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Abstract

We have measured the surface topography and calculated the surface roughness power

spectrum for an asphalt road surface. For the same surface we have measured the friction for a

tire tread compound for velocities 10−6 m s−1 < v < 10−3 m s−1 at three different

temperatures (at −8 ◦C, 20 ◦C and 48 ◦C). The friction data was shifted using the bulk

viscoelasticity shift factor aT to form a master curve. We have measured the effective rubber

viscoelastic modulus at large strain and calculated the rubber friction coefficient (and contact

area) during stationary sliding and compared it to the measured friction coefficient. We find

that for the low velocities and for the relatively smooth road surface we consider, the

contribution to friction from the area of real contact is very important, and we interpret this

contribution as being due to shearing of a very thin confined rubber smear film.

(Some figures may appear in colour only in the online journal)

1. Introduction

Rubber friction is a topic of huge practical importance, e.g.,

for tire applications [1–20]. However, it is also a topic of

great complexity. In this paper we present the results of

a rubber friction study for a tread rubber block sliding at

low velocity on an asphalt road surface. The present study

complements the study presented in [21] which focused on

two model rubbers, namely unfilled and filled (with carbon

black) Styrene–Butadiene (SB) rubber. Earlier studies of

rubber friction on rough surfaces indicate that there are

several contributions to rubber friction [14, 21, 22], and we

believe that only from a detailed study of several different

systems (different types of rubber and substrate surfaces)

under different sliding conditions (velocity and temperature)

will it be possible to gain a quantitative insight into the relative

importance of the various contributions to rubber friction.

Consider a rubber block sliding on a hard rough substrate,

say a road surface. The road asperities will induce pulsating

deformations of the rubber, resulting in viscoelastic energy

dissipation in the bulk of the rubber which gives an important

3 www.MultiscaleConsulting.com.

contribution to the friction [5]. The viscoelastic deformations
involve very large strain, typically of order ∼100%, and
in order to correctly describe the viscoelastic deformations
and (more important) the area of contact between the road
and the rubber, it is necessary to measure the viscoelastic
properties at large strain. In this paper (section 4) we describe
a new procedure for obtaining the large-strain modulus to
be used, e.g., in rubber friction applications. In addition to
the viscoelastic contribution to the friction there will be a
contribution from the area of contact. In this paper we find
that the frictional shear stress which acts in the area of contact
is likely due to shearing a thin confined fluid or rubber
smear film, which results in a weakly velocity-dependent
shear stress [23, 24]4, [26]. In [21] we found a similar
contribution to the friction for unfilled SB-rubber, while for
filled SB-rubber we have found a frictional shear stress which
depended strongly on the sliding velocity, and which we
interpreted as due to adhesive opening cracks at the exit side
of the asperity contact regions [27–29]. In addition to these
processes there may be a contribution to the friction from

4 Yew et al [25] have shown that when sliding polymer-on-polymer systems,

the shear deformation is localized to a band about 3 nm thick at the interface

of the polymer surfaces.
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rubber wear. For dirty tires, e.g., tread blocks covered by sand

particles, no direct rubber–road contact may occur, and in this

case there will be a (nearly velocity independent) contribution

to the friction from sliding of the (hard sand) particles against

the road surface.

As the rubber–road interface is studied at increasing

magnification, new smaller-scale roughness will be observed

on the road surface and the stress in the apparent contact

regions between the rubber and the road will increase. During

sliding, at short enough length scale (observed at high enough

magnification), the shear stress (and the temperature) in the

contact regions will finally be so high as to start to rupture

chemical bonds in the surface region of the rubber. This will

result in a thin (typically micrometer thick) surface layer of

rubber with modified properties, which we refer to as the

wear layer. The viscoelastic contact mechanics model cannot

be used at length scales smaller than the thickness of the

wear layer. We therefore define the area of contact between

the rubber and the road surface as the area of contact at

the point where one reaches the length scales given by the

thickness of the wear layer. The frictional shear stress acting

in the area of contact is therefore an effective shear stress

associated with the contact between a rather ill-defined rubber

layer and the road surface. It is clear that only a combined

experimental–theory approach can determine the nature of the

frictional shear stress acting in the area of contact. We will

discuss this topic again in section 3.

This paper is organized as follows. In section 2 we

describe how we have determined the road surface topography

and the viscoelastic modulus of the rubber at large strain. We

also describe the setup used in the rubber friction experiment.

In section 3 we briefly review the theoretical picture used

to analyze the rubber friction experiment. Section 4 presents

combined experimental–theory results for the large-strain

viscoelastic modulus of the tread rubber used in our study.

In section 5 we present the measurements of rubber friction

and the theoretical analysis of the experimental data. Section 6

presents a discussion and section 7 the summary and

conclusions.

2. Experimental details

The friction coefficient has been measured by sliding a

rectangular (2 × 2 cm2), 5 mm thick rubber block in

a translatory motion over a road surface as described in

section 3 in [21]. The rubber is a tread compound used on

summer tires for passenger cars. The nominal load on the

rubber sample was 26 N, resulting in the nominal squeezing

pressure σ0 = 0.065 MPa. When a stable friction value is

reached after run-in, the friction force and thus the friction

coefficient is measured at a constant velocity. The velocity is

changed in steps, starting at about 10−3 m s−1 and ending

at about 10−6 m s−1. We then change the temperature and

repeat the whole procedure. For the following analysis we

have measured friction curves at three different temperatures

(at −8 ◦C, 20 ◦C and 48 ◦C). The results are then shifted [30]

along the velocity axis using the measured (in the dynamic

mechanical analysis of the rubber) temperature–frequency

Figure 1. The basic picture used in analyzing the rubber friction
problem: Many length scales are involved and the friction has
contributions from all the length scales. The viscoelastic
contribution to the friction arises from the (time-dependent)
deformations of the rubber by the asperities which can be observed
as the magnification increases up to the cut-off ζ1. When the contact
regions are observed at magnification larger than ζ1 the interfacial
stress (and temperature) becomes so high that highly non-linear
processes, such as bond breaking and wear processes, will occur,
which cannot be described using continuum (viscoelastic) theory,
but which may require an atomistic approach. These regions are
indicated by the pink area in the figure. The effective frictional shear
stress which acts in these regions are denoted by τf and will in
general depend on the sliding velocity and the temperature.
Understanding the origin of τf may require insight into the bond
breaking (wear) and other atomistic processes occurring in the
apparent contact area (see figure 2).

viscoelastic shift factor aT of compound A. This leads to the

friction master curve shown in figure 9 where the coefficient

of friction is shown as a function of the logarithm of the

sliding velocity at the reference temperature T = 20 ◦C.

The surface roughness of the road sample used in the

experiment has been measured with 1D stylus line scan and

2D optical methods. We have then calculated the surface

roughness top power spectrum from the measured topography

and combined the two results into a broader power spectrum,

see figure 7 (red curve). Note how the two power spectra join

smoothly at q ≈ 104.7 m−1.

In section 4 we describe in more detail how the

viscoelastic modulus of the rubber is measured.

3. Theory

Figure 1 shows the basic picture used in analyzing the

rubber friction problem: Many length scales are involved

2
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Figure 2. The interfacial wear layer (left) may involve highly
non-linear processes (right) e.g., crack propagation, wear particles,
fluid contamination layers or, more microscopically, adhesion of
rubber molecules followed by stretching and snap off or interfacial
crack propagation. All these processes will (during sliding) result in
energy dissipation, and will contribute to the effective shear stress
τf.

and the friction has contributions from all the length scales.

The viscoelastic contribution to the friction arises from

the (time-dependent) deformations of the rubber by all the

different sized asperities, which can be observed as the

magnification increases up to the cut-off ζ1. When the contact

regions are observed at a magnification larger than ζ1 the

interfacial stress (and temperature) becomes so high that

highly non-linear processes, such as bond breaking and

wear processes, will occur, which cannot be described using

continuum (viscoelastic) theory, but which may require an

atomistic approach. These regions are indicated by the pink

area in the figure, and we will refer to this as the interfacial

wear layer. The effective frictional shear stress which acts on

the wear layer in the contact regions is denoted by τf, and will

in general depend on the sliding velocity and the temperature.

The friction force

Ff = Fvisc + τf(v)A(v) (1)

where Fvisc is the viscoelastic contribution to the friction

and τf(v)A(v) the contribution from the area of contact, A(v),

which depends strongly on the sliding velocity. If F0 = A0σ0

denotes the normal force, the friction coefficient

µ =
Fvisc

F0
+

τf(v)

σ0

A(v)

A0
.

Understanding the origin of τf may require insight into bond

breaking (wear) and other atomistic processes occurring in

the contact area (see figure 2). In the study reported on

in [21] we attributed τf for unfilled rubber to the shearing of

a thin confined (smear) film, and for filled rubber to energy

dissipation at the opening cracks at the exit of the asperity

contact regions.
The basic equations used to calculate Fvisc(v) and A(v)

are presented in [5, 6, 21, 31]. The theory takes into account

the frictional heating in the road asperity rubber contact

regions (flash temperature) by solving the heat diffusion

equations in an approximate way (see [6]).

4. Viscoelastic modulus

To calculate the rubber friction we need the effective rubber

bulk viscoelastic modulus E(ω) for large strain (of order

Figure 3. The real (a) and imaginary (b) part of the viscoelastic
modulus as a function of frequency, as obtained using experimental
data for compound A. The reference temperature is T = 20 ◦C, and
the red curve shows the results measured at small strain (0.2%). The
green and blue squares are large strain or stress results obtained
from strain-sweep data using the self-consistent stress procedure
(equation (13)) with κ = 0.15 (green symbols) and κ = 0.45 (blue
symbols).

100%) and in this section we describe how we have obtained

E(ω). From the viscoelastic modulus measured at small strain

(0.2%) for frequencies f = 0.5, 1.6, 5.0, 15.8, 50.0 Hz, and

for many temperatures between T = −60 ◦C and T = 120 ◦C,

we have obtained a smooth master curve by shifting the

frequency segments of the real part of E(ω). The results for

Re E(ω) and Im E(ω) are shown (without smoothing) by the

red lines in figure 3. The corresponding shift function aT is

shown in figure 4.

Next, to obtain the effective (large strain or stress)

viscoelastic modulus, to be used in most contact mechanics

applications, we have performed strain sweeps at different

temperatures and at fixed frequency (1 Hz). We shift these

measured data using the shift function aT obtained at small

strain (figure 4). That this is a reasonable procedure has been

shown in other (unpublished) measurements [32], but this

is also consistent with the results presented below, where

a smooth master curve at large strain is obtained using

this procedure. We have developed a procedure (for the

software, see www.MultiscaleConsulting.com) from which

the effective large-strain (or large stress) viscoelastic modulus

can be determined for any given strain or stress amplitude

by interpolation of the strain sweeps. However, the most

3
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Figure 4. The shift factor aT as a function of the temperature T .
The reference temperature T = 20 ◦C.

relevant Eeff(ω) to be used in contact mechanics application

will involve varying stress or strain amplitudes, as we now

discuss in detail.

The relative contact area when a viscoelastic solid (with

a flat surface) is sliding on a randomly rough (hard) substrate

surface is given by (from [5]):

A

A0
=

2

π

∫ ∞

0

dx e−x2G(q) (2)

where

G(q) =
1

8

∫ q

qL

d2q′ q′2C(q′)
1

2π

∫ 2π

0

dφ

∣

∣

∣

∣

E(q′v cos φ)

(1− ν2)σ0

∣

∣

∣

∣

2

(3)

where σ0 is the normal nominal stress. The dominant

contribution to this integral is usually the large wavevector

q′ ≈ q region, and we can approximate

G(q) ≈
1

8

∣

∣

∣

∣

E(ω)

(1− ν2)σ0

∣

∣

∣

∣

2 ∫ q

qL

d2q′ q′2C(q′) (4)

where ω = qv. The average (rms) surface slope κ(q)

including the surface roughness wavevector components with

wavevector |q| < q is determined by

κ2(q) =

∫ q

qL

d2q′ q′2C(q′). (5)

Thus

G(q) ≈
|E(ω)|2

8(1− ν2)2σ 2
0

κ2(q). (6)

When the contact area A ≪ A0 equation (2) reduces to [5]:

A

A0
≈ [πG(q)]−1/2. (7)

Using (6) this gives

A

A0
≈

(

8

π

)1/2
σ0(1− ν2)

|E(ω)|
κ−1(q). (8)

Using that σA = σ0A0 we get

σ0

σ
≈

(

8

π

)1/2
σ0(1− ν2)

|E(ω)|
κ−1(q) (9)

or

σ ≈
(π

8

)1/2 |E(ω)|

(1− ν2)
κ(q). (10)

For κ → 0, σ → σ0, and we can interpolate between this limit

and the small contact area limit where σ ≫ σ0 using

σ ≈ σ0 +
(π

8

)1/2 |E(ω)|

(1− ν2)
κ(q). (11)

Now real rubber is non-linear and we can take this

approximately into account by replacing E(ω) with an

effective modulus which depends on the stress: E = E(ω, σ ).

This gives

σ ≈ σ0 +
(π

8

)1/2 |E(ω, σ )|

(1− ν2)
κ(q). (12)

Exact numerical studies have shown that the factor (π/8)1/2

should be replaced by ≈0.5 (see [33–37]). For rubber

materials ν ≈ 0.5. Thus we can write

σ ≈ σ0 + 0.67κ|E(ω, σ )|. (13)

In most applications σ ≫ σ0, so the strain involved in the

asperity contact regions will be of order σ/|E(ω, σ )| ≈ 0.67κ

and, since typically (for road surfaces) κ ≈ 1, the strain will

typically be of order unity.

Equation (13) is an implicit equation for σ , and hence

for E(ω, σ ), which can be solved, e.g., by iteration. We

will denote the resulting Eeff(ω) = E(ω, σ ) as the effective

elastic modulus obtained for the self-consistent stress σ . We

believe that Eeff is the most relevant elastic modulus in contact

mechanics between surfaces with roughness on many length

scales.

Figure 3 shows the real (a) and the imaginary (b) part

of the viscoelastic modulus as a function of frequency, as

obtained using experimental data for compound A. The

reference temperature is T = 20 ◦C and the red curve is the

small (0.2%) strain result. The green and blue squares are

large strain or stress results obtained from the strain-sweep

data using the self-consistent stress procedure (equation (13))

with κ = 0.15 (green symbols) and κ = 0.45 (blue symbols).

The low-strain curves have been obtained by shifting the real

part of the modulus E and the large-strain results (performed

at different temperatures) have been shifted using the shift

factor aT obtained from the low-strain calculation.

Figure 5 shows tangent delta (tan δ) as a function of

frequency, as obtained using experimental data for compound

A. The temperature T = 20 ◦C and the red curve is for

small strain. The green and blue squares are the large

strain or stress results obtained from strain-sweep data using

the self-consistent stress procedure with κ = 0.15 (green

symbols) and κ = 0.45 (blue symbols).

Figure 6 shows similar results as in figure 3 but for a

surface with higher rms slope, κ = 0.7. The solid lines are

again the low-strain (0.2%) results, and the square symbols the

4
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Figure 5. Tangent delta (tan δ) as a function of frequency, as
obtained using experimental data for compound A. The temperature
T = 20 ◦C and the red curve is for small strain (0.2%). The green
and blue squares are large strain or stress results obtained from
strain-sweep data using the self-consistent stress procedure with
κ = 0.15 (green symbols) and κ = 0.45 (blue symbols).

Figure 6. The logarithm of the real (red) and imaginary (blue) part
of the viscoelastic modulus as a function of the logarithm of the
frequency of compound A at the reference temperature T0 = 20 ◦C.
The square symbols have been obtained at the self-consistent stress
given by equation (13) for a rough surface with the rms slope
κ = 0.7.

large-strain results, obtained at the self-consistent stress given

by equation (13). All results are at the reference temperature

T0 = 20 ◦C. In the calculations presented below we have

used the large-strain results (squares) for the frequency range

measured, while for higher frequencies we have used a smooth

extrapolation based on the small-strain results. In the future

strain sweeps should be performed at lower temperatures

in order to extend the measurements of the large-strain

viscoelastic modulus to higher frequencies. However, the

instrument we used for measuring the viscoelastic modulus

cannot apply a large enough force for lower temperatures.

5. Numerical results and comparison with
experiment

We will now use the effective viscoelastic modulus obtained

above (figure 6) to calculate how the friction depends on the

sliding velocity. We assume that there are two contributions

to the friction, one from the viscoelastic deformations of

the rubber surface by the road asperities, and one from the

area of contact. We include in the calculation of the former

all the roughness components with wavevectors in the range

q0 < q < q1 with q0 = 300 m−1 (which correspond to π/L,

where L ≈ 1 cm is the linear size of the ‘tread blocks’

used in our measurements of the rubber friction) and q1 =

106 m−1, corresponding to a short distance cut-off length

d = π/q1 ≈ 3 µm, which is a typical thickness for the wear

layer (thickness of the layer of modified rubber on the rubber

surface, which we assume acts as a cut-off). In the original

rubber friction theory [5] a yield criteria involving the stress

and temperature in the asperity contact regions was used to

determine q1, but this procedure has not been extended to the

present case, where we include a contribution to the friction

from the area of contact.
In what follows, the area of contact is defined as

the contact area which results when all the roughness

components, q0 < q < q1, are included in the calculation,

i.e., it corresponds to the area observed at the magnification

ζ = q1/q0. We assume that the frictional shear stress in the

area of contact depends weakly on the velocity according to

τf = τ0(aTv)α,

where aT is the temperature–frequency viscoelastic shift

factor. If v is in units of m s−1 then we find, using τ0 =

2.1 MPa and α = 0.05, good agreement with experiments.

Note that we assume that the frictional shear stress depends

on temperature (via aT ) according to the bulk viscoelastic

modulus. Only if this is the case will the total friction obey

the same temperature–frequency (or velocity) scaling as the

bulk viscoelastic modulus. This scaling has been observed in

our friction measurements, and in several earlier studies, e.g.,

by Grosch [38]. This indicates that the frictional shear stress

τf in the area of contact is mainly due to processes involving

the rubber, e.g., shearing a thin fluid-like film formed by

segments of rubber molecules. Another possibility, which we

consider unlikely in the present case, is that the frictional

shear stress is associated with adhesive crack opening (as we

found earlier for filled SB-rubber) or rubber wear processes

(e.g. crack propagation removing small rubber particles). The

expression we use for the frictional shear stress is very weakly

velocity dependent and has been chosen so as to reproduce

the measured friction at low velocities. However, the resulting

shear stress is very similar to what we found for unfilled

SB-rubber in an earlier study, see [21], where the frictional

shear stress in the area of contact was interpreted as due to

shearing of a nanometer thick confined fluid-like layer [23,

24] (see footnote 1), [26]. Nevertheless, more combined

experimental–theory studies are necessary in order to gain a

better insight into the nature of the shear stress in the area of

contact.
We first show results for the friction coefficient for the

asphalt road surface 1 with the power spectrum shown in

figure 7 (red line). For this surface we show in figure 8 the

root-mean-square surface slope κ as a function of log10q,

where q is the largest (cut-off) wavevector of the roughness

included in the calculation of κ .

5
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Figure 7. The power spectrum for two asphalt road surfaces, as a
function of the wavevector q (log10 − log10 scale). The vertical
dashed lines indicate the cut-off wavevector q0.

Figure 8. The root-mean-square surface slope κ for the asphalt 1
surface as a function of log10q, where q is the largest (cut-off)
wavevector of the roughness included in the calculation of κ .

In figure 9 we show, for compound A at T0 = 20 ◦C,

the measured (squares) and the calculated (solid lines)

friction coefficient as a function of the logarithm of the

sliding velocity. The green line is the total calculated

friction coefficient, while the blue and pink lines are the

viscoelastic contribution and the contribution from the area

of contact, respectively. The dashed lines are with the flash

temperature effect included and the solid lines without the

flash temperature.

We note that in order to correctly reproduce the measured

friction at different temperatures (−8 ◦C, 20 ◦C and 48 ◦C)

it is necessary to assume that the frictional shear stress in

the area of contact depends on the temperature (via the shift

factor aT ) in the same way as the bulk viscoelastic modulus.

In figure 10 the calculated friction coefficient is shown as a

function of the logarithm of the sliding velocity for compound

A. The red, green and blue lines are for the temperatures

T = 10 ◦C, 30 ◦C and 60 ◦C, respectively. The dashed lines

include the flash temperature while the solid lines represent

results without the flash temperature effect.

Figure 9. The measured (squares) and the calculated (solid lines)
friction coefficient as a function of the logarithm of the sliding
velocity for compound A at T0 = 20 ◦C. The green line is the total
calculated friction coefficient and the blue and pink line the
viscoelastic contribution and the contribution from the area of
contact, respectively. The dashed lines are with the flash temperature
included and the solid lines without the flash temperature. The
frictional shear stress in the area of contact is assumed to be weakly
velocity dependent τf = τ0(aT v)0.05, where aT is the
temperature–frequency viscoelastic shift factor (with aT = 1 for
T = 20 ◦C) and if v is in units of m s−1 then τ0 = 2.1 MPa.

Figure 10. The calculated friction coefficient as a function of the
logarithm of the sliding velocity for compound A. The red, green
and blue lines are for the temperatures T = 10 ◦C, 30 ◦C and 60 ◦C,
respectively. The dashed lines include the flash temperature while
the solid lines represent results without the flash temperature effect.
The frictional shear stress in the area of contact is assumed to be
weakly velocity dependent τf = τ0(aT v)0.05, where aT is the
temperature–frequency viscoelastic shift factor (with aT = 1 for
T = 20 ◦C) and if v is in units of m s−1 then τ0 = 2.1 MPa.

The road surface used in the calculation above is rather

‘smooth’. In figure 7 we show the power spectrum for this and

another road surface (asphalt 2). For the more rough (or open)

asphalt 2 the contribution to the total friction from the area of

contact is smaller while the viscoelastic contribution is larger

than for the surface used above. This is illustrated in figure 11,

which shows (for compound A at T0 = 30 ◦C) the calculated

friction coefficient as a function of the logarithm of the sliding

6
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Figure 11. The calculated friction coefficient as a function of the
logarithm of the sliding velocity for the asphalt 2 road surface. For
T0 = 30 ◦C. The upper curves are the total friction and the lower
curves the contribution from the area of contact. The dashed lines is
with the flash temperature included and the solid lines without the
flash temperature. The frictional shear stress in the area of contact is
assumed to be weakly velocity dependent τf = τ0(aT v)0.05, where
aT is the temperature–frequency viscoelastic shift factor (with
aT = 1 for T = 20 ◦C). If v is in units of m s−1 then τ0 = 2.1 MPa.

velocity for the asphalt 2 road surface. The upper curves are

the total friction and the lower ones the contribution from

the area of contact. The dashed lines are again with the flash

temperature effect included and the solid lines without it. The

frictional shear stress in the area of contact is assumed to be

weakly velocity dependent τf = τ0(aTv)0.05, where aT is the

temperature–frequency viscoelastic shift factor (with aT = 1

for T = 20 ◦C) and if v is in units of m s−1 then τ0 = 2.1 MPa.

6. Discussion

Let us compare the results presented above with the study

presented in [21] for unfilled and filled SB-rubber. We

note first that the tread compound used above has similar

viscoelastic properties to the unfilled SB-rubber used in [21],

but is very different from the filled (with carbon black)

SB-rubber. This is consistent with the observed frictional

properties for the compound used above, which are similar to

that of the unfilled SB-rubber. Thus, in both cases the friction

can be explained as the sum of the viscoelastic contribution

and a contribution from the area of contact resulting from

shearing of a thin (a few nanometers thick) confined film,

most likely derived from the rubber (rubber chain segments).

In contrast, for the filled SB-rubber, the velocity dependency

of the effective shear stress in the area of real contact was

very strong, and we attributed this contribution to viscoelastic

deformations of the rubber at the opening cracks at the exit

of the asperity contact regions. In this case we also observed

rubber wear consisting of a dry powder of wear particles rather

than a smear film as for the unfilled SB-rubber. Of course,

there may also have been a contribution from shearing a thin

confined film in the area of contact for the filled SB-rubber,

but this contribution would be small because of the much

smaller area of contact for the filled SB-rubber–road system

studied in [21], as compared to the present systems, and also

compared to the case of unfilled SB-rubber. This difference in

the sliding properties between the system studied above, and

the filled SB-rubber, also manifested itself as follows: In [21]

we found that adding a small amount of a high-viscosity

silicon oil (viscosity 1 Pa) reduced the friction (at the sliding

velocity ∼0.1 mm s−1) by more than a factor of 2. We

interpreted this as resulting from the fluid-induced removal of

the adhesive rubber–substrate interaction, which also removes

the contribution from the opening cracks. In the present case,

adding a small amount of the same silicon oil had only a

very small influence on the sliding friction (it dropped by

less than ∼5%) at similar sliding velocities (∼0.1 mm s−1).

We attribute this small effect on the friction to the fact that

the silicon oil is nearly fully removed (squeezed out) from

the contact regions at the small sliding velocity, resulting in

a nanometer thick confined film. Here we note that water

has a viscosity about 1000 times smaller than the silicon

oil we have used, and it is known that a thin water film at

sliding velocities ∼0.1 m s−1 (i.e. 1000 times higher than

in the present experiment) on road surfaces has a negligible

influence on the sliding friction, which is consistent with our

observation.

Our study shows that the experimental friction data at

−8 ◦C, 20 ◦C and 48 ◦C, when shifted by the measured bulk

viscoelastic shift factor aT , forms a smooth master curve,

which agrees rather well with the calculated results. Figure 9

shows that for low sliding velocities the dominant contribution

to the friction arises from the area of contact while for

high velocities the viscoelastic contribution dominates. The

rapid drop in the contribution from the area of contact is

due to the fact that the area of contact drops when the

velocity increases. This is a result of the fact that when the

pulsating frequencies from the asperity interaction increase,

the effective elastic modulus of the rubber increases. We

also note that the dependency of the area of contact on

the velocity is not so accurate for high velocities due

to the limited frequency range in which the large stain

viscoelastic modulus has been measured (see squares in

figure 6). When the flash temperature is included (dashed

lines) the area of contact at high velocities increases. This is

expected since increasing temperature shifts the viscoelastic

spectrum to higher frequencies and the rubber becomes

effectively elastically softer. The results in figure 10 show that,

neglecting the influence of the flash temperature, the friction

at different temperatures has a similar velocity dependency

but is shifted along the velocity axis in accordance with the

bulk viscoelastic shift factor aT . This is also what is found in

experiments performed at such low velocities that frictional

heating can be neglected (see above).

7. Summary and conclusion

We have studied the friction force on a rubber block sliding

on an asphalt road surface. The friction coefficient measured

at three different temperatures in a large velocity range

could be shifted to form a smooth master curve using

the temperature–frequency shift factor aT obtained from
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measurements of the bulk viscoelastic modulus. We have

analyzed the data using a model where the friction consists

of a viscoelastic deformation part due to the interaction with

the road asperities and a contribution from shearing the area

of contact. At low velocities, and for the relatively smooth

road surface used, we find that the contribution from the

area of contact dominates, while at higher sliding velocities

the asperity deformation contribution dominates. We interpret

the contribution to the friction from the area of contact as

originating from shearing of a thin (nanometer) confined film,

probably a rubber smear film.

We have developed a new procedure to obtain the

viscoelastic modulus of rubber, where the large-strain

modulus is obtained from a combination of low-strain

measurements and strain sweeps to large strain performed at

a fixed frequency but different temperatures. The large-strain

modulus gives a very similar viscoelastic contribution to the

calculated rubber friction as obtained using the small-strain

measured modulus because both the real and imaginary part

of the modulus are reduced in a similar way when the

strain increases, and the viscoelastic contribution basically

scales with Im E/|E|. However, the calculated area of real

contact increases a lot (typically by a factor of 5–10) when

the large-strain modulus is used, and it is very important

to use the (correct) large-strain modulus, in particular at

low sliding velocities. With increasing sliding velocity the

area of contact rapidly decreases because the rubber appears

stiffer at the higher pulsating asperity-interaction frequencies

it is exposed to at higher velocities. This explains why the

contribution from the area of real contact is most important at

low sliding velocities. More combined experimental–theory

studies should be performed in order to test the picture of

rubber friction obtained in this work and in [21].
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