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Abstract

We propose a simple rubber friction law, which can be used, for example, in models of tire (and

vehicle) dynamics. The friction law is tested by comparing numerical results to the full rubber

friction theory (Persson 2006 J. Phys.: Condens. Matter 18 7789). Good agreement is found

between the two theories.

We describe a two-dimensional (2D) tire model which combines the rubber friction model

with a simple mass–spring description of the tire body. The tire model is very flexible and can

be used to accurately calculate µ-slip curves (and the self-aligning torque) for braking and

cornering or combined motion (e.g. braking during cornering). We present numerical results

which illustrate the theory. Simulations of anti-blocking system (ABS) braking are performed

using two simple control algorithms.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Rubber friction is a topic of huge practical importance, e.g.

for tires, rubber seals, wiper blades, conveyor belts and

syringes [1–18]. In most theoretical studies rubber friction

is described using very simple phenomenological models, e.g.

the Coulomb friction law with a friction coefficient which may

depend on the local sliding velocity. However, as we have

shown earlier [6], rubber friction depends on the history of

the sliding motion (memory effects), which we have found

to be crucial for an accurate description of rubber friction.

For rubber sliding on a hard rough substrate, the history

dependence of the friction is mainly due to frictional heating

in the rubber–substrate contact regions. Many experimental

observations, such as an apparent dependence of the rubber

friction on the normal stress, can be attributed to the influence

of frictional heating on the rubber friction.

A huge number of papers have been published related

to tire dynamics, in particular in the context of anti-blocking

system (ABS) braking models. The ‘heart’ in tire dynamics

is the road–rubber tire friction. Thus, unless this friction

is accurately described, no tire model, independent of how

detailed the description of the tire body may be, will provide

an accurate picture of tire dynamics. However, most treatments

account for the road–tire friction in a very approximate way.

Thus, many ‘advanced’ finite element studies for tire dynamics

account for the friction only via a static and a kinetic rubber

friction coefficient. In other studies the dynamics of the
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whole tire is described using interpolation formulae, e.g. the

‘magic formula’ [4], but this approach requires a very large

set of measured tire properties (which are expensive and time-

consuming to obtain), and cannot describe the influence of

history (or memory) effects on tire dynamics.

In this paper we first propose a very simple rubber friction

law (with memory effects) which gives nearly identical results

to the full model developed in [6]. We also develop a 2D

tire model which combines the rubber–road friction theory

(which accounts for the flash temperature) with a simple two-

dimensional (2D) description of the tire body. We believe that

the most important aspect of the tire body is its distributed mass

and elasticity, and this is fully accounted for in our model. One

advantage of the 2D model over a full 3D model is that one

can easily impose any footprint pressure distribution one likes

(e.g. measured pressure distributions), while in a 3D model the

pressure distribution is fixed by the model itself. This allows a

detailed study on how sensitively the tire dynamics depend on

the nature of the footprint pressure distribution. The tire model

is illustrated by calculating µ-slip curves and with simulations

of ABS braking using two different control algorithms.

2. Rubber friction

Rubber friction depends on the history of the sliding motion.

This is mainly due to the flash temperature: the temperature in

the rubber–road asperity contact regions at time t depends on

the sliding history for all earlier times t ′ < t . This memory

effect is crucial for an accurate description of rubber friction.

We illustrate this effect in figure 1 for a rubber tread block
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Figure 1. Red and blue lines: the kinetic friction coefficient
(stationary sliding) as a function of the logarithm (with 10 as basis)
of the sliding velocity. The blue line denoted ‘cold’ is without the
flash temperature while the red line denoted ‘hot’ is with the flash
temperature. Black curves: the effective friction experienced by a
tread block as it goes through the footprint. For a car velocity
27 m s−1 and for several slip values 0.005, 0.0075, 0.01, 0.03, 0.05,
0.07 and 0.09. Note that the friction experienced by the tread block
first follows the ‘cold’ rubber branch of the steady state kinetic
friction coefficient and then, when the block has slip a distance of the
order of the diameter of the macroasperity contact region, it follows
the ‘hot’ rubber branch.

sliding on an asphalt road surface. We show the (calculated)

kinetic friction coefficient for stationary sliding without (blue

curve) and including (red curve) the flash temperature as a

function of the velocity v of the bottom surface of the rubber

block. The black curves show the effective friction during non-

stationary sliding experienced by a rubber tread block during

braking at various slips (slip values from 0.005 to 0.09). Note

that, because some finite sliding distance is necessary in order

to fully develop the flash temperature, the friction acting on

the tread block initially follows the blue curve corresponding

to ‘cold rubber’ (i.e. negligible flash temperature). Thus, it is

not possible to accurately describe rubber friction with just

a static and a kinetic friction coefficient (as is often done

even in advanced tire dynamics computer simulation codes) or

even with a function µ(v) which depends on the instantaneous

sliding velocity v(t). Instead, the friction depends on v(t ′) for
all times t ′ 6 t .

As a background to what follows, we first review the

rubber friction theory (see [5, 6] for details). It is assumed that

all energy dissipation arises from the viscoelastic deformations

of the rubber surface by the road asperities. An asperity

contact region with the diameter d gives rise to time-dependent

(pulsating) deformations of the rubber which is characterized

by the frequency ω = v/d , where v is the sliding velocity. The

viscoelastic deformation (and most of the energy dissipation)

extends into the rubber by the typical distance d . So most of

the energy dissipation occurs in a volume element of order

d3. In order to have a large asperity-induced contribution to

the friction the frequency ω should be close to the maximum

of the tan δ = Im E(ω)/Re E(ω) curve. Here E(ω) is the

viscoelastic modulus of the rubber. In reality there will be

a wide distribution of asperity contact sizes, so there will be

Figure 2. When the temperature increases the tan δ = Im E/Re E
spectra shift to higher frequencies, which result in a decrease in the
rubber friction. We assume the road asperities give rise to pulsating
frequencies in the range ω0 and ω1.

Figure 3. The dissipated energy per unit volume is highest in the
smallest asperity contact regions.

a wide range of perturbing frequencies, say from ω0 to ω1,

see figure 2. A large friction requires that tan δ is as large as

possible for all these perturbing frequencies.

The temperature dependence of the viscoelastic modulus

of rubber-like materials is usually very strong, and an increase

in the temperature by 10 ◦C may shift the tan δ curve to higher

frequencies by one frequency decade. This will usually reduce

the rubber friction, see figure 2.

Real surfaces have a wide distribution of asperity sizes.

The best picture of a rough surface is to think about it as

large asperities on top of which occur smaller asperities on

top of which occur even smaller asperities, and so on. This is

illustrated in figure 3 for a case where roughness occurs on two

length scales. To get the total energy dissipation during sliding

on a real surface one needs to sum up the contribution from

asperity-induced deformation of the rubber on all (relevant)

length scales. It is important to note that all length scales are

a priori equally important [5].

Temperature has a crucial influence on rubber friction.

The viscoelastic energy dissipation, which is the origin of

the rubber friction in my model, results in local heating of

the rubber in exactly the region where the energy dissipation

occur. This results in a temperature increase, which becomes
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larger as we observe smaller and smaller asperity contact

regions. This local (in time and space) temperature increase,

resulting from the local viscoelastic energy dissipation, is

referred to as the flash temperature. The flash temperature

has an extremely important influence on the rubber friction.

This is illustrated in figure 1, where we show the (calculated)

steady state kinetic friction coefficient when a block of tread

rubber is sliding on an asphalt road surface. The upper curve

is the result without accounting for the flash temperature,

i.e. the temperature is assumed to be equal to the background

temperature T0 everywhere. The lower curve is the result

including the flash temperature. Note that for sliding velocities

v > 0.001 m s−1 the flash temperature results in a lowering
of the sliding friction. For velocities v < 0.001 m s−1

the produced heat has enough time to diffuse away from the

asperity contact regions, and the flash temperature effect is

negligible.

In the rubber friction theory the concept of the

macroasperity contact region is of crucial importance. Let us

study the footprint contact region between a tire and a road

surface at different magnification ζ . At low magnification the

road surface appears smooth and the contact between the tire

and the road appears to be complete within the footprint area

as in figure 4(a). However, when we increase the magnification

ζ we start to observe non-contact regions as in figure 4(b). At

high enough magnification we observe isolated contact regions

as in figure 4(c), which, when the magnification increases

even further, break up into even smaller contact regions as

in figure 4(d). We denote the contact regions observed in

figure 4(c) as the macroasperity contact regions (with average

diameter D), and we denote the corresponding magnification

by ζc. Formally, we defined ζc to be the magnification where

the second derivative of log P(ζ ) with respect to log ζ has its

first maximum with increasing ζ (see [6, 20]). If the nominal

pressure in the tire–road contact region is small enough,

the macroasperity contact regions will be well separated,

but the separation between the microasperity contact regions

within the macroasperity contact regions is, in general, very

small. When calculating the flash temperature effect we have

therefore smeared out the heat produced by the microasperity

contact regions uniformly within the macroasperity contact

regions. Typically for road surfaces D ≈ 0.1–1 cm and

the fraction of the tread block surface occupied by the

macroasperity contact regions is typically between 10% and

30%.

In the friction theory developed in [6] only the surface

roughness with wavevectors q < q1 is assumed to contribute

to the friction. For clean road surfaces we determine the

cutoff wavevector q1 by a yield condition: we assume that

the local stress and temperature in the asperity contact regions

on the length scale 1/q1 are so high that the rubber bonds

break, resulting in a thin modified (dead) layer of rubber at the

surface region of thickness≈1/q1. (In the alternative theory of

Kluppel and Heinrich [8] another mechanism for obtaining q1
was proposed.) From this follows the following observations:

(a) The rubber friction on clean road surfaces after run-in

is rather insensitive to the road surface. This has been

observed in several series of experimental studies (not

Figure 4. The contact region between a tire and a road surface. At
low magnification ζ < 1 it appears that the tire is in complete contact
with the road but, as the magnification increases, the contact area
continuously decreases as indicated in the figure.

shown), and is in accordance with the present theory. This

can be understood as follows. The cutoff q1 on surfaces

with smoother, less sharp roughness or surfaces where the

roughness occurs at shorter length scales will be larger

(i.e. the cutoff wavelength λ1 = 2π/q1 smaller) than for

road surfaces with larger roughness in such a way that

the stress and temperature increase in the asperity contact

regions which can be observed at the resolution λ1 (or

magnification ζ = q1/q0) are roughly the same on all

surfaces. This implies that a larger range of roughness will

contribute to the rubber friction on ‘smoother’ surfaces

as compared to more rough surfaces. As a consequence,

the friction (after run-in) may vary very little between

different (clean) road surfaces.

(b) On contaminated road surfaces, the cutoff q1 may be

determined by the nature of the contamination. In this

case, if the cutoff is fixed (e.g. determined by, say, the size

of contamination particles) one may expect much larger

variation in the friction coefficient between different road

surfaces, and also a larger variation between tires with

different types of tread rubber.

The mechanism we have proposed for the determination of q1,

namely the formation of a thin modified (dead) layer at the

rubber surface as a result of the high stresses and temperatures

the tread rubber surface is exposed to during slip, is closely

related to rubber wear. Rubber wear occurs during slip, and

the track gets contaminated by small wear particles which may

have some influence on the sliding friction. We have observed

rubber wear in indoor rubber friction experiments, and it is

also well known to occur when a car brakes on a road (leaving
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dark (black) regions of rubber particles on the road surface).

However, we do not expect the wear particles to have a large

influence on the observed friction since most of them are of

similar size as the cutoff distance determined by the strength of

the rubber, and during modest slip they cover only a small part

of the road surface. This is supported by our lab experiments

where we observe a negligible change in the rubber friction

force when the same rubber tread element (or rubber block)

slides a second time on the same (not cleaned) road track, or

even on a (much smoother) grinded steel surface [19].

The cutoff length 1/q1 depends on the rubber compound

used and on the nature of the road surface (so changing

the road surface requires some short run-in in order for a

new thin modified surface layer to form on the tread block

(corresponding to a new cutoff length)). In this paper we have

used two different tread compounds for which the cutoff length

was optimized for the Estoril race track using the procedure

described in [6].

Based on the picture presented above, in [6] we have

derived a set of equations describing the friction acting on a

rubber block squeezed with a stress σ0 against a hard randomly

rough surface. Here we summarize the basic equations. The

frictional stress σf = µ(t)σ0 depends on the history of the

sliding motion (velocity v(t) = ẋ(t)) via the following set of

equations:

µ(t) ≈ 1
2

∫ q1

q0

dq q3C(q)P(q, t)

×
∫ 2π

0

dφ cosφ Im
E(qv(t) cosφ, Tq(t))

(1− ν2)σ0
.

In this equation enters the flash temperature at time t :

Tq(t) = T0 +
∫ t

0

dt ′ Ŵ(t, t ′)

∫ ∞

0

dq ′ f (q ′, t ′)

×
1

π

∫ ∞

0

dk
4q2

k2 + 4q2
4q ′

k2 + 4q ′2
e−Dk2 (t−t ′)

where Ŵ(t, t ′) = h(w(t, t ′)) with

h(w) = 1−
2

π
w

(

1−w2
)1/2 −

2

π
arcsinw,

for w < 1 and h(w) = 0 for w > 1, and where w(t, t ′) =
[x(t)− x(t ′)]/2R depends on the history of the sliding motion.

The function

f (q, t) =
v(t)

ρCv

q4C(q)
P(q, t)

P(qm, t)

×
∫

dφ cosφ Im
E(qv(t) cosφ, Tq(t))

1− ν2
,

where v = ẋ(t) depends on time. The function P(q, t) (which

also depends on time) is given by

P(q, t) =
2

π

∫ ∞

0

dx
sin x

x
exp[−x2G(q, t)] = erf

(

1

2
√

G

)

where

G(q, t) =
1

8

∫ q

q0

dq q3C(q)

∫ 2π

0

dφ

∣

∣

∣

∣

E(qv(t) cosφ, Tq(t))

(1− ν2)σ0

∣

∣

∣

∣

2

.

We refer to this theory as the ‘full theory’.

Figure 5. The frictional shear stress acting on a tread block as a
function of time for many slip values: 0.005, 0.0075, 0.01, 0.03,
0.05, 0.07, 0.09, 0.12, 0.15 and 0.25. For the car velocity 27 m s−1

and tire background temperature T0 = 60 ◦C. For the 1D tire model
using the full friction model (green curves) and the cold–hot friction
law (1) (red curves). For a passenger car tread compound.

3. Phenomenological rubber friction law

In tire applications, for slip of the order of 5–10% and typical

footprint length of the order of 10 cm, the slip distance of

a tread rubber block in the footprint will be of the order of

1 cm, which typically is of the order of the diameters D of

the macroasperity contact regions. As discussed above, as long

as the slip distance r(t) is small compared to D one follows

the cold-rubber branch of the steady state relation µ(v) so that

µ(t) ≈ µcold(v(t)) for the slip distance r(t) ≪ D. When

the tread block moves towards the end of the footprint the slip

distance r(t) may be of the order of (or larger than) D, and

the friction will follow the hot branch of the µ(v) relation,

i.e. µ(t) ≈ µhot(v(t)) for r(t) > D. We have found that

the following (history-dependent) friction law gives nearly the

same result as the full theory presented above and in [6]:

µ(t) = µcold(v(t), T0)e
−r(t)/0 + µhot(v(t), T0)[1− e−r(t)/r0 ]

(1)

where v(t) is the instantaneous sliding velocity, r(t) the sliding

distance and r0 ≈ 0.2D. We will refer to (1) as the cold–hot

friction law. The length D depends on the rubber compound

and the road surface but is typically in the range D ≈ 0.1–

1 cm. Using the full friction theory one can easily calculate the

functions µcold(v, T0) and µhot(v, T0) and the length D.

To demonstrate the accuracy of the cold–hot rubber

friction law (1), let us study the dynamics of one tread block

as it passes through the tire–road footprint. In figure 5 we

show the frictional shear stress acting on a tread block as a

function of time for many slip values: 0.005, 0.0075, 0.01,

0.03, 0.05, 0.07, 0.09, 0.12, 0.15 and 0.25. Note that the cold–

hot friction law (1) (red curves) gives nearly the same result

as for the full friction model (green curves). In figure 6 we

show the µ-slip curve. Again the cold–hot friction law (1) (red

curve) gives nearly the same result as the full friction model

(green curve).
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Figure 6. The µ-slip curve for the 1D tire model using the full
friction model (green curve) and the cold–hot friction law (1) (red
curve). For a passenger car tread compound.

4. Tire dynamics

All the calculations presented in this section have been

obtained using the 2D tire model described below, with the

tire body optimized using experimental data for a passenger

car tire. The viscoelastic springs associated with this tire

body are kept fixed in all the calculations. Thus the model

calculations do not take into account the changes in the

tire body viscoelastic properties due to variations in the tire

(background) temperature or variations in the tire inflation

pressure (which affect the tension in the tire walls). In principle

both effects can be relatively simply accounted for in the

model, but have not been included so far. The calculations

presented below are obtained using the measured viscoelastic

modulus of two tire tread compounds, and for the Estoril race

track.

We emphasize that the present model is not a ‘stationary

tire model’, but the model describes arbitrarily complex tire

dynamics, e.g. combined (time-dependent) variation in the

longitudinal slip, the cornering angle and the camber angle,

while the (forward or rolling) velocity may depend on time

in any arbitrary way. We solve numerically the full (time-

dependent) set of equations of motion without any limitation.

In fact, even ‘stationary tire motion’ involves non-steady tread

block motion. Thus, at small slip a tread block when entering

the footprint is first (nearly) pinned to the substrate, and

only close to the exit of the footprint will it undergo fast

slip. Furthermore, after leaving the footprint the tread block

may perform damped high-frequency vibrations for a short

time (resulting in high-frequency noise); this is all accurately

described by the tire model although not discussed in the

present paper.

In our model the tire is discretized into blocks as described

below. To each tire body element in the tread area is

‘connected’ a tread block which in turn is discretized in the

vertical direction into many (typically 10) thin block elements

(describing vertical slices of the tread block), which are

coupled to each other using viscoelastic springs (corresponding

to the measured viscoelastic modulus of the tread rubber) as

described in detail in [6]. This model also allows for a gradient

in the tread rubber properties, as is typical in real applications

(where a stiffer, less hysteretic, rubber is often used in the

upper part of the tread block in order to reduce (stabilize) the

deformations of the tread block when exposed to large stresses,

and in order to reduce the rolling resistance). The parallel

(frictional) stress which acts on a tread block is the product of

the normal stress times the friction coefficient, which depends

on the history of the sliding motion of the tread block element,

as described by the theory of [6], or by the simplified friction

law given by (1). Thus the present theory includes the memory

effects of the friction force resulting from the non-uniform (in

time) slip motion of the tread blocks.

The present study only accounts for frictional heating

via the flash temperature effect. In reality the background

temperature T0 may also change with time, e.g. during ABS

braking, or during measurement of the µ-slip curve. (It is

well known in indoor measurements of tire µ-slip curves that

the increase in T0 with increasing time may result in large

‘hysteresis’ if the slip is first increased from zero to unity, and

then reduced back to zero; see [3].) We have not included

this effect so far, but it can relatively easily be included in the

present theory. There is also another temperature effect coming

from the overlap of hot spots from different asperity contact

regions which is not included in this study (see below).

The flash temperature depends on both the slip velocity

and the slip distance. The amount of dissipated energy (which

is the product of friction force and slip distance) goes to zero

as the slip distance goes to zero so negligible frictional heating

(and negligible temperature increase) of the rubber will occur

when the slip distance is very small. On the other hand,

when the slip distance becomes larger than the diameter D of

the macroasperity contact regions then there is no longer any

overlap between the present (say, at time t) contact region and

the original (say, at time t = 0) macroasperity contact region,
and at this point the flash temperature has been fully developed.

This picture neglects the fact that after long enough slip a given

macroasperity contact region may overlap with the ‘hot rubber

track’ emerging from another asperity contact region in front

of it (note: this hot rubber track will widen in time due to heat

diffusion, and finally (for long enough time) contribute to the

background temperature T0(t)). This effect is also included as

an option in our computer code, but was not activated in the

present study as we are still working on how to best describe

this effect. However, this effect is not important for slip up

to (and slightly beyond) the point where the µ-slip curve has

its maximum, which is the most important region of slip for

practical applications (e.g. ABS braking), but will give rise to

a decrease in the friction for large slip.

We use a 2D description of the tire body as indicated in

figure 7. We introduce a coordinate system with the y axis in

the transverse direction and the x axis along the longitudinal

(rolling) direction. We consider the tire–road system in a

reference frame where the road is stationary. The car velocity

vc(t), the rolling velocity vR(t) and the cornering angle θ(t)

determine the transverse vy(t) and longitudinal vx (t) slip

velocities:

vy = vc sin θ vx = vc cos θ − vR.

5
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Figure 7. 2D model of a tire. The car velocity vc points in another
direction than the rolling direction, giving a non-zero cornering angle
θ .

The longitudinal slip s(t) is defined by

s =
vx

vc cos θ
=

vc cos θ − vR

vc cos θ
.

When the cornering angle θ = 0 this equation reduces to

s =
vc − vR

vc
.

For non-stationary tire dynamics, the slip s(t) and the

cornering angle θ(t) will depend on time t . Note that vx

and vy are also the velocities of the tire rim, and that the

footprint moves (in the rolling direction) with the velocity

vc cos θ relative to the road, and with the rolling velocity

vc cos θ − vx = vR relative to the rim.

We describe the tire body as a set of mass points connected

with viscoelastic springs (elasticity k and viscous damping

γ ). The springs have both elongation and bending elasticity,

denoted by k and k ′, respectively, and the corresponding
viscous damping coefficients γ and γ ′. We assume Nx and

Ny tire body blocks along the x and y directions and let xi j =
(xi j, yi j) denote the displacement vector of the tire body block

(i, j) (i = 1, . . . , Nx , j = 1, . . . , Ny ). Since the tire is a torus-

shaped object we must assume periodic boundary conditions in

the x direction so that xNx+1, j = x1, j and yNx+1, j = y1, j .

We have the following boundary conditions. For i =
0, . . . , Nx + 1:

ẏi0 = vy, ẋi0 = vx

ẏi,Ny+1 = vy, ẋi,Ny+1 = vx .

For stationary tire motion these equations reduce to

yi0 = vy t, xi0 = vx t

yi,Ny+1 = vy t, xi,Ny+1 = vx t .

For j = 1, . . . , Ny we have the periodic boundary

conditions:

yNx+1, j = y1 j, xNx+1, j = x1 j

y0 j = yNx , j , x0 j = xNx , j .

If the mass of tire body element (i, j) is denoted by m j ,

we get for i = 1, . . . , Nx , j = 1, . . . , Ny :

m j ÿi j = Fyi j + ky j(yi, j−1, − yi j)+ ky j+1(yi, j+1 − yi j)

+ γy j(ẏi, j−1 − ẏi j)+ γy j+1(ẏi, j+1 − ẏi j)

+ k ′x j (yi+1, j + yi−1, j − 2yi j)

+ γ ′x j (ẏi+1, j + ẏi−1, j − 2ẏi j)

m j ẍi j = Fxi j + kx j (xi−1, j − xi j)+ kx j(xi+1, j − xi j)

+ γx j (ẋi−1, j − ẋi j)+ γx j (ẋi+1, j − ẋi j)

+ k ′y j(xi, j−1 − xi j)+ k ′y j+1(xi, j+1 − xi j)

+ γ ′y j(ẋi, j−1 − ẋi j)+ γ ′y j+1(ẋi, j+1 − ẋi j).

In the equations above, Fxi j and Fyi j are the force components

(in the x and y directions, respectively) acting on the tire

body block (i, j) from the tread block (i, j). Thus, Fi j =
(Fxi j , Fyi j) is non-zero only when (i, j) is in the tire tread

area. The tire body viscoelastic spring parameters (k, γ )

and (k ′, γ ′) in the tread area and in the side wall area (eight
parameters) have been optimized in order to reproduce a

number of measured tire properties (e.g. the longitudinal

and transverse tire stiffness values for three tire loads, and

the frequency and damping of the lowest longitudinal and

transverse tire vibrational modes). The optimization has

been performed using the amoeba method of multidimensional

minimization [21].

4.1. Dependence of the µ-slip curve on the shape of the

tire–road footprint

Here we will study how the tire dynamics depend on the

shape of the tire–road footprint. We consider the rectangular,

elliptic and trapezoid footprints shown in figure 8. We assume

first that the pressure in the footprint is uniform and equal to

p = 0.1 MPa, and that the tire load is equal to 2000 N in all

cases. Thus all the footprints have the same area.

In figure 9 we show the µ-slip curves for the three

footprints shown in figure 8 and in figure 10 we show the

corresponding µ-slip angle curves. It is remarkable how

insensitive the results are to the shape of the footprint. Thus we

may state that µ-slip curves, and hence tire dynamics, depend

very weakly on the shape of the tire–road footprint, assuming

everything else is the same.

In figure 11 we show the self-aligning moment for the

trapezoid footprint profile in figure 8 as a function of the

longitudinal slip (for zero cornering angle). Note that for

6
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Figure 8. Three tire–road footprints used in the computer
simulations. The footprints are 0.2 m wide and the normal pressure
in the footprints is constant at p = 0.1 or 0.3 MPa.

Figure 9. The µ-slip curves for the three footprints shown in
figure 8. For the rubber background temperature T0 = 80 ◦C and the
car velocity 27 m s−1. For FN = 2000 N and p = 0.1 MPa.

the rectangular and elliptic footprint the self-aligning moment

vanishes (not shown). This is expected because of the mirror

symmetry of the footprint in the x axis through the center of

the footprint. However, the trapezoid footprint does not exhibit

this symmetry (see figure 8), and the self-aligning moment is

non-vanishing in this case.

In figure 12 we show the self-aligning moment for the

three footprints shown in figure 8 as a function of the cornering

angle (for zero longitudinal slip). In this case the self-aligning

moment is non-vanishing in all cases. It is remarkable,

however, how insensitive the results are to the shape of the

footprint.

For small θ the self-aligning moment is positive. This is

due to the gradual (nearly linear) build up of the transverse

stress from the inlet of the footprint to the exit. Thus the center

of mass of the frictional stress distribution is located closer to

the exit of the footprint, giving a positive self-aligning moment.

For large θ the self-aligning moment is negative. In the present

model this is due to the flash temperature effect: when a tread

block enters the footprint the rubber is ‘cold’ and initially the

Figure 10. The µ-slip angle curves for the three footprints shown in
figure 8. For the rubber background temperature T0 = 80 ◦C and the
car velocity 27 m s−1. For FN = 2000 N and p = 0.1 MPa.

Figure 11. The self-aligning moment for the trapezoid footprint as a
function of the longitudinal slip. For the rubber background
temperature T0 = 80 ◦C and the car velocity 27 m s−1. For
FN = 2000 N and p = 0.1 MPa.

Figure 12. The self-aligning moment for the three footprints shown
in figure 8 as a function of the cornering angle. For the rubber
background temperature T0 = 80 ◦C and the car velocity 27 m s−1.
For FN = 2000 N and p = 0.1 MPa.

rubber friction is high. After a short slip distance the full flash

temperature is built up and the rubber friction is smaller. This

will result in a frictional stress distribution which is larger close

7
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Figure 13. The µ-slip angle curves for the three footprints shown in
figure 8 and for the longitudinal slip s = 0 and 0.03. For the rubber
background temperature T0 = 80 ◦C and the car velocity 27 m s−1.
For FN = 2000 N and p = 0.1 MPa.

to the inlet. This in turn results in a negative self-aligning

moment.

In the study above we have assumed a constant pressure in

the footprints. In reality, the pressure will be slightly larger at

the inlet than at the exit of contact with the road (this is the case

also during pure rolling and is related to the rolling resistance).

This asymmetry will give an additional (negative) contribution

to self-aligning moment for large slip.

In figure 13 we show the µ-slip angle curves for the

three footprints shown in figure 8, and for the longitudinal

slip s = 0 and 0.03. Note, in accordance with experimental

observations, for the combined slip µy(θ) is smaller than for

the case when the longitudinal slip vanishes. Again there is

very little influence on the shape of the footprint. However, the

self-aligning moment will now depend strongly on the shape of

the footprint. This is shown in figure 14 for the case s = 0.03.
Note that for the trapezoid footprint the self-aligning moment

is much larger than for the elliptic and rectangular footprints.

This is due to the contribution from the longitudinal stress

component which gives rise to a net longitudinal force centered

to the right of the mid-line of the tire.

Figure 15 shows the µ-slip angle curves (a), and the

self-aligning moment (b) for the elliptic footprint for the

tire load FN = 3000, 5000 and 7000 N, and the footprint

pressure p = 0.3 MPa. Note that, as the load increases, the

footprint becomes longer which results in a decrease in the

maximum friction coefficient, which agrees with experimental

observations. This load dependence is not due to an intrinsic

pressure dependence of the rubber friction coefficient (which

was kept constant in our calculation), but a kinetic effect

related to the build up of the flash temperature in rubber–road

asperity contact regions during slip. To understand this in more

detail, consider again figure 1.

The red and blue lines in figure 1 show the kinetic friction

coefficient (stationary sliding) as a function of the logarithm of

the sliding velocity. The upper line denoted ‘cold’ is without

the flash temperature while the lower line denoted ‘hot’ is with

the flash temperature. The black curves show the effective

friction experienced by a tread block as it goes through the

Figure 14. The self-aligning moment for the three footprints shown
in figure 8 and for the longitudinal slip s = 0.03. For the rubber
background temperature T0 = 80 ◦C and the car velocity 27 m s−1.
For FN = 2000 N and p = 0.1 MPa.

Figure 15. The µ-slip angle curves (a), and the self-aligning
moment (b) for the elliptic footprint for the tire load FN = 3000,
5000 and 7000 N, and the footprint pressure p = 0.3 MPa. For the
rubber background temperature T0 = 80 ◦C and the car velocity
27 m s−1.

footprint. Results are shown for several slip values 0.005,

0.0075, 0.01, 0.03, 0.05, 0.07 and 0.09. Note that the friction

experienced by the tread block first follows the ‘cold’ rubber

branch, and then, when the block has slipped a distance of the

order of the diameter D of the macroasperity contact region,

it follows the ‘hot’ rubber branch. Based on this figure it

is easy to understand why the maximum friction coefficient

increases when the length of the footprint decreases: if vslip

8
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Figure 16. Snapshot pictures of the tire body deformations for slip s
and the cornering angle θ given by (s, θ) = (0.05, 0◦) (left),
(0.03, 5◦) (middle) and (0, 5◦) (right). The open squares denote the
position of rubber elements of the undeformed tire body and the
filled squares underneath denote the position of the same tire body
elements of the deformed tire. For the trapezoid contact area with
contact pressure 0.1 MPa and normal load FN = 2000 N. For the
rubber background temperature T0 = 80 ◦C and the car velocity
27 m s−1.

is the (average) slip velocity of the tread block, then in order

to fully build up the flash temperature the following condition

must be satisfied: vsliptslip ≈ D, where D is the diameter of

the macroasperity contact region. Since the time the rubber

block stays in the footprint tslip = L/vR (where L is the length

of the footprint and vR the rolling velocity) we get vslip ≈
vR(D/L). Thus, when the length L of the footprint decreases,

the (average) slip velocity of the tread block in the footprint

can increase without the slip distance exceeding the diameter

D of the macroasperity contact region. As a consequence, as L

decreases, the tread block will follow the ‘cold’ rubber branch

of the (steady state)µ-slip curve to higher slip velocities before

the flash temperature is fully developed, resulting in a higher

(maximal) tire–road friction for a short footprint as compared

to a longer footprint.

In figure 16 we show snapshot pictures of the tire body

deformations for three cases, namely with the slip s and the

cornering angle θ given by (s, θ) = (0.05, 0◦) (left), (0.03, 5◦)
(middle) and (0, 5◦) (right). The open squares denote the

position of rubber elements of the undeformed tire body and

the filled squares underneath denote the position of the same

tire body elements of the deformed tire.

In figure 17 we show snapshot pictures of the tire body

deformations for the rectangular, trapezoid and elliptic contact

Figure 17. Snapshot pictures of the tire body deformations for the
rectangular, trapezoid and elliptic contact area with contact pressure
0.3 MPa and normal load FN = 7000 N. For the slip s = 0.05 and
the cornering angle θ = 0. For the rubber background temperature
T0 = 80 ◦C and the car velocity 27 m s−1.

area with contact pressure 0.3 MPa and normal load FN =
7000 N. In all cases the slip s = 0.05 and the cornering angle
θ = 0. Note how insensitive the deformation field is to the

shape of the footprint. This is caused by the high stiffness of

the tire body in the tread area.

4.2. Dependence of the µ-slip curve on the size of the

tire–road footprint

In figure 18 we showµ-slip curves for the rectangular footprint

for the contact pressures p = 0.1, 0.125, 0.15 and 0.3 MPa.

The tire load is fixed at FN = 2000 so the different contact

pressures corresponding to the footprint length L = 10.2,

8.1, 6.8 and 3.4 cm, respectively. Note that increasing the

tire footprint pressure decreases the length of the footprint,

which decreases the tire longitudinal stiffness Cx (determined

by the initial slope of the µx(s) curves) and also the maximum

of the µ-slip curves. In practice the pressure in the tire–

road footprint can be changed by changing the tire inflation

pressure, but in this case one expects also a change in the tire

body stiffness. In the tire model we use, this effect is not

included at present. Thus, at least for passenger car tires, when

the inflation pressure increases the longitudinal tire stiffness

Cx usually first increases and then, at high enough inflation

pressure, decreases. This is consistent with figure 18 which

shows initially a very small change in the tire stiffness as the

9
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Figure 18. The µ-slip curves for the rectangular footprint shown in
figure 8. For the contact pressures p = 0.1, 0.125, 0.15 and 0.3 MPa
corresponding to the footprint length L = 10.2, 8.1, 6.8 and 3.4 cm.
For the rubber background temperature T0 = 80 ◦C, the tire load
FN = 2000 and the car velocity 27 m s−1.

Figure 19. Snapshot pictures of the tire body deformations for the
normal load FN = 3000, 5000 and 7000 N. In all cases the slip
s = 0.05 and the cornering angle θ = 0. The maximum tire body
displacements are 0.92, 1.39 and 1.84 cm for the tire loads
FN = 3000, 5000 and 7000 N, respectively. For the rectangular
contact area with contact pressure 0.3 MPa. For the rubber
background temperature T0 = 80 ◦C and the car velocity 27 m s−1.

footprint pressure p increases, so that for small (but not too

small) p the stiffening of the tire body may dominate over the

contribution from the change in the footprint, so that initially

Cx increases with increasing p.

In figure 19 we show snapshot pictures of the tire body

deformations for three cases, namely for the external load

Figure 20. Snapshot pictures of the tire body deformations for the
normal load FN = 3000, 5000 and 7000 N. In all cases the slip s = 0
and the cornering angle θ = 5◦. The maximum tire body
displacements are 1.20, 1.81 and 2.31 cm for the tire loads
FN = 3000, 5000 and 7000 N, respectively. For the elliptic contact
area with contact pressure 0.3 MPa. For the rubber background
temperature T0 = 80 ◦C and the car velocity 27 m s−1.

FN = 3000, 5000 and 7000 N. In all cases the slip s = 0.05 and
the cornering angle θ = 0. The results are for the rectangular

footprint with contact pressure 0.3 MPa.

In figure 20 we show similar results as in figure 19 but now

for the elliptic contact area with contact pressure 0.3 MPa, and

with the slip s = 0 and the cornering angle θ = 5◦. The
maximum tire body displacements are 1.20, 1.81 and 2.31 cm

for the tire loads FN = 3000, 5000 and 7000 N, respectively.
In figure 21 we show the maximum friction coefficient,

µmax, of the µx -slip curve for the elliptic, rectangular and

trapezoid footprints, as a function of the tire load. We show

results for the contact pressures p = 0.1 MPa (upper three

curves) and 0.3 MPa (lower three curves), but the tire body

properties are assumed to be the same. Note that the effective

friction depends on the (average) tire–road footprint pressure

p. When p increases, assuming an unchanged size of the

footprint, the friction decreases. This is one reason for why

race tires exhibit much larger friction than passenger car tires

(the contact pressure in F1 tires is of the order of 0.1 MPa,

which is about three times lower than in passenger car tires).

The increase in the friction as the tire–road contact pressure

p decreases is mainly due to a decrease in the pressure in

the macroasperity contact regions as p decreases: when the

local pressure decreases the produced heating of the rubber

decreases leading to a larger friction.
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Figure 21. The maximum friction coefficient, µmax, of the µx -slip
curve for elliptic, rectangular and trapezoid footprints. For the
contact pressures p = 0.1 MPa (upper three curves) and 0.3 MPa
(lower three curves). For the rubber background temperature
T0 = 80 ◦C and the car velocity 27 m s−1.

Figure 22. The longitudinal tire stiffness CL associated with the
µx -slip curve for elliptic, rectangular and trapezoid footprints. For
the contact pressures p = 0.1 MPa (upper three curves) and 0.3 MPa
(lower three curves). For the rubber background temperature
T0 = 80 ◦C and the car velocity 27 m s−1.

In figure 22 we show for the same systems the

longitudinal tire stiffness Cx associated with the µx -slip

curves. Finally, figure 23 gives the maximum longitudinal tire

body displacement as a function of the tire load for the same

systems as in figure 21.

4.3. Dependence of the µ-slip curve on the car velocity

Figure 24 shows the µ-slip curves for the rectangular footprint

(20 cm× 10.2 cm) shown in figure 8, and for the car velocities
vc = 10, 30 and 40 m s−1. We show results both for

the tire load FN = 2000 N and p = 0.1 MPa (top three

curves) and for FN = 6000 N and p = 0.3 MPa (lower

three curves). Note that, as the car velocity decreases, the

longitudinal tire stiffnessCx decreases and the maximum of the

µ-slip curve increases. This is in accordance with experimental

observations for passenger car tires (see, e.g., figure 8.65

in [3]). When the contact pressure and the load both increase,

Figure 23. The maximum longitudinal tire body displacement for
elliptic, rectangular and trapezoid footprints. For the contact
pressures p = 0.1 MPa (lower three curves) and 0.3 MPa (upper
three curves). For the rubber background temperature T0 = 80 ◦C
and the car velocity 27 m s−1.

Figure 24. The µ-slip curves for a rectangular footprint
(20 cm× 10.2 cm) and for the car velocities vc = 10, 30 and
40 m s−1. For FN = 2000 N and p = 0.1 MPa (top three curves) and
FN = 6000 N and p = 0.3 MPa (lower three curves). For the rubber
background temperature T0 = 80 ◦C.

in such a way that the contact area stays constant, both the tire

stiffness and the maximum of the µ-slip curves decrease.

5. ABS braking simulations

The theory developed above may be extremely useful to design

or optimize control algorithms for ABS braking. Here we

will present results using the two simplest possible control

algorithms. In both cases the braking torque is changed

(increased or decreased) in steps of1M at time tn = n1t (n =
1, 2, . . .). The first algorithm (a) assumes that the slip s∗ where
the friction is maximal is known (and constant in time). In this

case the braking torque is increased if the slip s(tn) at time tn
is below s∗ and otherwise it is decreased, see figure 25. One
problem here is that the slip s∗ depends on the car velocity
which changes during the braking process. However, in the

present case s∗ ≈ 0.057 nearly independent of the car velocity
for 10 m s−1 < vc < 27 m s−1. Note that s∗ will also depend
on the increase in the background temperature T0 due to the
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Figure 25. The µ-slip curves for the car velocity vc = 10 and
27 m s−1. The maximum µ∗ of the µ-slip curve, and the slip s = s∗

where the maximum occurs, depends on the car velocity vc. In the
present case s∗ ≈ 0.057 for both velocities. The ABS control
algorithm should increase the braking torque when s < s∗ and
reduce the braking torque when s > s∗.

frictional heating of the tire during the braking, but this effect

is not included in the present study.

In the second control algorithm (b) we assume that s∗ is
unknown. Nevertheless, by registering if the (longitudinal)

friction Fx(t) is increasing or decreasing with time we can find

out if we are to the left or right of the maximum at s = s∗. That
is, if

Fx (tn) > Fx(tn−1) and s(tn) < s(tn−1)

or if

Fx (tn) < Fx(tn−1) and s(tn) > s(tn−1)

then we must have s(tn) > s∗ and the braking torque at
time tn is reduced, otherwise it is increased. Here Fx(tn)

is the longitudinal friction force and s(tn) the slip at time

tn = n1t (n = 1, 2, . . .).
We now present numerical results to illustrate the two

ABS braking algorithms. Let M be the mass-load on a wheel

and I the moment of inertia of the wheel without the tire. We

assume for simplicity that the suspension is rigid and neglect

mass-load transfer. The equations of motion for the center-of-

mass coordinate x(t) of the wheel and for the angular rotation

coordinate φ(t) are

Mẍ = Frim (2)

I φ̈ = Mrim − MB (3)

where Frim is the force acting on the rim, MB is the braking

torque and Mrim the torque acting on the rim from the tire (for

constant rolling velocity Frim = Ff is the tire–road friction

force and Mrim = RFf, where R is the rolling radius, but

during angular accelerations these relations no longer hold

because of tire inertia effects). We have used M = 360 kg

and I = 0.4 kg m2.
We assume first the control algorithm (a). We take1M =

200 N m and 1t = 0.03 s, and we assume (see figure 25)

s∗ ≈ 0.05. In figure 26 we show (a) the car velocity vc and the

Figure 26. (a) The car velocity vc and the rolling velocity vR as a
function of time t . (b) The slip and (c) the braking moment as a
function of time t . For ABS braking using algorithm a (see text for
details).

rolling velocity vR, (b) the longitudinal slip and (c) the braking

torque as a function of time. The time it takes (t = 1.775 s)

to reduce the car velocity from v0 = 27 to v1 = 10 m s−1

corresponds to a friction coefficient µ = (v0−v1)/gt = 0.976,
which is∼13% smaller than the friction at the maximum of the
µ-slip curve, which varies between µmax = 1.14 and 1.11 as

the car velocity changes from 27 to 10 m s−1. The slope of the
car-velocity line in figure 26(a) for t > 0.2 s corresponds to

the friction coefficient 1.02, which is larger than the (average)

friction calculated from the stopping time. The slightly smaller

friction obtained from the stopping time reflects the (short)

initial time interval necessary to build up the braking torque.

In figure 27 we show results for the ABS control

algorithm (b). Note that it takes t = 1.949 s to reduce

the car velocity from v0 = 27 m s−1 to v1 = 10 m s−1.
This corresponds to the effective friction coefficient µ =
(v0 − v1)/gt = 0.889, which is slightly smaller than the

effective friction obtained using ABS control algorithm (a).
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Figure 27. (a) The car velocity vc and the rolling velocity vR as a
function of time t . (b) The slip and (c) the braking moment as a
function of time t . For ABS braking using algorithm b (see text for
details).

The maximum in the µ-slip curve (see figure 25) depends on

the car velocity but is about µmax = 1.14 for vc = 27 m s−1

and about 1.11 for vc = 10 m s−1 so the ABS braking control
algorithm used above could still be improved. Note also that

the wheel tends to lock about 3 or 4 times per second. This

is in good agreement with ABS braking systems presently in

use. However, since the speed of cars is usually not known

during ABS braking, braking control algorithms used in most

cars today determine the braking torque only from the wheel

rotation acceleration. This is possible because, as shown in

figure 27(a), as the wheel tends to lock, the rotational velocity

very rapidly decreases, and at this point the ABS system

decreases the braking torque.

Note that the (average) of the slip in figures 26(b)

and 27(b) increases with increasing time or, equivalently,

decreasing car velocity. This is due to the fact that the time

it takes for the wheel to lock, when the slip s > s∗, decreases

as vc decreases. Thus, during the time period 1t between two

changes in the brake torque the maximal slip (corresponding to

theminimal rolling velocity) will increase as vc decreases. This

is easy to show mathematically. Since the car velocity changes

slowly compared to the rolling velocity, from the definition

s = (vc − vR)/vc we get

dvR

dt
≈ −vc

ds

dt
.

If we approximate the µ-slip curve for s > s∗ with a straight
line

µeff ≈ µ0 −1µs,

we get from (3)

I
d2φ

dt2
=

I

R

dvR

dt
≈ −

Ivc

R

ds

dt
= Mg R[µ0 −1µs] − MB

or
ds

dt
= −A + Bs

where A = (Mg Rµ0 − MB)(R/Ivc) and B = 1µ

(Mg R2/Ivc). Since A and B can be considered as constant

during the time interval between the changes in the braking

torque, we get

s(t) =
(

s(0)−
A

B

)

eBt +
A

B

where
A

B
=

1

1µ

(

µ0 −
MB

Mg R

)

.

It is easy to show that

s(0)−
A

B
= [s(0)− s∗] +

MB − M∗
B

1µMg R

where M∗
B = Mg(µ0−1µs∗) is the braking torque necessary

in order to stay at the maximum in the µ-slip curve. If s(0) >

s∗ and the braking torque MB > M∗
B − 1µMg R[s(0) − s∗]

we have s(0) − A/B > 0 and during the time interval 1t

the slip will increase with [s(0) − A/B] exp(B1t). Since

B1t ∼ 1/vc the maximum slip will increase exponentially

(until the wheel block, corresponding to s = 1) with the inverse
of the car velocity. This behavior (i.e. the increase in the

slip with decreasing car velocity) can be seen in figure 26(b)

and is even stronger for the second ABS control algorithm

(figure 27(b)).

In figure 28 we show the µ-slip curve during stationary

slip (green curve) and the instantaneous effective friction

coefficient µeff(t) = Fx(t)/FN during braking (blue curve).

The blue and red curves in figure 29 show the car velocity

using the ABS control algorithms (a) and (b). It is clear

that the ABS control algorithm (a) is more effective than

algorithm (b), but algorithm (a) assumes that s∗ is known and
remains constant during the braking event.

The ABS braking control algorithms used today usually

assume that only the wheel rolling velocity vR(t) is known.

Basically, whenever a wheel tends to lock-up, which manifests

itself in a large (negative) wheel angular acceleration, the
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Figure 28. Dynamical µ-slip curves for ABS braking using
algorithms a (top) and b (bottom). The green curve is the steady state
µ-slip curve for the car velocity vc = 27 m s−1.

Figure 29. The car velocity vc as a function of time t during ABS
braking using two algorithms a and b. The procedures a and b results
in the time periods 1.76 and 1.95 s for reducing the car velocity from
27 to 10 m s−1. The effective friction values 0.976 and 0.889 are both
smaller than the maximum kinetic friction which is 1.098 and occurs
at the slip velocity 0.0316 m s−1.

braking torque is reduced. These ABS braking control

algorithms (e.g. the Bosch algorithm) are rather complex

and secret. The calculations presented above can be easily

extended to such realistic ABS braking control algorithms and

to more complex cases such as braking during load fluctuations

(e.g. braking on uneven road surfaces) and switching between

different road surfaces (by using different road surface power

spectra during an ABS braking simulation).

6. Summary and conclusion

In this paper we have proposed a simple rubber friction law,

which can be used, for example, in models of tire (and vehicle)

dynamics. The friction law gives nearly the same result as the

full rubber friction theory of [6], but is much more convenient

to use in numerical studies of, for example, tire dynamics, as

the friction force can be calculated much faster.

We have proposed a two-dimensional (2D) tire model

which combines the rubber friction law with a simple mass–

spring description of the tire body. The tire model is very

flexible and can be used to calculate accurate µ-slip (and self-

aligning torque) curves for braking and cornering or combined

motion (e.g. braking during cornering). We have presented

numerical results which illustrate the theory. Simulations of

anti-blocking system (ABS) braking was performed using two

simple control algorithms.
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