
This is because most of them are of similar size as the cut-off distance. During
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moderate slip, the particles only cover a small part of the road surface. Also, this
statement is supported by our laboratory experiments where we observed a
negligible change in the rubber friction force, when the same rubber tread
element, or rubber block slides a second time on the same, not cleaned road
track, or even on a much smoother grinded steel surface.

The cut-off length 1/q1 depends on the rubber compound used, and also on
the characteristics of the road surface. Changing the road surface requires some
short run-in to form a new thin modified surface layer on the tread block, which
is corresponding to a new cut-off length.

We have derived a set of equations describing the viscoelastic contribution
to the friction acting on a rubber block squeezed with the stress r0 against a
hard randomly rough surface [6]. Here, we summarize the basic equations.
There are two contributions to the frictional stress rf ¼ l(t) r0. One
contribution is the dissipation of energy inside the rubber, due to viscoelasticity
of the rubber material. This depends on the history of the sliding motion
[velocity vðtÞ ¼ ẋðtÞ] expressed via the following series of equations:

lðtÞ» 1

2

Z q1

q0

dq q3 CðqÞPðq; tÞ
Z 2p

0

d/ cos / Im
EðqvðtÞ cos /; TqðtÞÞ
ð1� m2Þr0

:

The flash temperature at time t enters in as

TqðtÞ ¼ T0 þ
Z t

0

dt 0 Cðt; t 0Þ
Z q1

q0

dq0f ðq0; t 0Þ

3
1

p

Z ‘

0

dk
4q2

k2 þ 4q2

4q0

k2 þ 4q02
e�Dk2ðt�t 0Þ;

where C(t, t0) ¼ h(w(t, t0)) with

hðwÞ ¼ 1� 2

p
wð1� w2Þ1=2 � 2

p
arcsinw;

for w , 1 and h(w)¼ 0 for w . 1. Here, w(t, t0)¼ [x(t)� x(t0)]/2R depends on
the history of the sliding motion. The function

f ðq; tÞ ¼ vðtÞ
qCv

q4CðqÞ Pðq; tÞ
Pðqm; tÞ

Z 2p

0

d/ cos/ Im
EðqvðtÞ cos /; TqðtÞÞ

1� m2
;

where v ¼ ẋðtÞ depends on time. The function P(q, t) (which also depends on
time) is represented by

Pðq; tÞ ¼ 2

p

Z ‘

0

dx
sinx

x
exp �x2Gðq; tÞ
� �

¼ erf
1

2=G

� �
;

where
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Gðq; tÞ ¼ 1

8

Z q

q0

dq q3CðqÞ
Z 2p

0

d/
EðqvðtÞ cos /; TqðtÞÞ
ð1� m2Þr0

����
����
2

:

The second contribution to the rubber friction is deduced from the area of
(apparent) contact observed at the magnification f1 and is given by sfA1/A0.
Here, sf (v) is the effective frictional shear stress acting in the contact area A1¼
A(f1) ¼ P(q1, t). This theory is denoted as the ‘‘full theory.’’

Phenomenological Rubber Friction Law

In automotive tire applications, for a slip between 5 and 10% and a typical
footprint length of 10 cm, the slip distance of a tread rubber block in the
footprint will be of order 1 cm. This is of order or larger than the diameter D of
the macroasperity contact regions. As long as the slip distance r(t) is small
compared to D, the friction follows the cold rubber branch of the steady-state
relation l(v) (see blue curve in Fig. 1). So, l(t) » lcold(v(t)) for the slip distance
r(t) ,, D. When the tread block travels towards the end of the footprint, the
slip distance r(t) may be of the order of D, or larger, and the friction will follow
the hot branch of the l(v) relation. This means l(t) » lhot(v(t)) for r(t) . D. We
have found that the following history-dependent friction law [19] predicts
almost the same friction force as the full theory presented above and in Ref. [6]:

lðtÞ ¼ lcoldðvðtÞ; T0Þe�rðtÞ=r0 þ lhotðvðtÞ; T0Þ 1� e�rðtÞ=r0

h i
: ð1Þ

Here, v(t) is the instantaneous sliding velocity, r(t) is the sliding distance, and r0

» 0.2 D. We denote eq 1 as the ‘‘cold-hot friction law.’’ The length D, which is
typically » 1 mm, depends on the road surface and on the rubber compound.
Applying the full friction theory, the functions lcold (v, T0), lhot (v, T0) and the
length D can be calculated.

Let us briefly discuss the philosophy of using the friction law presented
above. There are (at least) two temperature effects that differ with respect to
their dependency on time t and spatial coordinate x. The flash temperature is the
sudden increase in the rubber temperature in road-rubber asperity contact
regions due to the frictional heating. This effect is located in very small volume
elements ~D3 and prevails for very short time periods of order s¼D/v, where D
is the diameter of an macroasperity contact region and v the slip velocity. In a
typical case, D » 1 mm and v » 1 m/s, giving the flash temperature timescales s
» 10�3 s (or less). In addition to the flash temperature, there is a change in the
rubber temperature over much longer timescales due to the rolling resistance
and from the frictional energy dissipation during slip, e.g., during braking or
cornering. The latter effect can be considered as the cumulative effect of the
flash temperature. Both processes occur on timescales of seconds or more. So,
compared to the flash temperature effect, it varies slowly in time (and space).
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We refer to this slowly varying temperature as the background temperature and

denote it as T0(t). Note that T0(t) depends on the driving history over long

periods (from seconds to hours) and can only be determined by performing full

vehicle dynamics experiments or simulations taking into account the external

conditions such as wet or dry road, road and air temperature, and humidity. We

also note that there are temperature effects that occur on other timescales

associated with the interaction between hot spots (see Discussion under 2D Tire

Model) (involving short times), or that are associated with the time period of the

tire rolling one orbit [with the characteristic time 2 p R/v » 0.1 s (R is the tire

radius) in a typical case]. The latter effect could also be considered as part of the

background temperature.

The temperature T0 in lhot (v, T0) is the background temperature discussed

above. The flash temperature is already accounted for and determines (or

influences) the velocity dependency of lhot (v, T0). The function lcold (v, T0) is

the friction coefficient at the background temperature T0 neglecting the flash

temperature effect.

To illustrate the accuracy of the cold-hot rubber friction law (eq 1), the

dynamics of one tread block is analyzed as it travels through the tire-road

footprint. The frictional shear stress acting on this tread block as a function of

time for many slip values (0.005, 0.0075, 0.01, 0.03, 0.05, 0.07, 0.09, 0.12, 0.15,

and 0.25) is shown in Fig. 7. Note that the cold-hot friction law (eq 1) (red

curves) gives approximately the same result as the full friction theory (green

curves). The l-slip curve is shown in Fig. 8. The results in Figs. 7 and 8 do not

include the contribution to the friction from the area of contact.

FIG. 7 — Frictional shear stress acting on a tread block as a function of time for many slip values
(0.005, 0.0075, 0.01, 0.03, 0.05, 0.07, 0.09, 0.12, 0.15, and 0.25). Car velocity 27 m/s and tire
background temperature T0¼ 608C. 1D tire model using the full friction model (green curves) and
the cold-hot friction law (eq 1) (red curves). Passenger car tread compound.
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Rubber Compound Viscoelastic Modulus

We have measured the viscoelastic modulus of the tread rubber used in the
present study. In Fig. 9, we show the logarithm of the real (red) and imaginary
(blue) part of the viscoelastic modulus as a function of the logarithm of the
frequency of the tread rubber compound at the reference temperature T0¼208C.
The square symbols are large strain or stress results obtained from strain-sweep

FIG. 8 — l-Slip curve for the 1D tire model using the full friction model (green curve) and the cold-
hot friction law (eq 1) (red curve). Passenger car tread compound.

FIG. 9 — Logarithm of the real (red) and imaginary (blue) part of the viscoelastic modulus as a
function of the logarithm of the frequency of the tread rubber compound at the reference temperature
T0 ¼ 208C. The square symbols are large strain or stress results obtained from strain-sweep data
using the self-consistent stress procedure (eq 13 in [23]) for a substrate surface with the rms slope j
¼ 0.7.
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data using the self-consistent stress procedure (see eq 13 in [23]) for a substrate

surface with the root mean square (rms) slope j¼ 0.7. Figure 10 shows the shift

factor aT as a function of the temperature T for the same rubber compound.

In Fig. 11, we show the real part of E as a function of the applied strain

during oscillation at fixed frequency of 1 Hz. The curves are obtained at

different temperatures starting from 120 to �408C.

Figure 12 shows tangent delta (tan d) as a function of frequency for the

same tread rubber compound. The red curve is for small strain (0.2%), whereas

the green squares are the large strain or stress results.

FIG. 10 — Shift factor aT as a function of the temperature T. The reference temperature T¼208C. It
is also used to shift the individual strain sweep measurements in Fig. 11.

FIG. 11 — Real part of E as a function of the applied strain during oscillation at fixed frequency of 1
Hz. The curves are obtained at different temperatures starting from 120 to�408C.
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Surface Roughness Power Spectrum

We have measured the surface topography of the sandpaper surface used in
the tire dynamics experiments. However, the measurements were done on used
sandpaper when it was removed from the experimental setup after a long time of
use. The surface of the sandpaper was much smoother than of new sandpaper of
the same type due to wear when the tires slip over the sandpaper. The actual tire
friction measurements were done some time in the middle of the lifetime of the
sandpaper, and we have no direct information about the surface topography of
the sandpaper at that time. We have increased the amplitude of the measured
surface roughness by a factor of »1.18 to take into account that the roughness
amplitude likely was larger at the time of the tire dynamics measurements.

Figure 13 shows the surface roughness top power spectrum on a (log10–log10

scale) of the corundum P80 sandpaper, calculated from the measured surface
height profile. The long wavelength roughness was probed using a stylus
instrument and gives the blue, green, and red lines in the figure, whereas the short
wavelength roughness was studied using atomic force microscopy on top of some
big corundum particles. The actual power spectrum used in the calculations was
the measured calculation multiplied by a factor of (1.18)2 » 1.4 to take into
account the larger surface roughness expected at the time of the tire measurements.

1D Tire Model

The results presented in this section have been obtained using a 1D model
of a tire shown in Fig. 14. A tread block is attached to a tire-body block that is

FIG. 12 — Tan d as a function of frequency, as obtained using experimental data for a tread rubber
compound. The temperature T ¼ 208C and the red curve is for small strain (0.2%). The green
squares are large strain or stress results obtained from strain-sweep data using the self-consistent
stress procedure (eq 13 in [23]) for a substrate surface with the rms slope j¼ 0.7.

SELIG ET AL. ON RUBBER FRICTION AND TIRE DYNAMICS 229



connected to the rim by viscoelastic springs. The springs have both elongation
and bending elasticity k (and damping c) that are used in longitudinal (e.g.,
braking) or transverse (cornering) direction. We optimize the tire-body spring
constant to reproduce the tire transverse (cornering) and longitudinal stiffness.
The damping has been chosen so as to give a critical damping that we have
found gives the best agreement with the full 2D tire model discussed under 2D
Tire Model. That is c¼ 2(mk)1/2, where k is the (bending or elongation) spring
constant, and m the mass of the tread block plus the tire-body block. The free
oscillations are determined by

mü ¼ �ku� cu̇;

so we have a damped oscillator with the complex frequency

x ¼ i
c

2m
–

k

m
� c

2m

� �2
	 
1=2

:

FIG. 13 — Power spectrum for a used corundum P80 sandpaper, as a function of the wavevector q.
The figure shows the top power spectrum on a log10–log10 scale.

FIG. 14 — 1D model of a tire. A tread block is attached to a tire body block that is connected to the
rim by viscoelastic springs. The springs have both elongation and bending elasticity (and damping)
that are used in longitudinal (e.g., braking) or transverse (cornering) motion.
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The critical damped case is when the square-root term vanishes or c¼ 2(mk)1/2.
The optimization of the tire-body (bending or elongation) spring constant k is
done in an iterative way. We first calculate the (longitudinal or transverse)
stiffness Cc for a given spring constant k and then replace

k�k 3ðC=CcÞ;

where C is the measured (longitudinal or transverse) stiffness. After a few
numbers of iterations, a spring constant can be obtained that results in a
calculated stiffness Cc that agrees well with the measured value C.

Numerical Results and Comparison with Experimental Data

In this section, we compare the l-slip and l-slipangle curves, calculated
using the 1D tire model, to experimental data. Under 2D Tire Model, we show
that the 2D tire model gives very similar results. However, the 2D tire model
calculations are much more time-consuming, and we therefore focus on the 1D
tire model here for comparison to experimental data.

The experimental results presented below were obtained for a passenger car
summer tire with silica-based tread compound with the viscoelastic modulus
given under Rubber Compound Viscoelastic Modulus. The substrate was
corrundum P80 sandpaper (see Surface Roughness Power Spectrum). For all
experiments, the rim-mounted tire is bolted to the measuring hub of the tire test
bench. The nominal inflation pressure of the tire is adjusted, and the tire is run-
in at a medium wheel load with a velocity of 60 km/h for 30 min. For
preconditioning purposes, the slipangle is changed –58, with an angle rate of
28/s. After a cooldown phase, the nominal inflation pressure of the tire is
adjusted. During the experiments, wheel load FN, longitudinal force Fx, lateral
force Fy, aligning torque Mz, overturning torque Mx, slip and camber angle,
longitudinal slip, and rolling velocity are recorded, with a sample rate of 250
Hz. For brake slip measurements, a brake torque is induced with a linear ramp
function. A brake disk is used to apply the brake torque. The torque is set to
zero when the rotational velocity of the wheel decreases rapidly. Using this
procedure, longitudinal slips near to 100% can be reached.

Longitudinal l-slip curve

Figure 15 shows the friction coefficient l ¼ Fx /Fz as a function of slip
during braking calculated using the 1D tire model. The car velocity vcar¼ 16.6
m/s. The calculated friction coefficient is somewhat higher than that found in
the experiment. This may be due to inaccuracy in the surface roughness power
spectrum. As pointed out under Surface Roughness Power Spectrum, we could
not measure the surface roughness profile of the sandpaper at the time the tire
measurements were done but only much later when the sandpaper surface most
likely had a modified (reduced) height profile due to wear. To account for this
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effect, we somewhat arbitrarily increased the amplitude of the surface
roughness by a factor of »1.18.

Another difference between the theory result and the experimental data is
that the friction coefficient tends to decrease slightly faster with increasing slip
in the measured data. We believe this may be due to a temperature effect, so far
not included in the theory. (According to theory, an increase in rubber
temperature decreases friction.) So far, we have included the flash temperature
effect, but we do not include the fact that after some slip distance, a road-rubber
macroasperity contact region may move into the ‘‘hot’’ strip region of rubber
produced by another road asperity contact region in front of it, which is
explained later in more detail. This effect, which is reducing the friction for
large slip, may be the explanation why the measured friction coefficient
decreases faster with increasing slip as compared to the theory.

Transverse l-slip curve
Figure 16 shows the l-slipangle curve, where l ¼ Fy /FN, for the 1D tire

model compared with experimental data for the tire loads FN ¼ 3000 N (Fig.
16a), FN¼ 5000 N (Fig. 16b), and FN¼ 9000 N (Fig. 16c). In the calculations
the background temperature T0 has been chosen to be the same as the measured
surface temperature. The tire tread surface temperature was measured at the
center of the tire after rotating half a full rotation out of the footprint (see Fig.
17b), and we have taken this temperature as our background temperature. Thus
T0 depends on the slipangle and on the load. Note that the temperature variation
is very large, from »368C at the smallest load and slipangle zero (start of
measurement) to »758C at the highest load and slipangle »108 (and even higher
temperature for the negative slipangles, which were not used in the
calculations). The strong increase in the temperature during cornering results
in much smaller friction coefficients compared with braking, where the

FIG. 15 — The l-slip curve (where l¼ Fx / FN) for the 1D tire model compared with experimental
data for the tire loads FN¼ 3000, 5000, and 9000 N. The car velocity tcar¼ 16.6 m/s at T0 » 378C.
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temperature increase is much smaller (see Fig. 15). This is also illustrated in
Fig. 18 that reproduces the results from Fig. 16b and also shows the calculated
friction coefficient assuming the same temperature as in the calculation of the
longitudinal l-slip curve in Fig. 15.

FIG. 16 — l-Slipangle curve (where l¼ Fy / FN) for the 1D tire model compared with experimental
data for the tire loads FN¼3000 N (a), 5000 N (b), and 9000 N (c). The car velocity tcar¼ 16.6 m/s.
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FIG. 17 — (a) Measured l-slipangle curves for the tire loads FN ¼ 3000, 5000, and 9000 N. (b)
Tread surface temperature was measured at a center position of the tire after half a rotation. The
slipangle has been changed with–28/s. It was first changed from 0 to 128 then to�128 and back to 0.

FIG. 18 — Lateral l-slip curve for the 1D model compared with the experimental results for the tire
load FN¼ 5000 N. In the upper curve, the background temperature was fixed at 37.78C. In the lower
curve, the background temperature varied between 30 and 708C (from Fig. 17b).
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The background temperature in the study mentioned above may differ from
the actual background temperature for the following reasons. First, it is the
measured surface temperature; surface temperature may differ from the
temperature inside the rubber (in the surface region), the relevant temperature
for rubber friction. In addition, it is the temperature at one spot on the tire and it
may differ from that of other surface areas, depending on where most of the
friction energy is produced, which depends on the tire-road footprint pressure
distribution and hence on the tire load. Finally, it is the temperature after half a
tire rotation, whereas the relevant temperature is the temperature after one tire
rotation, i.e., just when a tread block enters the contact region again.

The calculated results in Fig. 16 exhibit a stronger variation with the load than
found in the experiment. Also, the hysteresis between increasing and decreasing
slipangle is larger in the theory predictions than in the observations in the
experiments. In theory, the hysteresis is entirely due to the change in background
temperature. Thus, the difference between theory and experiment may reflect
uncertainty in T0(t) as discussed above. However, there may be another effect
related to rubber wear and contamination of the road track (see Discussion).

Discussion

Figure 17 shows the measured l-slipangle curves for the tire loads FN ¼
3000, FN¼ 5000, and FN¼ 9000 N. In the experiment, the slipangle has been
changed by 28 (or�28) per second. It was first changed from 0 toþ128, then to
�128, and then back to 08. During this cycle, the tire temperature varies as
shown in Fig. 17b, where we show the tire tread surface temperature measured
in the center of the tire after half a tire rotation. Note that, as expected, the tire
temperature is higher for negative slipangles than for positive slipangles due to
increased time of frictional heating (the cornering angle first goes positive and
then negative). One remarkable effect is that the rubber-road friction is larger
for negative slipangles as for positive slipangles in spite of the higher
temperature for negative slipangles. We believe that this effect, and the reason
for why the hysteresis in the friction is larger in the calculations compared with
the experiments, may be due to contamination of the road surface by hot rubber
fragments (smear) that may continuously increase the contribution to the
friction from the area of real contact. This effect is known to occur on Formula
1 race tracks, but it may also occur in these indoor experiments due to high
temperatures and severe wear. In addition, the tire body is asymmetric, which
could contribute to the difference between positive and negative slipangles.

2D Tire Model

The inputs for the 2D tire model are the tire load, tire rolling velocity, and
tire (or car) center of mass velocity as well as the camber and cornering angles.
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We also need in general the tire mass and moment of inertia. For tire dynamics,

we need the longitudinal and transverse tire stiffness and the lowest longitudinal

and transverse tire vibration frequency and damping. The outputs are all the

forces and moments acting on the tire. We note that cambering is included in

our 2D tire model in the same way as it is usually included in the 1D brush

model by assuming that the tire rim is curved. That is, the cambering force

results when a point on the outer surface of a leaned and rotating tire that would

normally follow a path that is elliptical when projected onto the ground is forced

(due to friction) to follow a straight path while coming in contact with the

ground. For the friction law, we need the surface roughness power spectrum, the

tread viscoelastic modulus, the tread heat conductivity, capacity, and the tread

mass density. Slip velocities result from solving the full set of equations of

motion and cannot be determined a priori. Slip ratios are defined in the usual

(standard) way described in the literature and are briefly discussed below.

The tire model is shown schematically in Fig. 19. A coordinate system with

the y axis in the transverse direction and the x axis along the longitudinal rolling

direction is introduced. The road is considered as stationary. The car velocity

vc(t), the rolling velocity vR(t), and the cornering angle h(t) determine the

transverse vy(t) and longitudinal vx(t) velocities of the rim:

vy ¼ vcsinh;

vx ¼ vccosh� vR:

FIG. 19 — 2D model of a tire (schematic). The car velocity tc points in another direction than the
rolling direction, resulting in a nonzero cornering angle h.
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The longitudinal slip s(t) is determined by

s ¼ vx

vccosh
¼ vccosh� vR

vccosh
:

When the cornering angle h ¼ 0, the equation simplifies to

s ¼ vc � vR

vc
:

The slip s(t) and the cornering angle h(t) depend on the time t for nonstationary

tire dynamics. The footprint moves in the rolling direction with the rolling

velocity vccos h � vx ¼ vR relative to the rim and with the velocity vccos h
relative to the road.

The tire body is described as a set of mass points connected with

viscoelastic springs with the elasticity k and the viscous damping c. The springs

have both elongation and bending elasticity. They are denoted by k and kB¼ k0,
and the corresponding viscous damping coefficients c and cB¼ c0. There are Nx

and Ny tire-body blocks assumed along the x and y directions with xij¼ (xij, yij)

denoting the displacement vector of the tire-body block (i, j) (i ¼ 1,...,Nx, j ¼
1,...,Ny). As the tire is a torus shaped object, we use periodic boundary

conditions in the x direction so that xNxþ1; j ¼ x1; j and yNxþ1; j ¼ y1; j

The following boundary conditions apply. For i ¼ 0,. . ., Nx þ 1:

ẏi0 ¼ vy; ẋi0 ¼ vx;

ẏi;Nyþ1 ¼ vy; ẋi;Nyþ1 ¼ vx:

For stationary tire motion, these equations can be reduced to

yi0 ¼ vyt; xi0 ¼ vxt;

yi;Nyþ1 ¼ vyt; xi;Nyþ1 ¼ vxt:

For j ¼ 1,...,Ny, the periodic boundary conditions are

yNxþ1; j ¼ y1j; xNxþ1; j ¼ x1j;

y0j ¼ yNx; j; x0j ¼ xNx; j:

If the mass of a tire-body element (i, j) is denoted by mj, we obtain for i ¼
1,...,Nx, j ¼ 1,...,Ny as follows:

mjÿij ¼ Fyij þ kyjðyi; j�1; � yijÞ þ kyjþ1ðyi; jþ1 � yijÞ þ cyjðẏi; j�1 � ẏijÞ
þcyjþ1ðẏi; jþ1 � ẏijÞ þ k 0

xjðyiþ1; j þ yi�1; j � 2yijÞ
þc0

xjðẏiþ1; j þ ẏi�1; j � 2ẏijÞ;
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mjẍij ¼ Fxij þ kxjðxi�1; j � xijÞ þ kxjðxiþ1; j � xijÞ þ cxjðẋi�1; j � ẋijÞ
þcxjðẋiþ1; j � ẋijÞ þ k 0

yjðxi; j�1 � xijÞ þ k 0
yjþ1ðxi; jþ1 � xijÞ

þc0
yjðẋi; j�1 � ẋijÞ þ c0

yjþ1ðẋi; jþ1 � ẋijÞ:

In the equations above, Fxij and Fyij are the force components in the x and y
directions. They are acting on the tire-body block (i, j) from the tread block (i,
j). Therefore, Fij¼ (Fxij, Fyij) is only nonzero when (i, j) is in the tire tread area.
The viscoelastic properties of the tire body are determined by 16 parameters,
namely, the tire-body viscoelastic spring parameters (k, c) and (k0, c0) in the
tread area and in the sidewall area. These parameters must be optimized to
reproduce a number of measured tire properties, e.g., the longitudinal and
transverse tire stiffness values for three different loads and also the frequency
and damping of the lowest longitudinal and transverse tire vibrational modes.
The vibrational modes are shown in Fig. 20. The optimization is performed by
using the amoeba method of multidimensional minimization [24].

Tire Body Optimization
As discussed above, there are 16 unknown parameters that need to be

determined. In our tire-body optimization, 10 of these parameters were
deduced from experimental data, whereas six parameters are imposed to get
all quantities defined. If Q denotes the ratio of the width of the tire-body
sidewall block and the width of the tire-body tread area block, then these
conditions are as follows:

On the sidewall,

cx ¼ cyQ2; c0
x ¼ c0

yQ2:

In the tread area,

cy ¼ 2cyð1ÞQ; c0
x ¼ 2c0

xð1Þ=Q;

c0
y ¼ 2c0

yð1ÞQ; cx ¼ 2cxð1Þ=Q;

FIG. 20 — Longitudinal and transverse tire vibrational modes of an unloaded tire with fixed rim.
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where cy(1), c0
yð1Þ, cx(1), and c0

xð1Þ all refer to the sidewall. Note that cy and c0
y

are fitted to agree with the damping constant of the tire transverse and
longitudinal vibration modes. The factor of 2 in the equations above is quite
arbitrary, but reflects an expected larger damping of the tire body in the tread
area.

The tire optimization is done in an iterative way. We first use the measured
tire vibration frequencies and damping constants to determine the tire-body
spring constants and damping in a similar way as for the 1D tire. That is, for all
tire-body spring and damping constants (on both sidewall and tread area) during
the iteration, we replace

(a) for transverse mode,

ky�ky 3ðxT=xTcÞ2; cy ¼ cy 3ðcT=cTcÞ;

(b) for longitudinal mode,

k 0
y�k 0

y 3ðxL=xLcÞ2; c0
y ¼ c0

y 3ðcL=cLcÞ:

We iterate until the measured tire vibration frequencies xT and xL and damping
cT and cL are reproduced.

Next, the tire longitudinal and transverse stiffness values for three loads
(total of six parameters) are used. For transverse stiffness, in the tread area, ky

and k 0
x and also in the sidewall k 0

x are varied. For longitudinal stiffness, in the
tread area k 0

y and kx and also in the sidewall kx are varied.

The optimization of the transverse and longitudinal tire stiffness for all
three tire loads is performed using the amoeba method to minimize the effective
potential or error functions:

VT ¼
X CT

CTc
� 1

� �2
" #1=2

;

VL ¼
X CL

CLc
� 1

� �2
" #1=2

;

where CT is the measured tire stiffness and CTc the calculated (for a given set of
spring constants k and damping c) transverse stiffness value, and similar for the
longitudinal stiffness CL and CLc. The tire stiffness values are defined as CT¼
Fy /(h FN) (where h is in degrees) as the slipangle h � 0 and CL¼ Fx /(sFN) as
the slip s� 0. The sum R is over the three different tire loads. In Tables 1 and 2,
we show the results of a tire optimization. The longitudinal and transverse tire
vibrations and damping are perfectly reproduced. The transverse (cornering)
stiffness is also very well reproduced. However, the longitudinal stiffness for the
largest load shows some discrepancy. Table 3 also presents several other

SELIG ET AL. ON RUBBER FRICTION AND TIRE DYNAMICS 239



calculated quantities for which no measured values were known to us. The
pneumatic trail is defined as Mz /Fy, and the self-aligning moment stiffness is
defined as Mz /(h FN) as the slipangle h � 0. Finally, the camber stiffness
coefficient is defined as Fy /(/ FN) as the camber angle (in degree) / � 0. For
the loads FN¼3000, 5000, and 9000 N the length of the tire footprint is Lx¼90,
128, and 189 mm, respectively. Thus, the ratio between the pneumatic trail d
(see Table 3) and the length of the footprint are d/Lx ¼ 0.21, 0.27, and 0.28,
respectively. The simple brush model predicts d/Lx¼ 1/6 » 0.17, but it is known
from measurements that the pneumatic trail usually is larger than predicted by
the brush model, in accordance with our model predictions.

The tire-body elasticity and damping for square tire-body elements as
resulted from the tire optimization are shown in Tables 4 and 5. Note that the
sidewall spring constants ky and kBy are considerably softer than the other spring
constants. We show in Numerical Results that these spring constants are
determined mainly by the inflation pressure. Note also that, as expected, the
spring constants of the tire body in the tread area are higher than in the
sidewalls.

Consider a rubber block with thickness d and the width and height b. If the
stress r¼ F/bd is applied to two opposite sides, it will elongate a distance u so
the strain e¼u/b (see Fig. 21). If E is the elastic modulus, we have r¼Ee, which
gives F¼ uEd or the elongation spring constant k¼ Ed. Similar the shear spring
constant kB¼Gd, where G¼E/(2(1þ m)), is the shear modulus. If the thickness of
the rubber block d¼ 1 cm as typical for tire body and if E¼ 10 MPa as is typical
for the low-frequency Young’s modulus of filled rubber, we get k¼ 100 kNm and
kB » 30 kNm. These values are similar but slightly smaller than the values given
in Table 4. This is expected, as in the tire body are fibers with much higher
stiffness than the rubber itself. Note, as pointed out above, that the sidewall spring
constants ky and kBy are considerably softer than the other spring constants and

TABLE 1 — Calculated (optimized) and experimental values for the longitudinal and transverse tire

vibration eigenfrequencies and dampings.

xT (Hz) cT (s�1) xL (Hz) cL (s�1)

Calculated 46.1 1.08 63.0 2.72

Experimental 46.2 1.10 63.0 2.72

TABLE 2 — Calculated (optimized) and experimental values for the longitudinal and transverse

stiffnesses for the three different normal loads.

FN (N) CT CTc CL CLc

3000 0.31 0.30 25.0 26.3

5000 0.23 0.21 22.5 21.5

9000 0.14 0.14 20.0 16.2
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also smaller than estimated above for a rubber block. The reason is that in our
model, these two spring constants have a geometrical origin in combination with
the inflation pressure [see Influence of tire gas (inflation) pressure].

We have performed a calculation of the tire-body longitudinal and
transverse stiffness, neglecting the deformations of the tread blocks. In this
case, the tire stiffness values are entirely due to the deformations of the tire
body. We find that neglecting the deformations of the tread blocks increase the
tire longitudinal stiffness by »18% and the transverse tire stiffness by »8%.

In addition to the longitudinal and transverse tire stiffness obtained from
the l-slip and l-cornering-angle curves, we have also measured the longitudinal
(KL) and transverse (KT) stiffness defined as follows. The tire is pushed against
a substrate with a given load, and a tangential force F is applied while the
tangential tire displacement u from the center axis is measured. The tire is not
allowed to rotate. In this way, we obtain a u(F) curve that is nearly linear up to
the point when the tire starts to slip. We define KL ¼ Fx/ux and KT ¼ Fy/uy. In
Fig. 22, we show the measured and calculated relation between Fx/FN and the
longitudinal displacement, and in Fig. 23 the same data for transverse tire
displacement are shown. In Fig. 24, we show the calculated results for KL and
KT for three different loads and the measured data for two loads. Although the
trend in the data as a function of the normal load are the same, there are some
quantitative differences. The calculated stiffness values are higher than
measured. The origin of this may reflect uncertainties in the experimental data
used in the optimization of the tire body, in particular, in the tire resonance
frequencies (and damping) xT and xL, which were not measured directly but
deduced from other experimental data.

Tire Footprint Pressure Distribution
In the tire dynamics calculations, we use the measured tire footprint pressure

distribution shown in Fig. 25 for the normal loads (Fig. 25a) FN¼ 3000 N, (Fig.

TABLE 3 — Values for the pneumatic trail, the self-aligning moment stiffness coefficient, and the

camber stiffness coefficient after the tire optimization for the three different normal loads.

FN (N)

Pneumatic

trail (mm)

Self-aligning moment

stiffness coefficient

Camber stiffness

coefficient

3000 18.9 0.0057 0.0094

5000 34.2 0.0071 0.0093

9000 53.3 0.0077 0.0112

TABLE 4 — Calculated (optimized) tire-body spring constants.

Location kx (kN/m) kBx (kN/m) ky (kN/m) kBy (kN/m)

Sidewall 141.1 68.0 11.6 22.5

Tread area 223.4 102.4 105.6 56.6
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25b) FN¼ 5000 N, and (Fig. 25c) FN¼ 9000 N. Our tire model does not use the

exact tread pattern from the real tire, but assumes square tread blocks. The pressure

profiles shown in Fig. 25 are processed so that the tread blocks experience contact

pressures with a very similar spatial distribution as the measured footprint pressure

distribution. Also note that the pressure profiles in Fig. 25 refer to a static

condition. During rolling, braking, and cornering, the pressure distribution will be

modified, but this effect is not taken into account in the present study.

Numerical Results

In this section, we first compare the l-slip curves calculated with the 2D

tire model with those of the 1D tire model. We also compare the calculated

self-aligning moment curve with the experimental data. We present snapshots

of the tire deformation field during braking and cornering. Finally, we study

the influence of the tire inflation pressure on the l-slip and l-slipangle

curves.

Comparison with the 1D-tire Model

In Fig. 26, we compare the longitudinal l-slip curve for the 1D and 2D tire

models, and the experimental results for the tire load FN¼5000 N. Note that the

1D and 2D tire models give very similar results.

TABLE 5 — Calculated (optimized) tire-body damping constants.

Location cx (Ns/m) cBx (Ns/m) cy (Ns/m) cBy (Ns/m)

Sidewall 0.736 2.015 0.700 2.088

Tread area 1.472 4.030 1.400 4.175

FIG. 21 — Rubber block sheet of square form (side b) and thickness d exposed to a uniform stress r
¼ F /db will elongate a distance u.
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Self-Aligning Torque: Comparison with Experimental Data
Figure 27 shows the self-aligning moment as a function of the slipangle for

the tire loads FN¼3000 N, FN¼5000 N, and FN¼9000 N. The measured result
is given by the solid line and the prediction of the 2D tire model by the dashed
line. Note that the maximum of the measured self-aligning moment is larger
than predicted theoretically. This may be due to the modifications of the
footprint pressure profile during cornering (in the calculations the static
measured footprints are always used).

Relaxation Length
Figure 28 shows the variation of the transverse force on the tire (in units of

the normal force FN) as a function of time when the cornering angle increases

FIG. 22 — Calculated and experimental results for the longitudinal stiffness KL for the tire load FN

¼ 5000 N and drive velocity t ¼ 2.2 mm/s.

FIG. 23 — Calculated and experimental results for the lateral stiffness KT for the tire load FN ¼
5000 N and drive velocity t¼ 6.45 mm/s.
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linear with time from h0¼ 08 at time t0¼ 0 to h1¼ 1, 3, 7, and 128 at t1¼ 0.02 s.

The relaxation length L is the tire rotation distance for the transverse force to

reach 60% of its final value. In the present case, we get L » 0.5 m for h1¼1 and

38. This corresponds to approximately one-fourth of a full tire rotation. For large

slipangles, the relaxation length is smaller, as also observed in experiments.

Tire Body Deformation Field

Figure 29 shows snapshots of the tire deformation field during braking and

Figure 30 shows snapshots during cornering.

Influence of Tire Gas (Inflation) Pressure

The inflation pressure has two (related) influences on the tire dynamics:

increasing the inflation pressure will (1) increase the tire body stiffness that will

in turn increase the longitudinal and transverse (cornering) tire stiffness, and (2)

will reduce the length of the tire footprint that will in turn reduce the

longitudinal and transverse (cornering) tire stiffness. For vehicle tires, these two

effects may nearly cancel each other, often resulting in only a small change in

the tire stiffness that could be of either positive or negative sign, depending on

which effect is stronger.

In a first approximation, the normal pressure in the footprint is given by the

inflation pressure (this would hold exactly for a membrane without bending

stiffness) and the area of the footprint would be proportional to the inflation

pressure. In this case, if both the width and the length of the footprint would

change with an equal factor, then the length Lx ~ p1/2. If the width would

instead be constant (as it must be the case for small inflation pressures or large

tire loads), then Lx ~ p.

FIG. 24 — Calculated results for the stiffness parameters KL and KT for three different loads and the
corresponding measured data for two loads.
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Increasing the inflation pressure will result in a stiffening of the tire

sidewalls that can be understood as follows. Assume for simplicity that the tire

cross section is rectangular with the tread area of width w, and the sidewall of

width h (see Fig. 31). When we apply a transverse force uniformly on the tread

area, the tire body deforms in a manner that we assume is as indicated in Fig.

31. This will in first approximation change the volume of the gas contained in

the tire by DV¼Lwh�Lwh cos a » Lwha2/2, resulting in a work done against

the gas pressure by pDV. In our tire model, we do not account for the inflation

pressure explicitly, so this effect of the gas in the tire must be contained in the

tire springs used in our model (see 2D Tire Model). In our 2D tire model, the

tire body is discretized into square blocks of length and width a in the tread

FIG. 25 — Tire footprints pressure distribution for the normal loads FN¼ 3000 N (a), 5000 N (b),
and 9000 N (c).
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area, and into rectangular blocks on the sidewalls with length bx¼ a and width

by. Thus, if there are Ny blocks in the y direction, Nyby ¼ h, and if L is the

length (x direction) of the 2D tire, then Nx bx ¼ L. The transverse tire

deformations involve only the sidewall springs k y. In our model, the

deformation in Fig. 31 moves the tread area relative to the (fixed) rim in

the transverse direction by the amount hsin a » ha so that each spring will

elongate (on one side) or contract (on the other side) with bya. If the total

number of side wall springs k y is denoted by N ¼ 2Nx Ny, then we get the

energy conservation equation:

1

2
NkyðbyaÞ2 ¼

1

2
Nk0

yðbyaÞ2 þ pDV;

where k0
y is the tire ky spring constant for zero inflation pressure. Thus, we get

ky ¼ k0
y þ pLwh=ð2NxNyb2

yÞ;

or

ky ¼ k0
y þ ðpw=2Þðbx=byÞ:

Applying instead a uniform longitudinal force on the tread area, and using the

same arguments as above, one can show that

kBy ¼ k0
By þ ðpw=2Þðbx=byÞ:

Thus, one expects ky and kBy to depend linearly on the inflation pressure.

However, the prefactor will not be exactly (w/2)(bx /by) because the undeformed

tire body will not be exactly rectangular as assumed above, and the deformed

tire body will not involve just the simple shear deformation indicated in Fig. 31.

FIG. 26 — Longitudinal l-slip curve for the 1D and 2D models compared with the experimental
results for the tire load FN ¼ 5000 N.
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We suppose that at nominal inflation pressure the pressure term in brackets will
dominate over k0

y (and similar for kBy), and in the model calculations we will
neglect the pressure-independent term. This is intuitively clear because it is
much easier to displace the tread area of an uninflated tire than of an inflated
tire. Note that in the present case (where p¼ 0.25 MPa, w » 0.18 m and bx /by »

FIG. 27 — Self-aligning moment as a function of the slipangle. The measured result is given by the
solid line and the prediction of the 2D tire model by the dashed line. Tire load FN¼3000 N (a), 5000
N (b), and 9000 N (c).
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FIG. 28 — Variation of the transverse force on the tire (in units of the normal force FN) as a function
of time when the cornering angle increases linear with time between t0¼ 0 s and t1¼ 0.02 s, from h0

¼ 08 to h1¼ 1, 3, 7, and 128, for FN ¼ 5000 N.

FIG. 29 — Snapshots of the tire-body deformations for the normal load FN¼ 3000 N, 5000 N, and
9000 N. In all cases, the slip s¼0.05 and the cornering angle h¼0. The short vertical lines indicate
the displacement of the tire body from the undeformed state. The maximum tire-body displacements
are 0.92, 1.39, and 1.84 cm for the tire loads FN¼3000 N, 5000 N, and 9000 N, respectively. Rubber
background temperature T0 ¼ 808C and car velocity 16.6 m/s.
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0.8), this would give a pressure contribution to ky of »1.3 3 104 Nm and similar

for kBy. This is remarkably close to the spring constants obtained for the

optimized tire: ky » 1.0 3 104 Nm and kBy » 1.8 3 104 Nm (see Tire Body

Optimization). We also note that all the other spring constants of the optimized

tire are much larger; so, in these cases, the dependency of the spring constants

FIG. 30 — Snapshots of the tire-body deformations for the normal load FN¼ 3000 N, 5000 N, and
9000 N. In all cases, the slip s¼0 and the cornering angle h¼58. The short horizontal lines indicate
the displacement of the tire body from the undeformed state. The maximum tire-body displacements
are 1.20, 1.81, and 2.31 cm for the tire loads FN¼3000 N, 5000 N, and 9000 N, respectively. Rubber
background temperature T0 ¼ 808 C and car velocity 16.6 m/s.

FIG. 31 — Uniform transverse force acting on the tire tread area deforms the tire body as indicated
in the figure.
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on the inflation pressure will be smaller. However, we have found that ky and kBy

have rather small influence on tire longitudinal and transverse stiffness (but are,
of course, crucial for the longitudinal and transverse tire vibration modes), so it
is still important to take into account the dependency of kx and kBx on the
inflation pressure. We expect from dimensional arguments that kx and kBx

depend on p in a similar way as ky and kBy, so that

kx ¼ k0
x þ axðpw=2Þðby=bxÞ;

kBx ¼ k0
Bx þ aBxðpw=2Þðby=bxÞ;

where we expect ax and aBx to be of order unity. Note, from dimensional
arguments that these numbers may depend on h/w. In the model calculations, we
have chosen ax¼aBx¼ 1, but these parameters could in principle be determined
by comparing how the calculated longitudinal and transverse tire stiffness
compares to the measured tire stiffness for two different inflation pressures.

In Fig. 32, we show the dependency of the l-slip curves and in Fig. 33 the
dependency of the l-slipangle curves on the inflation pressure. We have done
four model calculations where the tire body stiffness parameters {k} and the
footprints have been modified to correspond to the inflation pressures 0.2 and
0.3 MPa. Note that in our model, there is a very small influence of the tire
body stiffness on the l-slip curve, whereas the l-slip curve depends strongly
on the size of the footprint. In the present calculation, the normal tire load is
fixed and the footprint was taken as rectangular with equal width for the
inflation pressures 0.2 and 0.3 MPa. Thus, at the lower inflation pressure the
footprint is 3/2 ¼ 1.5 times longer than at the larger inflation pressure. In
reality, as the inflation pressure changes, the shape of the footprint may get

FIG. 32 — The l-slip curve in dependency of the tire inflation pressure. The tire body stiffness
parameters {k} and the footprints have been modified to correspond to the inflation pressures 0.2
and 0.3 MPa.
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modified in a different way than assumed in our model calculations, but it is in

principle easy to use footprints measured at different inflation pressures in our

calculations.

Discussion

All the calculations presented above have been obtained using the 2D tire

model described under 2D Tire Model, with the tire body optimized using

experimental data for a passenger car tire. The viscoelastic springs associated

with this tire body are kept fixed in all the calculations, except in Numerical

Results where we study the influence of the tire inflation pressure, which affects

the tension in the tire walls, on tire dynamics. Thus, the model calculations do

not take into account the changes in the tire body viscoelastic properties due to

variations in the tire (background) temperature. In principle, this effect can be

relatively simply taken into account in the model, but has not been included so

far.

We emphasize that the 2D tire model is not a ‘‘stationary tire model’’ but

that it describes arbitrarily complex tire dynamics, e.g., combined (time-

dependent) variation in the longitudinal slip, the cornering angle, and the

camber angle, whereas the (forward or rolling) velocity may depend on time

in any arbitrary way. We numerically solve the full (time-dependent) set of

equations of motion without any limitation. In fact, even ‘‘stationary tire

motion’’ involves non-steady tread block motion. Thus, at small slip a tread

block entering the footprint is first (nearly) pinned to the substrate, and

only close to the exit of the footprint will it undergo fast slip. Furthermore,

after leaving the footprint the tread block may perform damped high-

FIG. 33 — l-Slipangle curve in dependency of the tire inflation pressure. The tire body stiffness
parameters {k} and the footprints have been modified to correspond to the inflation pressures 0.2
and 0.3 MPa.
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frequency vibrations for a short time (resulting in high frequency noise); all
this is accurately described by the tire model, although not discussed here.

In our model, the tire is discretized into blocks. To each tire-body element
in the tread area, a tread block is ‘‘connected’’ that in turn can be discretized in
the vertical direction into many (typically 10) thinner block elements
(describing vertical slices of the tread block) that are coupled to each other
using viscoelastic springs (determined by the measured viscoelastic modulus
of the tread rubber) as described in detail in Ref. [6]. This model also allows
a gradient in the tread rubber properties. This is typical in real applications
[where a stiffer, less hysteritic rubber is often used in the upper part of the tread
block to reduce (stabilize) the deformations of the tread block when exposed to
large stresses, and in order to reduce the rolling resistance]. The parallel
(frictional) stress that acts on a tread block is the product of the normal stress
times the friction coefficient, which depends on the history of the sliding motion
of the tread block element, as described by the theory of Ref. [6] or by the
simplified friction law given by eq. 1. Thus, the present theory includes the
memory effects of the friction force resulting from the nonuniform (in time) slip
motion of the tread blocks.

The present study only accounts for frictional heating via the flash-
temperature effect. In reality, the background temperature T0 may also change
with time, e.g., during ABS braking, or during the measurement of the l-slip
curve. It is well known in indoor measurements of tire l-slip curves that the
increase in T0 with increasing time may result in large ‘‘hysteresis’’ if the slip is
first increased from zero to unity, and then reduced back to zero (see [3]).
We have not accounted this effect so far, but it can relatively easy be included in
the present theory. There is also another temperature effect coming from the
overlap of hot spots from different asperity contact regions that is not
considered in this study (see below).

The flash temperature depends on both the slip velocity and the slip
distance. The amount of dissipated energy, which is the product of friction force
and slip distance, goes to zero as the slip distance goes to zero, so negligible
frictional heating (and negligible temperature increase) of the rubber will occur
when the slip distance is very small. In contrast, when the slip distance becomes
larger than the diameter D of the macroasperity contact regions, then there is no
longer any overlap between the present (say, at time t) contact region and the
original (say, at time t ¼ 0) macroasperity contact region, and at this point the
flash temperature has been fully developed. This picture neglects the fact that
after a long enough slip, a given macroasperity contact region may overlap with
the ‘‘hot rubber track’’ emerging from another asperity contact region in
front of it. Note, this hot rubber track will widen in time due to heat
diffusion, and finally (for long enough time) contribute to the background
temperature T0(t) (see Fig. 34). However, this effect is not important for slip up
to (and slightly beyond) the point where the l-slip curve has its maximum,
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which is the most important region for practical applications (e.g., ABS
braking), but it will give rise to a decrease in friction for larger slip.

ABS Braking Simulations

The theory presented may be useful to design or optimize control
algorithms for ABS braking. Below, we show results using two very simple
control algorithms. In both algorithms, the braking torque is changed (increased
or decreased) in steps of DM at time tn ¼ nDt (n ¼ 1, 2, . . .). The first method
assumes that the maximum friction, and the corresponding slip s*, are both
known and time independent. Thus, the braking torque is increased if the slip
s(tn) at time tn is below s* and otherwise it is decreased (see Fig. 35). One
problem here is that the slip s* depends on the car velocity, which changes

FIG. 35 — l-Slip curve for car velocity vc¼ 27 m/s. The maximum of the l-slip curve occurs for the
slip s¼ s*¼ 0.07. The ABS control algorithm should increase the braking torque when s , s* and
reduce the braking torque when s . s*.

FIG. 34 — When a rubber block slides on a rough surface, the heat produced in the asperity contact
regions will result in hot tracks (dotted area) on the rubber surface. When an asperity contact region
moves into the hot track resulting from another asperity contact region in front of it (in the sliding
direction), it will experience a rubber temperature higher than the background temperature T0. This
‘‘thermal interaction’’ between hot spots becomes important if the slip distance is larger than the
average separation between the (macro) asperity contact regions.
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during the braking process. However, for the studied system s* » 0.07 is nearly
independent of the car velocity for 10 m/s , vc , 27 m/s. Note that s* depends
on the background temperature T0 that increases during braking due to frictional
heating. However, in the present study we neglect this effect.

For the second control algorithm b, we assume that s* is unknown.
However, by analyzing the variation with time of the longitudinal friction Fx(t)
and the slip s(t), one can determine whether being on the ascending or
descending side of the maximum s*. Thus, if

FxðtnÞ.Fxðtn�1Þ and sðtnÞ, sðtn�1Þ;

or if

FxðtnÞ, Fxðtn�1Þ and sðtnÞ.sðtn�1Þ;

implies s(tn) . s*, in which case the braking torque at time tn must be
decreased, otherwise increased. Here, Fx (tn) is the longitudinal friction force
and s(tn) the slip at time tn ¼ nDt (n ¼ 1, 2, . . .).

We now present numerical results to illustrate the two ABS braking
algorithms. Let M denote the mass-load acting on a wheel and I the moment of
inertia of the wheel without the tire. For simplification purposes, the suspension
is rigid and mass-load transfer is neglected. The motion equation for the center
of mass coordinate x(t) of the wheel and the angular rotation coordinate / (t) are
as follows:

Mx ¼ Frim; ð2Þ

I/ ¼ Mrim �MB; ð3Þ

where Frim is the force acting on the rim, MB is the braking torque, and Mrim the
torque acting on the rim from the tire. For constant rolling velocity, Frim¼Ff is
the tire-road friction force and Mrim ¼ RFf , where R is the rolling radius. But
during angular accelerations, these relations are no longer true because of tire
inertia effects. We have used M¼ 360 kg and I¼ 0.4 kgm2 in the calculations.

First, we investigate control algorithm a. We assume DM¼ 200 Nm, Dt¼
0.03 s, and s* » 0.05 (compare Fig. 35). The actual maximum of the l-slip
curve occurs for s*¼ 0.07, and we discuss below the difference between using
these two different values for s*. Figure 36 shows the car velocity vc and the
rolling velocity vR (Fig. 36a), the longitudinal slip (Fig. 36b), and the braking
torque (Fig. 36c) shown as a function of time. The duration (t » 2 s) to reduce
the car velocity from v0 ¼ 27 m/s to v1 ¼ 10 m/s corresponds to an effective
friction coefficient l ¼ (v0 � v1)/gt ¼ 0.87, which is smaller than the actual
maximum of the l-slip curve. The slope of the car-velocity line in Fig. 36a for t
. 0.2 s corresponds to the friction coefficient 0.92. This is larger than the
average friction calculated from the stopping time. The slightly smaller friction
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obtained from the stopping time reflects the short initial time interval, which is
necessary to build up the braking torque.

In Fig. 37, we show results for the second ABS control algorithm. Note that
here it also takes about 2 s to reduce the car velocity from v0¼27 m/s to v1¼10
m/s, which gives the same effective friction as obtained using the first ABS
control algorithm. The maximum in the l-slip curve (see Fig. 35) depends on

FIG. 36 — (a) Car velocity tc and the rolling velocity tR as a function of time t. The slip (b) and the
braking moment (c) as a function of time t. For ABS braking, using algorithms a (see text for details).
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the car velocity and is of order lmax ¼ 1.1, meaning that the ABS braking
control algorithm used above could still be improved. Note also that the wheel
tends to lock about three or four times per second. Because the speed of the car
is usually not known during ABS braking, the control algorithms used in most
cars today determine the braking torque only from the wheel rotation
acceleration. This is possible because, as the wheel tends to lock, the rotational

FIG. 37 — (a) Car velocity tc and the rolling velocity tR as a function of time t. The slip (b) and the
braking moment (c) as a function of time t. For ABS braking, using algorithms b (see text for details).
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velocity decreases very rapidly, and hence the ABS controller decreases the
braking torque.

Note that the (average) of the slip in Figs. 36b and 37b increases with
increasing time or, equivalently, with decreasing car velocity. This is due to the
fact that the time it takes for the wheel to lock, when the slip s . s*, decreases
as vc decreases. Thus, during the time period Dt between two changes of the
brake torque, the maximum slip (corresponding to the minimum rolling
velocity) will increase as vc decreases. This is easy to show mathematically.
Because the car velocity changes slowly compared to the rolling velocity, from
the definition s ¼ (vc � vR)/vc we get

dvR

dt
»� vc

ds

dt
:

If we approximate the l-slip curve for s . s* with a straight line,

leff » l0 � Dls;

we get from (3)

I
d2/
dt2
¼ I

R

dvR

dt
»� Ivc

R

ds

dt
¼ MgR l0 � Dls½ � �MB;

or

ds

dt
¼ �Aþ Bs;

where A¼ (MgR l0�MB)(R/Ivc) and B¼Dl (MgR2/Ivc). Because A and B can
be considered as constant during the time interval between the changes in the
braking torque, we get

sðtÞ ¼ sð0Þ � A

B

� �
eBt þ A

B
;

where

A

B
¼ 1

Dl
l0 �

MB

MgR

� �
:

One can show that

sð0Þ � A

B
¼ sð0Þ � s*
� �

þMB �M*
B

DlMgR
;

where M*
B ¼ Mgðl0 � Dls*Þ is the braking torque necessary to stay at the

maximum in the l-slip curve. If s(0) . s* and the braking torque MB.M*
B �

DlMgR½sð0Þ � s*� we have s(0) – A/B . 0 and during the time interval Dt the
slip will increase with [s(0) – A/B]exp(BDt). Because BDt ~ 1/vc, the maximum
slip will increase exponentially (until the wheel blocks, corresponding to s¼ 1)
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with the inverse of the car velocity. This behavior (i.e., the increase in the slip
with decreasing car velocity) can be seen in Fig. 36b and Fig. 37b.

In Fig. 38, we show the l-slip curve during stationary slip (green curve)
and the instantaneous effective friction coefficient leff(t) ¼ Fx(t)/FN during
braking (red curve).

The red and green curves in Fig. 39 show the car velocity using the ABS
control algorithms a and b. The ABS control algorithm a is slightly more
effective than algorithm b, but algorithm a assumes that s* is known and
remains constant during the braking event.

In the calculations above for ABS algorithm a, we used s*¼0.05 that, in fact,
is not the maximum of the l -slip curve that is instead at s*¼ 0.07 (see Fig. 35).
However, remarkably, the braking distance using s*¼ 0.07 in the present case is
almost the same as for s*¼ 0.05 (see Fig. 40). The reason is that with the relative
large magnitude of the brake moment change DM¼ 200 Nm and the relative low
frequency of the brake moment changes (time interval s¼ 0.03 s), algorithm a is

FIG. 38 — l-Slip curves for ABS braking using algorithms a (top) and b (bottom). The green curve
is the steady-state l-slip curve for car velocity tc ¼ 27 m/s, whereas the red curve shows the
instantaneous effective friction coefficient.
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not able to focus in on a narrow region of slip around s*, but in each case fluctuates
over a similar range of slip values as shown in Fig. 41. However, if we lower DM to
100 Nm and double the rate at which the brake moment is modified (so that s¼
0.015 s), algorithm a results in a more narrow distribution of slip centered around
s*. This results in an increase in the braking distance for the case s* ¼ 0.05,
whereas the braking distance for s*¼ 0.07 is modified very little (see Fig. 42). In
Fig. 43, we show the relation between the slip and the effective friction coefficient
for the case where DM is 100 Nm and s¼ 0.015 s.

The ABS braking control algorithms used today usually assume that only the
wheel rolling velocity vR(t) is known. Basically, whenever a wheel tends to lock
up, which manifests itself in a large (negative) wheel angular acceleration, the

FIG. 39 — Car velocity tc as a function of time t during ABS braking using two algorithms a (with
s*¼ 0.05) and b. The procedures a and b result in nearly the same time, »2 s, for reducing the car
velocity from 27 to 10 m/s. The effective friction l » 0.87 is smaller than the maximum kinetic
friction (»1.1).

FIG. 40 — Car velocity tc as a function of time t during ABS braking using algorithm a with s*¼
0.05 and 0.07. Both cases result in nearly the same time for reducing the car velocity from 27 to 10
m/s. The effective friction l » 0.87 is smaller than the maximum kinetic friction (»1.1).
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braking torque is reduced. These ABS braking control algorithms (e.g., the Bosch

algorithm) are rather complex and secret. The calculations presented above can be

easily extended to such realistic ABS braking control algorithms and to more

complex cases such as braking during load fluctuations (e.g., braking on uneven

road surfaces) and switching between different road surfaces (by using different

road surface power spectra during an ABS braking simulation).

Summary and Conclusions

Here, we have proposed a simple rubber friction law that can be used, e.g.,

in models of tire and vehicle dynamics. The friction law gives nearly the same

result as the full rubber friction theory of Ref. [6], but it is much more

FIG. 41 — Dynamical l-slip curves for ABS braking using two different chosen s*-slip values for
control algorithm a. The blue curve is the steady-state l-slip curve.

FIG. 42 — Car velocity tc and the rolling velocity tR as a function of time t for ABS braking with
two different chosen s*-slip values using algorithm a.
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convenient to use in numerical studies of, e.g., tire dynamics, as the friction
force can be calculated much faster.

We have presented a 2D tire model that combines the rubber friction law
with a simple mass-spring description of the tire body. The tire model is very
flexible and can be used to calculate accurate l-slip (and the self-aligning
torque) curves for braking and cornering or combined motion (e.g., braking
during cornering). We have compared calculated results with experimental data
from indoor tire dynamics measurements on sandpaper. Simulations of ABS
braking were performed using two simple control algorithms.

Sandpaper is not an ideal substrate for comparisons to the tire model
because of the relative sharp roughness, which results in much stronger wear
than on asphalt or concrete road surfaces. In addition, the small roll-off
wavelength, which was defined above, results in a rather different frictional
behavior compared with asphalt or concrete road surfaces. Thus, in the future, it
would be interesting to compare the tire model with outdoor measurements on
real road surfaces, e.g. trailer tests.
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