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Abstract. We study the sliding friction for viscoelastic solids, e.g., rubber, on hard flat substrate surfaces.
We consider first the fluctuating shear stress inside a viscoelastic solid which results from the thermal
motion of the atoms or molecules in the solid. At the nanoscale the thermal fluctuations are very strong
and give rise to stress fluctuations in the MPa-range, which is similar to the depinning stresses which
typically occur at solid-rubber interfaces, indicating the crucial importance of thermal fluctuations for
rubber friction on smooth surfaces. We develop a detailed model which takes into account the influence of
thermal fluctuations on the depinning of small contact patches (stress domains) at the rubber-substrate
interface. The theory predicts that the velocity dependence of the macroscopic shear stress has a bell-shaped
form, and that the low-velocity side exhibits the same temperature dependence as the bulk viscoelastic
modulus, in qualitative agreement with experimental data. Finally, we discuss the influence of small-
amplitude substrate roughness on rubber sliding friction.

PACS. 61.41.+e Polymers, elastomers, and plastics – 62.20.Qp Tribology and hardness – 62.40.+i Anelas-
ticity, internal friction, stress relaxation, and mechanical resonances

1 Introduction

The friction between rubber and smooth substrate sur-
faces is a topic of extreme practical importance, e.g., for
wiper blades (in particular on hydrophobic glass), rubber
O-ring seals, and in the contact region between the tire
rubber and the steel rim on a wheel [1,2].

When a rubber block is sliding on a very rough sub-
strate, such as a tire on a road surface, the friction is
almost entirely due to the energy dissipation in the bulk
of the rubber as a result of the fluctuating (in time and
space) viscoelastic deformations of the rubber by the sub-
strate asperities [3–5]. This mechanism becomes unimpor-
tant when the substrate is very smooth. In the limiting
case of a perfectly smooth substrate, the friction is instead
due to local stick-slip events at the sliding interface. Schal-
lamach [6] has proposed a molecular mechanism for the lo-
cal stick slip, see Figure 1, where a rubber polymer chain
at the interface attaches to the moving countersurface,
stretches, detaches, relaxes, and reattaches to the surface
to repeat the cycle (similar models have been studied in
Refs. [7,8]). During each cycle, the elastic energy stored in
the polymer chain is dissipated as heat during the (rapid)
detachment and relaxation phase, and this is assumed to
be the origin of the (macroscopic) friction. This model
is probably suitable to describe situations where individ-
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stretches detaches, relaxes reattaches

Fig. 1. The classical description of a polymer chain in con-
tact with a lateral moving countersurface. The chain stretches,
detaches, relaxes, and reattaches to the surface to repeat the
cycle.

ual molecules can bind to scarce but strong pinning sites
presented on the substrate surface, i.e., situations where
the pinning potential is strongly corrugated. However, the
Schallamach idea cannot be applied to weak pinning in a
quasi-periodic potential. First, for physisorption systems
the energy barriers for (vertical) detachment are usually
much higher than the energy barriers for lateral sliding [9],
so one would not expect any detachment to occur. Sec-
ondly, with respect to the stresses rubber materials are
usually exposed to, rubber is nearly incompressible and it
is not easy to imagine how single molecules strongly con-
fined at the interface are able to switch between an elon-
gated (stretched) state and a relaxed (curled-up) state as
indicated in the figure. Furthermore, the sliding friction
tends to exhibit the same temperature dependence as the
bulk rubber viscoelastic modulus E(ω) as described by the
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Fig. 2. Four different processes where the adhesive rubber-
substrate interaction contributes to rubber friction.

Williams-Landel-Ferry (WLF) [10] shift factor aT . This
indicates the crucial role of the bulk rubber in the friction
process.

We believe that the local stick-slip processes, which
must occur at the sliding interface, involve relative large
rubber volume elements, always in adhesive contact with
the substrate. That is, during sliding, small patches (with
a diameter of order D ∼ 10–100 nm) or stress domains [11]
of rubber at the sliding interface perform stick-slip motion:
during stick the shear stress at the interface increases con-
tinuously with time until the local shear stress reaches a
critical depinning stress σc, after which a rapid local slip
occurs, but with the rubber patch in continuous adhesive
contact with the substrate. During the local slip the elas-
tic deformation energy stored in the rubber during the
loading phase will be dissipated partly inside the rubber
(in a volume of order D3) and partly at the interface. The

deformation field in the vicinity of a stress domain of area
∼ D2 will extend a distance ∼ D into the rubber block; we
denote this basic unit (volume ∼ D3) as a stress block (see
volume elements surrounded by dashed lines in Fig. 2(a)).

Figure 2 illustrates three other mechanisms of rubber
friction, which all depend on the rubber-substrate adhe-
sional interaction. Figure 2(b) illustrates a case where a
rubber block is sliding on a smooth wavy substrate. Here
we assume only roughness (waviness) on a single length
scale, i.e., the substrate bumps have no roughness on
length scales smaller than the lateral size of the bumps. In
this case, if the adhesional interaction (and the external
applied normal load) is unable to bring the rubber into
perfect contact with the substrate, (as in the figure), dur-
ing sliding opening and closing cracks will occur at the
exit and the front of each asperity contact region. In gen-
eral, negligible bulk viscoelastic energy dissipation occurs
at the closing crack, while a huge energy dissipation may
occur at the opening crack [12,13]. It has been shown that
in some cases the dominant contribution to the friction
force arises from the energy “dissipation” at the opening
cracks [12,13].

If the substrate has small-amplitude roughness, the ad-
hesive rubber-substrate interaction may (even in the ab-
sence of an external load) lead to complete contact be-
tween the rubber and the substrate at the sliding inter-
face (see Fig. 2(c)). In this case, during sliding viscoelastic
deformations will occur in the bulk of the rubber in the
vicinity of the substrate, which will contribute to the ob-
served friction. This contribution can be calculated using
the theory developed in references [3,14].

Finally, for very soft rubber it has often been observed
that detachment waves propagate throughout the entire
contact area, from its advancing to the trailing edge, see
Figure 2(d). Schallamach [15] first discovered these waves
at “high” sliding velocities and for (elastically) soft rub-
ber. Roberts and Thomas [12,16] have shown that when
such instabilities occur, the frictional stress is mainly due
to the energy dissipation at the opening crack, i.e., similar
to the situation in Figure 2(b).

In this paper we study the rubber friction process
shown in Figure 2(a). This is probably the most impor-
tant rubber friction mechanism in most applications in-
volving very smooth surfaces. In Section 2 (and App. A)
we consider the fluctuating shear stress inside a viscoelas-
tic solid, which results from the thermal motion of the
atoms or molecules in the solid. At the nanoscale, the
thermal fluctuations are very strong giving stress fluctua-
tions in the MPa-range, which is similar to the depinning
stresses which typically occur at solid-rubber interfaces,
illustrating the crucial importance of thermal fluctuations
for rubber friction on smooth surfaces. In Section 3 (and
Apps. B and C) we develop a detailed model which takes
into account the influence of thermal fluctuations on the
depinning of small contact areas (stress domains) at the
rubber-substrate interface. The theory predicts that the
velocity dependence of the macroscopic shear stress has a
bell-shaped form (see Sect. 4), and that the low-velocity
side exhibits the same temperature dependence as the bulk



B.N.J. Persson and A.I. Volokitin: Rubber friction on smooth surfaces 71

Fig. 3. The thermal motion of the atoms in a solid gives rise
to shape fluctuations for a small volume element in the solid
(schematic).

viscoelastic modulus, in qualitative agreement with exper-
imental data (Sect. 5). In Section 5 we also discuss the role
of the surface roughness, which exists even on very smooth
surfaces. We show that the countersurfaces used in the
study by Vorvolakos and Chaudhury [17] have such small
surface roughness that the roughness contributes negligi-
bly to the friction. Section 6 contains the summary and
conclusion.

2 Brownian motion in viscoelastic solids

A small particle in a liquid performs random motion
caused by the impact of the surrounding liquid molecules.
Similarly, a small volume element in a viscoelastic solid
performs shape fluctuations as a result of the thermal mo-
tion of the atoms or molecules in the solid, see Figure 3.
Here we will estimate the magnitude of the fluctuating
shear stress which acts on any (internal) surface in a vis-
coelastic solid.

Assume that u(x, t) is the displacement vector in an
infinite viscoelastic solid. The equation of motion for u is

ρ
∂2

u

∂t2
= µ̂∇2

u +
(

µ̂+ λ̂
)

∇∇ · u + f , (1)

where µ̂ and λ̂ are time integral operators, e.g.,

µ̂G(t) =

∫ t

−∞

dt′ µ(t− t′)G(t′),

and where f(x, t) is a randomly fluctuating-force density.
If we define the Fourier transform

fi(k, ω) =
1

(2π)4

∫

d3xdt fi(x, t)e
−i(k·x−ωt)

and

fi(x, t) =

∫

d3kdω fi(k, ω)e
i(k·x−ωt)

we can write

〈fi(k, ω)fj(k
′, ω′)〉 = −

kBT

πω
(2π)−3

×

(

Imµ(ω)k2δij + Im
µ(ω)

1− 2ν
kikj

)

× δ(k + k
′)δ(ω + ω′), (2)

where ν = λ/2(µ+ λ) and where

µ(ω) =

∫ ∞

0

dt µ(t)eiωt.

Let us study the fluctuating stress in the solid. The
average stress 〈σij〉 = 0 but the average of the square
of any components of σij will be finite. Here we consider
the magnitude of the fluctuating shear stress within some
plane which we can take to be the xy plane. Thus we
consider

〈

σ2
‖

〉

=
〈

σ2
zx + σ2

zy

〉

= 2
〈

σ2
zx

〉

.

In Appendix A we show that

σ̄2
‖ ≡

〈

σ2
‖

〉

= kBTCD−3(E∞ − E0), (3)

where E0 = E(0) and E∞ = E(∞) are the low- and high-
frequency rubber modulus (both real), respectively, and
where

C =
8π(4− 5ν)

45(1− ν2)
. (4)

In deriving (3) we have used the relation µ = E/2(1 + ν),
where E(ω) is Young’s (viscoelastic) modulus and ν the
Poisson ration which is assumed to be independent of the
frequency. In (3) D is a cut-off length, of order the distance
between the cross-links, or larger. Assuming ν = 0.5 gives
C ≈ 1.1. In a typical case E∞ ≈ 109 Pa À E0 and if
D = 10nm we get at room temperature σ̄‖ ≈ 1MPa,
which (typically) is of the same order of magnitude as the
depinning stress at a rubber-substrate interface.

It is also interesting to estimate the fluctuation in the
displacement u‖ and the fluctuation in the strain. Using
the same approach as above one obtains (see App. A)

〈

u2
‖

〉

= kBTC ′D−1

(

1

E0
−

1

E∞

)

,

where

C ′ =
2(5− 6ν)(1 + ν)

3(1− ν)
.

In a similar way one can calculate the average of the square
of the strain

〈

ε2‖
〉

=
〈

ε2zx + ε2zy
〉

= kBTC ′′D−3

(

1

E0
−

1

E∞

)

,

where

C ′′ =
32π(4− 5ν)(1 + ν)2

45(1− ν2)
.

With E0 = 1MPa and D = 10nm one gets at room tem-
perature ū‖ ≈ 1 nm and ε̄‖ ≈ 0.3.

The analysis above indicates that, on a length scale
of ∼ 10 nm, very large strain and stress fluctuations oc-
cur in normal rubber. The stress fluctuations are of simi-
lar magnitude as the (typical) rubber-substrate depinning
stress, suggesting that thermally excited transitions over
the (lateral) energy barriers play a crucial role in rubber
friction on smooth substrates. However, the stress fluctu-
ations (∼ 1MPa) are negligible compared to the stress
necessary for detaching a rubber patch in the normal di-
rection, since the latter is determined by the adhesional
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stress [18,19] which typically is of order 1GPa. Thus, rub-
ber sliding on smooth surfaces never involves (thermally
activated) detachment of rubber from the substrate sur-
face, but only (lateral) sliding of rubber patches (the lat-
eral depinning stress is typically 100–1000 times smaller
than the adhesional stress). (Detached areas may form
and propagate at the interface (as for Schallamach waves,
see fig. 2(d)), but in these cases they are generated by the
external applied stress, and depend on the shape of the
bodies; the detached regions usually form at the edge of
the rubber-substrate contact region, where elastic insta-
bilities (e.g., “buckling”) of the rubber may occur [20].) In
the next section we will develop a model of rubber sliding
friction based on the picture presented above.

3 Theory

We consider a rubber block with a smooth flat surface
sliding on a perfectly smooth and flat substrate. We as-
sume that the adhesive rubber-substrate interaction will
result in perfect contact between the two solids (i.e., we
assume that no Schallamach waves occur at the interface).
During sliding at low velocities, small (nanometer-sized)
regions (stress blocks) at the sliding interface will perform
stick-slip motion. We model the real physical system in
Figure 4(a) with the block-spring model shown in Fig-
ure 4(b). However, the springs in the model are not elas-
tic springs but viscoelastic springs determined by the vis-
coelastic modulus of the rubber (see below). Furthermore,
the blocks in the model experience not only the stress from
the substrate and the forces from the springs, but also ran-
domly fluctuating (in time) forces derived from the ther-
mal motion of the molecules in the solid. The strength
of the fluctuating forces is determined by the tempera-
ture and by the viscoelastic properties of the springs via
the fluctuation-dissipation theorem. The combination of
the (thermal) fluctuating forces, and the forces derived
from the external pulling of the upper surface of the rub-
ber block, and the stress acting on the bottom surface of
the block from the substrate, determine the motion of the
stress blocks.

We assume that the motion at low sliding velocity oc-
curs by a thermally activated process, where small sur-
face areas or “patches” of rubber at the interface perform
stick-slip motion. We will refer to these “patches” as stress
domains. The stress domains are pinned by the substrate
potential, and we assume that some characteristic shear
stress σc must be reached before local slip can occur. Thus,
the pinning force Fc = σcD

2, where D is the characteristic
linear size of a stress domain.

The equation of motion for the coordinate qi of the
stress domain i is assumed to be

mq̈i = k̂z(x− qi) + k̂x(qi+1 − qi)

+k̂x(qi−1 − qi) + fi + Fi , (5)

where x = vt and where k̂z is a time integral operator,

k̂zx(t) =

∫ t

−∞

dt′ kz(t− t′)x(t′), (6)
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rubber
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stress ’’block’’

model viscoelastic spring
v

v

Fig. 4. (a) Rubber block in adhesive contact with a flat sub-
strate. During sliding at low velocities, small rubber volume el-
ements (stress blocks) perform stick-slip motion. (b) The model
used in the mathematical description of the system in (a). The
viscoelastic springs k are determined by the rubber viscoelas-
tic modulus and by the lateral size D of the stress blocks via
k(ω) ≈ E(ω)D.

and similar for k̂x. We consider N stress domains, i =
1, . . . , N , and assume periodic boundary conditions so
that q0 = qN . In (5), fi(t) is a stochastically fluctuating
force which results from the thermal motion of the rubber
molecules. The force Fi acts on the stress domain i from
the substrate and is defined as follows: When the stress
domain i slips, then Fi = −mηq̇i. In the pinned state, Fi

is just large enough to balance the total force exerted by
the stress block on the substrate:

Fi=−k̂z(x− qi)− k̂x(qi+1 − qi)− k̂x(qi−1 − qi)− fi . (7)

Slip will start when |Fi| reaches a critical value Fc, either
as a result of the external applied force or as a result of
a large enough thermal fluctuation, or, in general, as a
combination of both these effects.

We define the Fourier transform

x(ω) =
1

2π

∫

dt x(t)eiωt, (8)

x(t) =

∫

dω x(ω)e−iωt. (9)

The fluctuating force fi(t) results from the thermal motion
of the rubber molecules and must satisfy the fluctuation-
dissipation theorem. That is, if we write

K̂ijqj = k̂zqi − k̂x(qi+1 − qi)− k̂x(qi−1 − qi), (10)

then from the theory of Brownian motion (see App. D)

〈fi(ω)fj(ω
′)〉 = −

kBT

πω
ImKij(ω)δ(ω + ω′), (11)

where

Kij(ω) =

∫ ∞

0

dtKij(t)e
iωt
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and (for t > 0)

Kij(t) =
1

2π

∫

dωKij(ω)e
−iωt.

If we write the elastic modulus as [21]

E(ω) = E∞

(

1−
∑

n

hn
1− iωτn

)

, (12)

we get

Kij(ω) = K∞
ij −K∞

ij

∑

n

hn
1− iωτn

, (13)

where

K∞
ij =

(

k∞z + 2k∞x
)

δij − k∞x
(

δi,j+1 + δi,j−1

)

.

Equation (12) gives

ImKij(ω) = −K
∞
ij

∑

n

hnτnω

|1− iωτn|2
. (14)

Substituting (13) in (11) gives

〈fi(ω)fj(ω
′)〉 =

kBT

π
K∞

ij

∑

n

hnτn
|1− iωτn|2

δ(ω + ω′). (15)

In Appendices B and C we show how the equations above
can be reformulated in a form convenient for numerical
calculations.

In the calculations presented below we have assumed
that a sliding block returns to the pinned state when the
shear stress |σ| < σc1 = λσc, where σc = Fc/D

2 is the
depinning stress and λ < 1. We assume that when the
shear stress has decreased below σc1 the block returns to
the pinned state with the probability rate w, and we use
random number to determine when the transition actually
takes place. Thus, if r is a random number uniformly dis-
tributed in the interval [0, 1], then if |σ| < σc1 we assume
that the stress block returns to the pinned state during
the time interval δt (the time integration step length) if
wδt > r. In the simulations below we use w ≤ 1012 s−1 and
λ = 0.1. We use δ ≈ 10−13 s in most of our simulations
so that the condition wδt¿ 1 is satisfied, and the results
presented below do not depend on the time step δt.

The linear size of the stress blocks, D, is most likely de-
termined by the elastic modulus and the depinning shear
stress σc as follows. The stress block is the smallest unit
which is able to slide as a coherent unit and can be de-
termined as follows. The depinning force is Fc = σcD

2. If
the stress σ acts at the bottom surface of a stress block,
it will move a distance x determined by kx = σD2, where
k ≈ ED, where E is the elastic modulus. The stress block
experiences a quasi-periodic pinning potential from the
substrate, characterized by a lattice constant a of order a
few ångströms. Thus, the stress block will in general be
able to occupy a “good” binding position in the corrugated
substrate potential only if ka is less than the pinning po-
tential [22]. The condition ka = Fc gives the size D of the
pinned domains. Using Fc = σcD

2 and k ≈ ED gives

D ≈ Ea/σc.

In a typical case E ≈ (E0E∞)1/2 ≈ 100MPa, σc ≈ 1MPa
and a a few ångströms, giving D = 30nm. Since D in-
creases when the elastic modulus increases, the present
theory indicates that the friction should increase with in-
creasing elastic modulus. This is exactly what has been
observed in friction studies for smooth surfaces [17]. Since
the elastic modulus E depends on frequency, during slid-
ing the size D of the stress domains may depend on the
sliding velocity, but we have not taken this effect into ac-
count in this paper.

4 Numerical results

We now present numerical results for styrene butadi-
ene rubber both with and without filler using the mea-
sured [23] viscoelastic modulus E(ω). In reference [21] we
have shown how the parameters hn and τn in the repre-
sentation (12) of E(ω) can be determined directly from
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Fig. 5. (a) The frictional shear stress σf and (b) the frac-
tion of slipping surface area N/N0 as a function of the loga-
rithm (with 10 as basis) of the sliding velocity of the rubber
block. For styrene butadiene copolymer with 60% carbon black
and for two different temperatures, T = 10 ◦C and 20 ◦C. In
the calculation we have used the (zero-temperature) depinning
stress σc = 1MPa and the stress block size D = 30nm. The
number of stress blocks was 128. The viscous friction coeffi-
cient during steady sliding η = 0.03 (natural units) and the
critical stress below which steady sliding becomes metastable
σc1 = 0.1σc = 0.1MPa. The probability rate per unit time to
return to the pinned state when σ < σc1 is w = 2× 1010 s−1.
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40 nm. All other parameters as in Figure 5.

the measured E(ω). The (τn, hn) data used in the present
study is shown in Figure B2 in reference [21].

Figure 5(a) shows the frictional shear stress σf and
Figure 5(b) the fraction of slipping surface area N/N0 as
a function of the logarithm (with 10 as basis) of the sliding
velocity of the rubber block. The results are for styrene
butadiene copolymer with 60% carbon black, and for two
different temperatures, T = 10 ◦C and 20 ◦C. Note that
the low-velocity part (v < v1, where v1 ≈ 10−2 m/s is
the velocity at which the friction is maximal) of the fric-
tion curve is shifted by ∼ 1 decade towards lower velocities
when the temperature is reduced from 20 to 10 ◦C. This is
identical to the change in the (bulk) viscoelastic shift fac-
tor aT , which changes by a factor of ∼ 10 during the same
temperature change. Figure 5(b) shows that the number of
moving stress blocks is basically temperature independent
for sliding velocities v > v1 ≈ 10−2 m/s, i.e., for v > v1

the fluctuating force arising from the finite temperature
has a negligible influence on the friction force. For v < v1

more stress blocks are depinned at a higher temperature
because the fluctuating force is larger at a higher tempera-
ture. Note also that the maximal shear stress σf ≈ 0.3MPa
is about 30% of the depinning stress σc = 1MPa.

Figure 6(a) shows the frictional shear stress σf and
Figure 6(b) the fraction of sliding blocks, as a function of
the logarithm of the sliding velocity. In the calculation we
have used T = 20 ◦C and the stress block sizes D = 30 and
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η = 0.03 and 0.01 (natural units). All other parameters as in
Figure 5.
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perature T = 20 ◦C and for the critical stresses (below which
steady sliding becomes metastable) σc1 = 0.1σc = 0.1MPa and
0.2MPa. All other parameters as in Figure 5.

40 nm. When the stress block size increases, the pinning
force σcD

2 increases, and it is necessary to go to lower slid-
ing velocities in order for temperature effects to manifest
themselves (as a decrease in the frictional shear stress).

Figure 7 shows the frictional shear stress σf as a
function of the logarithm of the sliding velocity. Results
are shown for two different viscous friction coefficients
η = 0.03 and 0.01 (natural units). As expected, η is only
important at relative high sliding velocities.

Figure 8 shows how σf depends on the sliding velocity
for two different values (0.1 and 0.2MPa) of the critical
stress σc1 below which the sliding patch can return to the
pinned state.

Figure 9 shows the frictional shear stress σf as a func-
tion of the logarithm of the sliding velocity of the rubber
block for two different values (2 × 1010 and 1012 s−1) of
the probability rate per unit time to return to the pinned
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stresses σc = 1MPa and σc = 0.7MPa. All other parameters
as in Figure 5.

state when σ < σc1. Figure 10 shows similar results for two
different values (1 and 0.7MPa) of the depinning stress σc.

Figure 11 shows the frictional shear stress σf as a func-
tion of the logarithm of the sliding velocity of the rubber
block for an unfilled styrene butadiene (SB) copolymer
for two different values (30 and 40 nm) of the size D of a
pinned region.
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Fig. 11. The frictional shear stress σf as a function of the log-
arithm of the sliding velocity of the rubber block. For unfilled
styrene butadiene (SB) copolymer for T = 20 ◦C. In the cal-
culation we have used the (zero-temperature) depinning stress
σc = 1MPa and the stress block size D = 30nm and 40 nm.
The number of stress blocks was 128. The viscous friction coef-
ficient during steady sliding η = 0.03 (natural units), and the
critical stress below which steady sliding becomes metastable
σc1 = 0.1σc = 0.1MPa. The probability rate per unit time to
return to the pinned state when σ < σc1 is w = 1012 s−1.

5 Discussion

Vorvolakos and Chaudhury [17] have performed a very
detailed experimental study of sliding friction for sili-
con rubber on hard flat (passivated) substrates (see also
Refs. [24–28] for other studies of elastomer friction). They
used silicon rubbers with many different (low-frequency)
elastic moduli E.

In Figure 12 we show the velocity dependence of the
shear stress as measured at different temperatures T =
298 (open circles), 318 (gray circles) and 348K (black cir-
cles) for a silicon rubber with the low-frequency elastic
modulus E ≈ 5MPa. The experimental data on the low-
velocity side can be shifted to a single curve when plotted
as a function of vaT , see reference [17]. This is in accor-
dance with our model calculations (see Sect. 4) and shows
the direct involvement of the rubber bulk in the sliding
dynamics.

Vorvolakos and Chaudhury [17] have shown that the
frictional shear stress for all the studied rubbers increases
with increasing elastic modulus. This is in qualitative
agreement with our theory since, as explained in Section 3,
as E increases we expect the linear size D of the stress do-
mains to increase, which will increase the sliding friction
(see Figs. 6 and 11).

In the experiments by Grosch [24] it was observed that
the friction on smooth surfaces has a bell-like shape with
a maximum at some characteristic velocity v = v1. We ob-
serve the same general behavior, but with some important
differences. Thus, the experimental data of Grosch was
observed to obey the WLF transform. That is, the full
friction curve could be constructed by performing mea-
surements in a very limited velocity range and at different
temperatures, and then use the WLF transform to shift
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Fig. 12. Shear stress as a function of velocity and tem-
perature for a silicon elastomer (low-frequency elastic mod-
ulus E ≈ 5MPa) sliding on a Si wafer covered by an inert
self-assembled–monolayers film. Open circles, gray circles and
black circles represent data at 298, 318 and 348K, respectively.
Adapted from reference [17].

the measured data to a single temperature. We also find
that our calculated friction obeys the WLF transform for
v < v1, but not for v > v1. Thus, the decrease in the
friction which we observe for v > v1 is nearly tempera-
ture independent. The difference between our prediction
and the Grosch results can be understood as follows: Most
likely, the decrease of the friction for v > v1 in the Grosch
experiment is related to a decrease in the area of real con-
tact with increasing sliding velocity. The Grosch experi-
ments where performed on smooth but wavy glass, and the
area of real contact depends on the effective elastic mod-
ulus of the rubber. Thus, as the sliding velocity increases
or, equivalently, the temperature decreases, the rubber be-
comes stiffer and the area of real contact decreases. Hence,
if the shear stress remains constant at high sliding velocity
(as we indeed observe in our calculations if the calculations
are performed at low velocities and different temperatures,
and shifted to higher velocity using the WLF equation),
then the friction force will decrease with increasing sliding
velocity because of the decrease in the area of real contact.

The experiments by Vorvolakos and Chaudhury [17]
was performed on (passivated) silicon wafers with the
root-mean-square roughness of at most 0.5 nm. For such
smooth surfaces the adhesive rubber-substrate interaction
will, even in the absence of a squeezing pressure, give
rise to complete contact between the rubber and the sub-
strate within the nominal contact area. For this case we
have applied the rubber friction theory developed in refer-
ence [3] to obtain the contribution to the frictional shear
stress from the roughness-induced bulk viscoelastic defor-
mations in the rubber (Fig. 2(c)). We have assumed that
the substrate is self-affine fractal with the fractal dimen-
sion Df = 2.3 and the long-distance roll-off wavelength
λ0 = 100µm. We have included roughness components
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Fig. 13. The frictional shear stress σf as a function of the loga-
rithm of the sliding velocity of the rubber block. For styrene bu-
tadiene copolymer with 60% carbon black and for T = 40 ◦C.
The friction is entirely due to the surface roughness of the
substrate which is assumed to be self-affine fractal with the
fractal dimension Df = 2.3 and the root-mean-square rough-
ness 0.5 nm. The long-wavelength and short-wavelength roll-off
wave vectors q0 = 2π/λ0 and q1 = 2π/λ1, where λ0 = 100µm
and λ1 = 2nm (upper curve) and 10 nm (lower curve).

down to the short-distance (cut-off) wavelength λ1. In
Figure 13 we show the resulting frictional shear stress (as-
suming perfect contact at the sliding interface) using λ1 =
10nm and 2 nm. The smallest possible λ1 is determined
by an atomic distance but a more likely cut-off length
in the present case is the mean distance between rubber
cross-links, which is of order a few nanometers. The calcu-
lated maximal shear stress is of order ∼ 100Pa, which is a
factor ∼ 104 smaller than the shear stress observed in ref-
erence [17]. Hence we conclude that the surface roughness
in the measurements of Vorvolakos and Chaudhury has a
negligible influence on the observed frictional shear stress.
However, the surfaces used in reference [17] are exception-
ally smooth, and surface roughness can be very important
for rubber friction for surfaces of more common use in
rubber applications, e.g., for rubber sealing.

6 Summary and conclusion

We have studied the sliding friction for viscoelastic solids,
e.g., rubber, on hard flat substrate surfaces. We have
shown that the fluctuating shear stress, which result from
the thermal motion of the atoms or molecules in a vis-
coelastic solid, gives rise to very strong stress fluctua-
tions, which at the nanoscale are in the MPa-range. This is
similar to the depinning stresses which typically occur at
solid-rubber interfaces, indicating the crucial importance
of thermal fluctuations for rubber friction on smooth sur-
faces. We have developed a detailed model which takes
into account the influence of thermal fluctuations on the
depinning of small contact patches (stress domains) at
the rubber-substrate interface. The theory predicts that
the velocity dependence of the macroscopic shear stress
has a bell-shaped form, and that the low-velocity side
exhibits a similar temperature dependence as the bulk
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viscoelastic modulus, in qualitative agreement with ex-
perimental data. Finally, we have discussed the influence
of small-amplitude substrate roughness on rubber sliding
friction and shown that it gives a negligible contribution to
the friction in the experiments of Vorvolakos and Chaud-
hury [17].

A.I.V. and B.N.J.P. thank DFG for support, and the EU for
support within the “Natribo” network of the European Science
Foundation.

Appendix A. Stress and strain fluctuations in

viscoelastic solids

Let us study the fluctuating stress in the solid. The aver-
age stress 〈σij〉 = 0 but the average of the square of any
components of σij will be finite. Here we consider the mag-
nitude of the fluctuating shear stress within some plane
which we can take to be the xy plane. Thus, we consider

〈

σ2
‖

〉

=
〈

σ2
zx + σ2

zy

〉

= 2
〈

σ2
zx

〉

.

The stress tensor

σij = µ̂(ui,j + uj,i) + λ̂uk,kδij .

Thus we get
σzx = µ̂(uz,x + ux,z)

and

〈

σ2
‖

〉

= 4〈(µ̂uz,x)
2 + µ̂uz,xµ̂ux,z〉 =

−4

∫

d3kd3k′dωdω′µ(ω)µ(ω′)

×(kxk
′
x〈uz(k, ω)uz(k

′, ω′)〉

+kxk
′
z〈uz(k, ω)ux(k

′, ω′)〉). (A.1)

Using (1) and neglecting inertia effects gives

u(k, ω) =
1

µ(ω)k2 + (µ(ω) + λ(ω))kk
· f(k, ω) =

1

µ(ω)k2

(

1−
1

2(1− ν)

kk

k2

)

· f(k, ω). (A.2)

Using (A.2) and (2) and assuming that ν is frequency
independent gives

〈

σ2
‖

〉

= −kBTC3(2π)−5

∫

d3kdω
1

ω
ImE(ω), (A.3)

where

C =
8π(4− 5ν)

45(1− ν2)
.

In deriving (A.3) we have used the relation µ = E/2(1+ν),
where E(ω) is Young’s (viscoelastic) modulus. The shear
stress when we only include wave vectors up to k = 2π/D

(where D is a cut-off length, of order the distance between
the cross-links, or larger) is given by

〈

σ2
‖

〉

= −kBTCD−3 2

π

∫ ∞

0

dω
1

ω
ImE(ω).

Using the sum rule [12,13]

2

π

∫ ∞

0

dω
1

ω
ImE(ω) = E0 − E∞,

where E0 = E(0) and E∞ = E(∞) are the low- and high-
frequency rubber modulus (both real), respectively, we get

σ̄2
‖ ≡

〈

σ2
‖

〉

= kBTCD−3(E∞ − E0).

Assuming ν = 0.5 gives C ≈ 1.1.
It is also interesting to estimate the fluctuation in the

displacement u‖ and the fluctuation in the strain. Using
the same approach as above one obtains

〈

u2
‖

〉

=
〈

u2
x + u2

y

〉

= kBTC ′D−1 2

π

∫ ∞

0

dω
1

ω
Im

(

1

E(ω)

)

,

where

C ′ =
2(5− 6ν)(1 + ν)

3(1− ν)
.

If we use the sum rule [12,13]

2

π

∫ ∞

0

dω
1

ω
Im

(

1

E(ω)

)

=
1

E0
−

1

E∞
,

we get
〈

u2
‖

〉

= kBTC ′D−1

(

1

E0
−

1

E∞

)

.

In a similar way one can calculate the average of the square
of the strain

〈

ε2‖
〉

=
〈

ε2zx + ε2zy
〉

= kBTC ′′D−3

(

1

E0
−

1

E∞

)

,

where

C ′′ =
32π(4− 5ν)(1 + ν)2

45(1− ν2)
.

Appendix B. Reformulation of the basic

equations of motion

Using (13) we can write

−Kij(ω)qj(ω) + kz(ω)x(ω) =

−K∞
ij qj(ω) + k∞z x(ω)−

∑

n

hnuni(ω), (B.1)

where

uni(ω) =
−1

1− iωτn
K∞

ij qj(ω) +
1

1− iωτn
k∞z x(ω) (B.2)
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or

uni(t) + τnu̇ni(t) = −K
∞
ij qj(t) + k∞z x+ gni(t). (B.3)

Here we have added a stochastically fluctuating force on
the right-hand side of (B.3) which we can choose so as to
reproduce the fluctuating force fi(t) in (5). That is, if we
choose gni(t) appropriately, we can remove the force fi(t)
in (5). To this end we must choose

fi(ω) = −
∑

n

hngnj(ω)

1− iωτn
(B.4)

with
gnj(ω) = N−1/2 Re

∑

k

Mkne
ikxjξkn , (B.5)

where

Mkn =

(

kBTτnK
∞
k

πhn

)1/2

(B.6)

with the k-sum over

k =
2π

D

r

N
, r = 0, 1, 2, . . . , N − 1.

Note that

K∞
k = k∞z + k∞x 2[1− cos(kD)] (B.7)

is the (discrete) Fourier transform of K∞
ij . In (B.5), ξkn

are complex Gaussian random variables:

ξkn = ζkn + iηkn, (B.8)

where

〈ζkn(ω)ζk′n′(ω′)〉 = δnn′δkk′δ(ω + ω′), (B.9)

〈ηkn(ω)ηk′n′(ω′)〉 = δnn′δkk′δ(ω + ω′), (B.10)

〈ζkn(ω)ηk′n′(ω′)〉 = 0. (B.11)

Using (B.5) and (B.8) gives

gnj(ω) = N−1/2
∑

k

Mkn [ζkn cos(kxj)− ηkn sin(kxj)] .

(B.12)
Using (B.9–B.11) gives

〈gnl(ω)gn′l′(ω
′)〉 =

N−1
∑

k

M2
kn cos[k(xl − xl′)]δnn′δ(ω + ω′) =

N−1
∑

k

M2
kne

ik(xl−xl′ )δnn′δ(ω + ω′) =

kBTτn
πhnN

∑

k

K∞
k eik(xl−xl′ )δnn′δ(ω + ω′) =

kBTτn
πhn

K∞
ll′ δnn′δ(ω + ω′). (B.13)

Using (B.4) and (B.13) gives

〈fi(ω)fj(ω
′)〉 =

kBT

π
K∞

ij

∑

n

hnτn
|1− iωτn|2

δ(ω+ω′) (B.14)

which agrees with (15).
Let us summarize the basic equations

mq̈i = k∞z (x− qi) + k∞x (qi+1 + qi−1 − 2qi)

−
∑

n

hnuni + Fi, (B.15)

where

uni(t) + τnu̇ni(t) = k∞z (x− qi)

+ k∞x (qi+1 + qi−1 − 2qi) + gni(t). (B.16)

The random force

gnj(ω) = N−1/2 Re
∑

k

Mkne
ikxjξkn(ω), (B.17)

where

Mkn =

(

kBTτnK
∞
k

πhn

)1/2

. (B.18)

Appendix C. Numerical implementation

If D is the lateral size of a stress block, then the mass of a
stress block m = ρD3. We introduce the spring constants
k∞z = αzk

∗ and k∞x = αxk
∗, where k∗ = DE∞, and where

αx and αz are of order unity. We measure time in units
of τ = (m/k∗)1/2 and distance in units of l = Fc/k

∗,
where Fc = σcD

2 is the stress block pinning force. We
also measure u in units of Fc and x in units of l. In these
units (B.15) gives

q̈i = α∞
z (x− qi) + α∞

x (qi+1 + qi−1 − 2qi)

−
∑

n

hnuni + Fi/Fc, (C.1)

where (from (B.16))

uni(t) + (τn/τ)u̇ni(t) = αz(x− qi)

+ αx(qi+1 + qi−1 − 2qi) + gni(t). (C.2)

The random force

gnj(ω) = N−1/2 Re
∑

k

M∗
kne

ikxjξkn(ω),

where

M∗
kn = Mkn/Fc =

(

kBTτnK
∞
k

2π∆Ek∗hn

)1/2

,

where ∆E = k∗l2/2. Note also that

〈ζkn(ω)ζk′n′(ω′)〉 = δnn′δkk′δ(ω + ω′)

gives
〈ζkn(t)ζk′n′(t′)〉 = 2πδnn′δkk′δ(t− t′).

In order to numerically integrate equations (C.1)
and (C.2) we discretize time with the step length δt.
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The (fluctuating) force δgni to be used for each time step
in (C.2) can be written as

δgnj = N−1/2 Re
∑

k

M∗
kne

ikxj

∫ t+δt

t

dt′ξkn(t
′).

But if
〈ζ(t)ζ(t′)〉 = 2πδ(t− t′)

we get

〈(δζ)2〉 =

∫ t+δt

t

dt′dt′′〈ζ(t′)ζ(t′′)〉 = 2πδt.

Thus we can write δζ = (2πδt)1/2G, where G is a Gaussian
random number with 〈G2〉 = 1. Thus, we take

δgnj = N−1/2 Re
∑

k

M∗
kne

ikxj (2πδt)1/2
(

G
(1)
kn + iG

(2)
kn

)

,

where G
(1)
kn and G

(2)
kn are Gaussian random numbers. We

can also write

δgnj = N−1/2 Re
∑

k

M̄kne
ikxj

(

G
(1)
kn + iG

(2)
kn

)

, (C.3)

where

M̄kn =

(

kBT

∆E

τnδt

τ2

K∞
k

hnk∗

)1/2

.

The calculation of δgnj (Eq. (C.3)) is conveniently per-
formed using the fast-Fourier-transform method.

Appendix D. Memory friction and fluctuating

force

Equation (11) is a standard result in the general theory of
Brownian motion which can be derived in various ways.
The most general proof is based on the memory function
formalism as described, e.g., in the book by D. Forster [29].
A simpler (but less general) derivation of equation (11)
involves the study of a particle (coordinate q(t)) coupled
to an infinite set of harmonic oscillators (the heat bath)
(coordinates xµ). For the readers’ convenience, we briefly
review this derivation here. The particle and the heat bath
coordinates satisfy the equations of motion

mq̈ +
∑

µ

αµxµ = 0, (D.1)

mµẍµ +mµω
2
µxµ + αµq +mµηµẋµ = fµ , (D.2)

where

〈fµ(t)fν(t
′)〉 = 2mµηµkBTδ(t− t′)δµν . (D.3)

If we define

xµ(t) =

∫

dω xµ(ω)e
−iωt,

xµ(ω) =
1

2π

∫

dt xµ(t)e
iωt

and similar for q and fµ, we get from (D.2)

xµ(ω) =
fµ(ω)− αµq(ω)

mµ

(

ω2
µ − ω2 − iωηµ

) (D.4)

and from (D.3),

〈fµ(ω)fν(ω
′)〉 = mµηµkBTδ(ω + ω′)δµν/π. (D.5)

From (D.4) we get

∑

µ

αµxµ(ω) = γ(ω)q(ω)− f(ω), (D.6)

where

γ(ω) =
∑

µ

α2
µ

mµ

(

ω2
µ − ω2 − iωηµ

) (D.7)

and

f(ω) =
∑

µ

αµfµ(ω)

mµ

(

ω2
µ − ω2 − iωηµ

) (D.8)

Using (D.1) and (D.6) gives

−mω2q(ω) + γ(ω)q(ω) = f(ω). (D.9)

Using (D.8), (D.7) and (D.5) it is easy to show that

〈f(ω)f(ω′)〉 = −
kBT

πω
Im γ(ω)δ(ω + ω′). (D.10)

Note also that (D.9) is equivalent to

mq̈ +

∫ t

−∞

dt′ γ(t− t′)q(t′) = f(t).

In Section 3 we studied a system of many coupled dynam-
ical variables

mq̈i +

∫ t

−∞

dt′ γij(t− t′)qj(t
′) = fi(t)

but this problem can be reduced to the problem studied
above by forming new dynamical variables, as linear com-
bination of the old dynamical variables qi, chosen so that
γij becomes diagonal.
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