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Abstract

We study rubber sliding friction on hard lubricated surfaces. We show that even if the hard

surface appears smooth to the naked eye, it may exhibit short-wavelength roughness, which

may make the dominant contribution to rubber friction. That is, the observed sliding friction is

mainly due to the viscoelastic deformations of the rubber by the counterface surface asperities.

The results presented are of great importance for rubber sealing and other rubber applications

involving (apparently) smooth surfaces.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Rubber friction on smooth surfaces is a topic of great practical

importance, e.g., for rubber sealing, wiper blades or for the

contact between a tire and the metal rim [1]. For perfectly

smooth surfaces rubber friction is believed to be due to periodic

cycles of pinning, elastic deformation, and rapid slip of rubber

molecules [2–4] or, more likely, small patches [5] of the rubber

at the sliding interface. In a recent publication, Vorvolakos and

Chaudhury [6] (see also [7, 8]) have studied rubber friction

for a silicone elastomer sliding on extremely smooth Si wafer,

with the root-mean-square roughness ≈0.5 nm, covered by

inert self-assembled monolayer films. The observed friction

as a function of the sliding velocity exhibit a bell-like shape

as expected from theory [2, 5]. However, a surface which

appears smooth to the naked eye may exhibit strong surface

roughness at short length scales, e.g., at the micrometer and

nanometer length scale. This is true even for highly polished

surfaces which may appear perfectly smooth to the naked

eye. When a rubber block slides on a hard surface with

surface roughness, a large contribution to the friction force

may arise from the time-dependent, substrate asperity-induced

deformations of the rubber surface. That is, during sliding the

substrate asperities give rise to pulsating deformations of the

rubber, which will result in energy dissipation because of the

internal friction of the rubber. This is believed to be the major

contribution to the tire-road friction [9, 10]. In this paper we

will show that the roughness of a highly polished steel surface

may also give the dominant contribution to the friction, even

for lubricated surfaces. This result is very important for rubber

sealing applications [11], in particular at low sliding velocities

and low temperatures.

2. Rubber friction: experimental results

Friction tests have been carried out using a reciprocating

tribometer where a steel cylinder (diameter D = 1.5 cm and

length L = 2.2 cm) is squeezed against the substrate (rubber

block, thickness 4 mm), see figure 1. The steel cylinder

performs longitudinal oscillations against the rubber block

with a stroke a = 1 mm and frequency f = 50 Hz. This gives

the average slip velocity v ≈ 0.1 m s−1. The rubber specimens

(acronitrile butadiene rubber (NBR)) have been washed in

industrial petroleum for 3 min by using an ultrasonic cleaner

and then dried for 10 min. The rubber surface has the root-

mean-square roughness ≈0.4 µm, and has parallel grooves

caused during molding of elastomer sheets in steel mold. The

steel cylinder has a root-mean-square roughness of ≈0.1 µm.

Figure 2 shows the power spectrum of the surface

roughness of the steel surface. The power spectrum is defined

by [12]

C(q) =
∫

d2x〈h(x)h(0)〉eiq·x (1)

where 〈..〉 stands for ensemble averaging. Here h(x) is the

surface height at the point x, where we have assumed 〈h(x)〉 =
0. The surface height was measured over different surface areas

using atomic force microscopy and an optical method (3D

optical surface profiler (Wyko NT 1100) in vertical scanning

interferometry mode), and figure 2 was obtained from three
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Figure 1. Test configuration for friction studies under reciprocating
sliding conditions.
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Figure 2. The power spectrum of the surface roughness of the steel
surface. The root-mean-square surface roughness is about 0.1 µm.
The straight line has a slope corresponding to the fractal dimension
Df ≈ 2.66.

different measurements involving different resolution. The

straight (green) line has a slope corresponding to the fractal

dimension Df ≈ 2.66. In the calculations of the friction

presented below we have used the this linear approximation

and included the surface roughness power spectra over the full

wavevector range shown in the figure. Thus the longest and

the shortest wavelength roughness included in the analysis is

λ0 = 2π/q0 ≈ 0.3 mm and λ1 = 2π/q1 ≈ 6 nm.

The experimental results presented in figures 5 and 6 were

obtained for the load FN = 100 N and with a test duration

of 15 min. Since the oscillation stroke is very small (1 mm)

one expects that most of the oil is squeezed out from the steel

cylinder–rubber contact region.

The viscoelastic modulus E(ω) has been measured (using

Eplexor 150) using a rectangular rubber block 5×2×30 mm3.

The measurements were done in tension with 8% of prestrain

and 1.3% of dynamic strain amplitude. Figure 3 shows

the logarithm of the real part of the viscoelastic modulus

of the acronitrile butadiene rubber used in the present study,

as a function of the logarithm of the frequency ω, for the

temperatures T = 50 and 80 ◦C.

The diameter d of the contact region between the steel

cylinder and the rubber substrate can be estimated using the

Hertz contact theory for bodies with cylinder geometry, see

figure 4. For elastic solids, the diameter d of the contact area

is given by [13]

d = 2

(

2FN D

π L E∗

)1/2

, (2)

where E∗ = E/(1 − ν2) (where E is the Young modulus and
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Figure 3. The logarithm of (a) the real part and (b) the imaginary
part of the viscoelastic modulus as a function of the logarithm of the
frequency ω for the temperatures T = 50 and 80 ◦C. For acronitrile
butadiene rubber.
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Figure 4. Steel cylinder squeezed in contact to a rubber substrate.

ν the Poisson ratio). The average pressure in the contact region

is

p̄ =
1

2

(

π FN E∗

2L D

)1/2

. (3)

For FN = 100 N and for T ≈ 50 ◦C we have (see figure 3)

E∗ ≈ 10 MPa (where we have assumed the frequency ω ≈
10−3 s−1, corresponding to the contact time ∼1000 s) giving

d ≈ 0.4 cm and p̄ ≈ 1 MPa.

Figure 5 shows the measured friction coefficients for the

steel cylinder sliding against non-aged rubber in 11 different

lubrication oils with very different viscosities. Thus, for

example, the PAO1 and PAO2 oils have the viscosities (at T =
40 ◦C) 4.4 × 10−3 and 22.8 × 10−3 Pa s, respectively. In

spite of the large difference in viscosities, the rubber friction

coefficients are nearly equal. This indicates that the rubber

friction is not (mainly) due to shearing a thin viscous layer,

but due to the internal friction of the rubber (see below).
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Figure 5. Coefficient of friction of non-aged samples in different base oils. For the load FN = 100 N.

Figure 6. Coefficient of friction of aged samples in different base oils. For the load FN = 100 N.

Figure 6 shows the measured friction coefficients for aged

rubber. The aged rubber samples were prepared by immersing

them in different base fluids at T = 125 ◦C for one week.

NBR rubber has polar nitrile groups and non-polar oils such

as naphthenic have nearly no effect on the properties of NBR

rubber, and this explained why rubber aged in naphthenic

exhibits nearly the same friction as for non-aged NBR rubber

(compare figure 5 with figure 6). However, oils with polar

groups, e.g. polyol ester, will diffuse into the rubber which

may reduce the internal friction of the rubber. In addition,

when the rubber block is squeezed against the counterface,

oil may be squeezed out from the rubber matrix, giving a

thicker oil film at the interface and thus lower the friction (a

similar effect is believed to contribute to the extremely low

friction exhibited by human joints [16]). We believe that both

effects may contribute to why NBR rubber aged in polyol ester

exhibits much smaller friction than the non-aged rubber.

Figures 7–9 show the friction coefficient for different

loads and temperatures. Here the temperature refers to the

background temperature, which was varied by contacting

the back-side of the rubber block to a metal block with

the given temperature. (The temperature in the sliding

contact is not known, but will be higher due to the frictional

heating.) Note that as the temperature increases the friction

decreases. This cannot result from the change in viscosity of

the lubricant oil since we already know from above that the

lubricant viscosity has a negligible influence on the friction,

at least for the squeezing force FN = 100 N, see figure 5.

However, we will show in section 3 that the temperature

dependence of the sliding friction can be understood from

the temperature dependence of the internal friction of the

rubber. Thus, when the temperature increases the rubber

becomes more elastic (less viscous) and the internal friction

decreases.
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Figure 7. Friction coefficient as a function of load at the background
temperature T = 25 ◦C.

Figure 8. Friction coefficient as a function of load at the background
temperature T = 40 ◦C.

The dependence of the rubber friction on the load can be

understood as follows. For very small load (FN = 20 N)

the average pressure in the contact area (see equation (3))

is relative low and the grooves on the rubber surface will

not be (fully) elastically flattened, and will trap lubricant

oil, which may be pulled into the contact area during each

oscillation. This will result in an oil film which is thick

enough to reduce the rubber–steel asperity contact and hence

lower the viscoelastic contribution to the friction. This drag

of lubricant fluid into the contact area is particularly large

when the oscillation direction is perpendicular to the grooves

on the rubber surface [14], and this explains why the friction

for small load is much lower for perpendicular sliding than

parallel sliding. However, for high load (FN > 100 N) there

is negligible difference between parallel and perpendicular

sliding, indicating that the lubricant has a negligible direct

influence on the friction.

The drop in the friction for large load is most likely due to

the increase in the temperature caused by the frictional heating.

This effect becomes more important as the load increases, and

explains why the friction decreases for high load. At lower

sliding velocity (or oscillation frequency) the heating effects

become less important (because of heat diffusion) and in this

case one expects a smaller drop in the friction coefficient with

increasing load. We plan to test this prediction experimentally.

Figure 9. Friction coefficient as a function of load at the background
temperature T = 80 ◦C.

Figure 10 shows the friction coefficients (for the load

FN = 100 N) at T = 40 and 80 ◦C for the same base oil

but with different additives. As expected, there is negligible

dependence of the friction on the additives. The reason for this

is the same as before: the observed friction is mainly due to the

internal friction of the rubber which does not change between

the different experiments. That is, although the additives in the

base oil may adsorb on the solid surfaces and act as boundary

lubricants, the result of the study above indicates that such

(mono) layers have negligible influence on the friction.

3. Rubber friction: theory

We have calculated the dependence of the rubber friction on the

sliding velocity and the temperature using the theory presented

in [9]. The theory assumes that the friction is entirely due to

the viscoelastic deformation of the rubber, which results from

the pulsating deformations from the substrate asperities. The

only inputs in the calculations are the counterface roughness

power spectrum (see figure 2) and the rubber viscoelastic

modulus. We have measured the viscoelastic modulus E(ω)

of the rubber as a function of frequency (and temperature). In

the calculations we do not take into account the lubrication oil

directly (but it influences the friction indirectly by reducing (or

removing) the adhesion between the solid walls [15]). We have

assumed the nominal contact pressure of 1 MPa.

Neglecting the flash temperature, the friction coefficient is

given by [9]

µ =
1

2

∫

dq q3C(q)P(q)

∫ 2π

0

dφ cosφ Im
E(qv cosφ)

(1 − ν2)σ

where

P(q) =
2

π

∫ ∞

0

dx
sinx

x
exp

[

−x2G(q)
]

= erf
(

1/2
√

G
)

with

G(q) =
1

8

∫ q

0

dq q3C(q)

∫ 2π

0

dφ

∣

∣

∣

∣

E(qv cosφ)

(1 − ν2)σ

∣
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∣

∣

2

where σ is the perpendicular pressure (the load divided by the

nominal contact area).
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Figure 10. Friction coefficient for one base oil with several different additives and for T = 40 and 80 ◦C. For the load FN = 100 N.
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Figure 11. The steady state kinetic friction coefficient calculated
using the measured surface roughness power spectrum (from
figure 2) and the measured viscoelastic modulus of the rubber. For
the background temperatures 50 and 80 ◦C, and the nominal
squeezing pressure p = 1 MPa.

Figure 11 shows the steady state kinetic friction coefficient

calculated using the measured surface roughness power

spectrum (from figure 2) and the measured viscoelastic

modulus of the rubber. Results are presented for the

background temperatures 50 and 80◦C. Note that the

magnitude of the calculated friction coefficient at the sliding

velocity ∼0.1–1 m s−1 is similar to what is observed

experimentally, and also the temperature dependence is in good

agreement with the measurements (see section 2).

In figure 12 we show (a) the friction coefficient µk, and (b)

the logarithm of the (normalized) contact area A/A0 (where

A is the contact area observed at the highest magnification,

and A0 is the nominal or apparent contact area), as a

function of the logarithm of the large-wavevector cut-off q1

(in the calculations we only include surface roughness with

wavevectors q0 < q < q1).

Results are presented for two different temperatures T =
50 and 80 ◦C and for the sliding velocity v = 1 m s−1.

The figure shows that the long-wavelength roughness gives a

negligible contribution to the friction. The reason for why only
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Figure 12. The friction coefficient µk (a) and the logarithm of the
(normalized) contact area A/A0 (b), as a function of the logarithm of
the large-wavevector cut-off q1 (in units of the low-wavevector
cut-off q0). In the calculations we only include surface roughness
with wavevectors q0 < q < q1. Results are presented for two
different temperatures T = 50 and 80 ◦C and for the sliding velocity
v = 1 m s−1.

the short-wavelength roughness is important in the present case

is the large fractal dimension (Df ≈ 2.7) of the steel surface,

which implies that the ratio between the amplitude and the

wavelength of the surface roughness strongly increases as the

wavelength decreases4, and this makes the short-wavelength

4 For a self affine fractal surface the ratio between the height h(λ) and

wavelength λ of the surface roughness component with wavevector q = 2π/λ

is h/λ ∼ λ2−Df . Thus the larger the fractal dimension Df > 2, the faster the

ratio h/λ and will increase as the wavelength decreases, and this will tend to

increase the importance of the short-wavelength roughness.
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Figure 13. A block squeezed against a substrate in a fluid. The
separation between the bottom surface of the block and the top
surface of the substrate is denoted by h(t).

roughness much more important than the long-wavelength

roughness.

4. Squeeze-out

We have argued above that the observed rubber friction can

be explained as resulting from the viscoelastic deformations

of the rubber by the countersurface asperities. In this section

we briefly address the role of the lubrication oil. We first note

that the oil will effectively eliminate the adhesive interaction

between the rubber and the countersurface [15]. Most of the

oil will be squeezed out from the steel–rubber contact area, but

a molecular thin layer may remain even after long squeezing

time.

Consider first a flat rigid rectangular block squeezed

against a flat hard countersurface with the nominal (or average)

pressure p in a lubrication fluid with the viscosity η. The

separation between the surfaces after the time t is (see

figure 13) [16]

h(t) ≈ (η/2pt)1/2d. (4)

Here d is the width of the bottom surface of the block and

we assume that d ≪ L, where L is the length of the bottom

surface of the block. With d ≈ 0.4 cm, p ≈ 1 MPa and with

t = 1000 s we get with the typical viscosity η ≈ 0.01 Pa s,

h(t) ≈ 4 nm. For surfaces with roughness the squeeze-out

from asperity contact regions is even faster, but in this case

some liquid may get ‘trapped’ in sealed off regions [17]. For

non-aged rubber the trapped islands may disappear because of

diffusion of lubricant oil into the rubber matrix, see figure 14.

The shear stress developed in a fluid film with thickness h is

σ = ηv/h. In the present case, if v = 0.1 m s−1 and h =
10 nm we get σ = 0.1 MPa which would give a contribution

to the friction coefficient of order σ/p ≈ 0.1. However, the

thickness of the oil film will be very non-uniform, and in many

regions (cavity regions) at the interface the film may be much

thicker than 10 nm (see below), and shearing the lubricant

film in these regions will give a negligible contribution to the

friction. In other regions, where the steel asperities make direct

contact with the rubber, the local squeezing pressure is much

higher than the average pressure, and in these regions at most a

few monolayers of oil film will remain trapped. Nevertheless,

since the region of direct wall–wall contact is only a small

fraction of the nominal contact area, the contribution to the

rubber

hard solid

oil

Figure 14. A rubber block squeezed against a substrate in an oil. The
oil is partly squeezed out at the external boundaries of the nominal
contact area and partly transfered to (or from) the rubber matrix.
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Figure 15. The calculated probability distribution P̄u of surface
separations u.

friction from shearing the confined thin layers appears to be

negligible (see section 2).

Figure 15 shows the probability distribution P̄u of surface

separations u. This function has been calculated as outlined

in [18]. In the calculation we have assumed a rubber elastic

modulus E = 100 MPa which correspond to the temperature

T = 40 ◦C and the perturbing frequencies ω ≈ 106 s−1 (see

figure 2), which is a typical perturbing frequency (ω = qv)

from surface roughness with wavevector q = 107 m−1 and

sliding velocity v = 0.1 m s−1. In the calculation we have

neglected the direct influence of the lubrication oil, but it is

accounted for indirectly by neglecting the adhesive interaction

between the rubber and the steel surface. Using P̄u we can give

a more accurate estimate of the contribution from the oil film

to the shear stress. We get the viscous shear stress

σ ≈ ηv

∫ ∞

uc

du
P̄u

u
(5)

where uc is a cut-off length of order ∼1 nm since molecular

thin lubrication films cannot be described by the continuum

theory of fluid mechanics [17]. We note that P̄u has a delta

function at the origin u = 0, but in the present case this carries

the weight A(ζ1)/A0 ≈ 0.01 and the contribution from the area

of real contact to the friction force can be neglected. Using the

calculated P̄u (see figure 15), and assuming η = 0.01 Pa s

and v = 0.1 m s−1, equation (5) gives σ ≈ 0.06 MPa so

the contribution to the friction from the lubricant film is very

small, of order 0.06 (where we have assumed the normal stress

p = 1 MPa). We note that this is likely to be an overestimation
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of the contribution of the oil film to the friction coefficient,

as the oil film may tend to slightly increase the separation

between the walls, and also because we have not accounted

for the roughness on the rubber surface in the analysis.

5. Discussion

When a block of a viscoelastic solid, such as rubber, is sliding

on a hard rough countersurface, the largest contribution to

the sliding friction is usually derived from the time-dependent

deformations of the rubber by the countersurface asperities.

This is the case, for example, for the tire-road contact. Here

we have shown that even a highly polished countersurface,

which may appear mirror-smooth to the naked eye, may have

enough surface roughness at short length scale to give a large

contribution to rubber friction. This result has many important

applications, e.g., in the context of rubber sealing.

In many rubber sealing applications the rubber surface

and the (lubricated) countersurface are squeezed together for

a long time between the slip events. Furthermore, during the

onset (and stop) of sliding the slip velocities will be very small.

This may result in nearly complete squeeze-out of the lubricant

film. Thus, at some point in time slip will occur between what

is effectively unlubricated surfaces. This may result in high

friction and large wear, and perhaps failure of the seal with

potentially serious consequences.

Note that with respect to sliding friction there is an

asymmetry between roughness on the countersurface and

on the rubber block. Thus, only roughness on the hard

countersurface will contribute to the friction force. Roughness

on the rubber surface may in fact lower the sliding friction by

trapping lubrication fluid. On the other hand, with respect to

stationary contact mechanics, roughness on the two surfaces

plays a similar role [13, 19].

There is an important difference between rubber friction

on very rough surfaces, such as a road surface, and

rubber friction on smoother surfaces with only short-

wavelength roughness. On very rough surfaces, as the

magnification increases we observe smaller and smaller

rubber-countersurface asperity contact regions, and the local

stress and temperature will rapidly increase until the limit of

strength of the rubber has been reached. For tread rubber in

contact with road surfaces this limit is reached at the length

scale (or resolution) λc ≈ 1–10 µm, and at this length scale

during slip strong wear processes occur. The rubber friction

on road surfaces can be explained by including the viscoelastic

deformations of the rubber from road surface roughness with

wavelength down to λc. On the other hand, for surfaces with

mainly short-wavelength roughness, such as the steel surface

used in the present study, it may be necessary to include

roughness with wavelength down to the molecular length scale,

e.g., the distance between cross links in the rubber which

typically is of order a few nanometers. This may result in

different wear mechanisms and wear rates than on surfaces

with large long-wavelength roughness.

The results presented in this paper may also be relevant

for the adhesion and locomotion of some animals on rough

substrates. Thus, some animals, such as grasshoppers

and tree frogs, have smooth attachment pads built from

a (non-compact) material which is highly viscoelastic (like

rubber) [20]. Furthermore, the toe pad–substrate contact

region is wet (lubricated) with a liquid injected into the

contact area by the animal. The liquid viscosity, the nominal

squeezing pressure, and the size and shape of the contact

area differ from the lubricated rubber–counterface contact

problem studied above, but some of the results presented above

may nevertheless be relevant for the animal toe pad–substrate

interaction problem [21, 22].

6. Summary and conclusion

We have presented a combined experimental–theoretical study

of rubber sliding friction against hard lubricated surfaces. We

have shown that even if the hard surface appears smooth to the

naked eye, it may exhibit short-wavelength roughness, which

may give the dominant contribution to rubber friction. The

presented results may be of great importance for rubber sealing

and other rubber applications involving (apparently) smooth

surfaces.
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