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We study the influence of surface roughness on the adhesion of elastic plates. Most real surfaces
have roughness on many different length scales, and this fact is taken into account in our analysis.
We consider in detail the case when the surface roughness can be described as a self-affine fractal,
and study the plate–substrate pull-off force as a function of the surface roughness. Based on the
theoretical results we discuss adhesion in biological systems, focusing on the adhesive pads of
lizards. © 2003 American Institute of Physics. @DOI: 10.1063/1.1621854#

I. INTRODUCTION

In this paper we discuss adhesion of an elastic plate to a
hard, randomly rough surface, which has many important
applications, e.g., in biological systems.1 We calculate the
plate–substrate pull-off force under the assumption that there
is complete contact in the nominal contact area. We assume
that the substrate surface has roughness on many different
length scales, and consider in detail the case of self-affine
fractal surfaces.

Adhesion of an elastic solid to a rough substrate involves
the competition between the ~negative! attractive adhesion
energy, which results mainly from the regions where the two
solids are in atomic contact at the interface, and the ~posi-
tive! repulsive elastic energy associated with the bending of
the surface of the elastic solid so that it comes in direct
atomic contact with the substrate. Thus, if A0 is the nominal
contact area between the solids and A the true atomic contact
area, then we define the effective interfacial energy

geffA05DgA2Uel .

Here, Dg5g11g22g12 is the change in the interfacial en-
ergy ~per unit area! when perfectly flat surfaces of the two
solids are brought into contact, and Uel is the elastic ~bend-
ing! energy necessary in order to make atomic contact at the
interface. In this paper we will assume complete contact be-
tween the solids in the nominal contact area so that A

5A0 . The more general problem of partial contact was stud-
ied in Ref. 2 for semi-infinite solids. In a future publication
we plan to consider the case of partial contact also for the the
thin-plate adhesion case.

The theory we develop in this paper can be applied to
biological adhesion systems, e.g., to the adhesion pads of
flies, beetles, spiders, or lizards. In particular, we focus on
the adhesion of the gecko foot pad to surfaces with random
roughness. This sems to be a case of ‘‘dry’’ adhesion, where
no fluid is injected in the contact area, and is hence a par-

ticularly simple and well-defined system.3 The skin on the
gecko foot pad is made of a keratinlike protein with an elas-
tic modulus of order E'109 Pa. This is much higher than
the elastic modulus of rubber, where typically E'106 Pa.
However, even for rubber a relative small surface roughness
~of order a few micrometers root-mean-square amplitude! is
able to eliminate the adhesion completely, resulting in zero
pull-off force.4 How, then, is it possible for the lizard to
adhere even to a very rough stone wall when the elastic
modulus of the pad skin is much higher than that of rubber?

During millions of years of evolution, driven by natural
selection, an extremely soft elastic layer has appeared on the
lizard pad surface. This layer is built in a hierarchical manner
from fibers and plates ~see Figs. 1 and 2!, which reflects the
hierarchical nature of most natural surfaces ~to which the
lizard must be able to adhere!, which have roughness on all
length scales, from the macroscopic scale ~e.g., the size of
the lizard toe pad! down to the atomic scale. Thus, the skin
of the lizard pad is covered by a dense layer of fibers or hair
~setae! (length'100 mm and width;1 mm). Each of these
fibers branches out into about 1000 thinner fibers (length
;10 mm and width ;0.1 mm), and each terminal fiber
ends with a thin ~5–10 nm! leaflike plate ~spatula!. This hi-
erarchical construction makes the lizard adhesive system
elastically very soft on all relevant length scales ~from mm to
nm!.

In an earlier paper one of us has studied how the elastic
bending energy stored in the setae fiber array systems influ-
ence the pull-off force.5 The force necessary to remove an
individual seta ~or spatula! was assumed known ~e.g., ob-
tained from experiments!. In this paper we focus instead on
the binding between the spatula leaflike plate and the sub-
strate.

II. PULL-OFF FORCE

Consider an elastic plate ~thickness d) in contact with a
rough but nominally flat substrate. The plate is able to bend
to follow the substrate roughness wavelength components l
that are much larger than the thickness d of the plate. Let usa!Electronic mail: b.persson@fz-juelich.de
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first estimate the pull-off force F when the plate is in contact
with a smooth ~flat! substrate, and the length l of the de-
tached region is large compared to the thickness d of the
plate; see Fig. 3~a!. The total energy

U52DgB~L02x !1Fx~12cosa !,

where B is the width of the plate and L0 the length, and
Dg5g11g22g12 the change in surface energy when the
plate makes contact with the substrate. The pull-off force is
determined by the condition ]U/]x50, which gives

F5

DgB

12cosa
.

The perpendicular force

F'5F sina5

DgB sina

12cosa
. ~1!

Equations ~1! and ~2! are also valid for rough substrates if we
replace the interfacial surface energy difference Dg with the
effective surface energy geff defined in Sec. I. In Fig. 4 we
show the ~perpendicular! pull-off force as a function of the
angle a. Note that F'→` as a→0. The reader can verify
this equation immediately by pulling off a Scotch™ tape
from a flat substrate at different pulling angles a. Equation
~1! also gives one reason for why the legs of the lizard point
outwards, away from the body; this makes a small and the
vertical pull-off force large.

The initial force to ‘‘nucleate’’ the crack at the plate edge
@see Fig. 3~b!# is higher than the ‘‘steady-state’’ pull-off force
F shown in Fig. 3~a!. Thus, if the crack length l!d and if
the perpendicular stress s act over a region of length L

.d , we have the standard result

s'S EDg

l
D 1/2,

and the pull-off force

F5BLs'BLS EDg

l
D 1/2. ~2!

The spatula ends with an elastic leaflike plate with the
lateral dimensions of order 200–300 nm, and with a thick-
ness which varies from d'20 nm at the base to d'5 nm at
the tip @see Fig. 3~c!#. For a smooth substrate the spatula is
likely to adhere along its full length as indicated in the fig-
ure. In this case the force necessary in order to initiate pull-
off is given by a formula similar to Eq. ~2!, with B'L'D of
order the thickness D'0.1 mm of the terminal branch, and
with an initial crack length equal to some small fraction of
the diameter of the terminal branch, e.g., l'0.1D . Using
Dg'2 meV/Å2 and E'109 Pa, this gives the pull-off force
of order 1 mN, which is close to the observed value for
smooth substrates. On a rough substrate the interfacial free-

FIG. 1. Schematic picture of the lizard adhesive system. The skin of the
lizard is covered by a dense layer of thin fibers or hair ~setae! (length
'100 mm and width of fiber of order ;1 mm). Each of these fibers
branches out into about 1000 thinner fibers ~length ;10 mm and width of
order ;0.1 mm). Each of the thin fibers ends with a thin ~5–10 nm! leaf-
like plate ~spatula!.

FIG. 2. Details of attachment system of the tokay gecko ~Gekko gecko!. ~A!
Scanning electron microscopy ~SEM! micrograph of setae ~st! located on
thin keratin film. ~B! Magnification ~SEM micrograph! of the area sur-
rounded by the white rectangle in ~A!, showing terminal branches ~tb! of
setae with the spatula ~sp!. ~C! Transmission electron microscopy micro-
graph of ultrathin section of two terminal branches ~tb! with spatulae ~sp!.
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energy difference Dg must be replaced by the effective free
energy geff , which includes the elastic energy stored at the
interface. The latter depends on the thickness of the terminal
plate, and we expect geff to vary with the location along the
spatula as indicated in Fig. 3~c! ~bottom, solid line!. Thus, in
this case effective adhesion may only occur close to the tip
of the terminal plate, and the pull-off force will be deter-
mined by this contact region by a formula of the type given
by Eq. ~1!, but with Dg replaced by geff .

III. INTERFACIAL ELASTIC AND ADHESION
ENERGIES FOR ROUGH SURFACES

Assume that a thin elastic slab ~thickness d) is in contact
with the rough surface of a hard solid and that, because of

the slab–substrate adhesion interaction, the slab deforms
elastically and makes contact with the substrate everywhere;
see Fig. 5.

Let us calculate the difference in the free energy between
the slab in contact with the substrate and the noncontact case.
Let z5h(x) denote the height of the rough surface above a
flat reference plane ~chosen so that ^h&50). We assume first
that the elastic slab is in direct contact with the substrate over
the whole nominal contact area. Let us calculate the elastic
energy stored in the deformation field in the elastic slab. We
first assume that the thickness d of the slab is much smaller
than the shortest wavelength l associated with the substrate
roughness profile. In this case we can use the theory of elas-
tic plates to calculate the elastic energy. Let z5u(x) denote
the vertical displacement field of a thin plate, which origi-
nally ~in the undeformed state! occupies the x– y plane. The
elastic energy in the plate is given by:6

Uel5
Ed3

24~12n2!
E d2x@~¹2u !222~12n !uu i ju# , ~3!

where the determinant

uu i ju5
]2u

]x2
]2u

]y2
2S ]2u

]x]y
D 2.

Writing

u~x!5E d2q u~q!e iq"x,

we get

E d2x~¹2u !25~2p !2E d2q q4uu~q!u2, ~4!

and

E d2xuu i ju50. ~5!

FIG. 4. The perpendicular pull-off force as a function of the angle a defined
in Fig. 3.

FIG. 5. The adhesion interaction pulls the elastic slab into complete contact
with the rough substrate surface.

FIG. 3. ~a! A thin plate pulled off a substrate ~pull-off force F). ~b! The
initial force, when the length l of the crack is much shorter than the thick-
ness d of the plate, is much higher than the force in ~a! where l@d . ~c! A
thin fiber in contact with a relatively smooth substrate. The fiber ends with
a thin, platelike structure ~spatula! ~thickness of order 5–20 nm! which is
able to deform to follow the substrate roughness profile. The effective inter-
facial surface energy, geff , depends on the thickness of the terminal plate,
and we expect geff to vary with the location along the spatulae as indicated
by the solid line in the bottom part of the figure.
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For complete contact u(x)5h(x) and hence u(q)5h(q).
Now, let us define the surface roughness power spectrum

C~q !5

1

~2p !2
E d2x ^h~x!h~0!&e2iq"x, ~6!

where ^ . . . & stands for ensemble average. Note that

^uh~q!u2&5

A0

~2p !2
C~q !, ~7!

where A0 is the ~one side! surface area of the slab. Using ~7!
and that u(q)5h(q), and substituting ~4! and ~5! in ~3! gives

Uel5
A0E

24~12n2!
E d2q ~qd !3qC~q !. ~8!

If we now assume that l!d , we can treat the elastic slab as
infinitely thick when deriving the elastic energy stored in the
slab ~see Fig. 6!. If we again assume that complete contact
occurs between the solids, then uz5h(x), and as shown in
Refs. 2 and 7,

Uel5
A0E

4~12n2!
E d2q qC~q !. ~9!

We can interpolate smoothly between the results ~8! and ~9!
using the following expression for the elastic energy:

Uel5
A0E

4~12n2!
E d2q qC~q !

~qd !3

61~qd !3
. ~10!

The adhesion energy is assumed to be proportional to the
contact area, so that ~assuming complete contact!

Uad52DgA0 . ~11!

The change in the free energy when the elastic slab moves
in contact with the substrate is given by the sum of ~10!
and ~11!

Uel1Uad52geffA0 , ~12!

where

geff5DgF12

2p

d
E dq q2C~q !

~qd !3

61~qd !3
G , ~13!

where we have introduced the adhesion length d54(1
2n2)Dg/E . The theory above is valid for surfaces with ar-
bitrary random roughness, but it will now be applied to ~a!
surfaces with roughness on a single length scale; ~b! self-
affine fractal surfaces; and ~c! a sandpaper surface for which
the power spectra C(q) has been calculated from the mea-
sured height profile h(x).

~a! One length scale: Assume surface roughness on a single
length scale l0 . This limiting case is not very realistic, but is
very useful in order to understand some aspect of adhesion.
We take

C~q !5C0d~q2q0!, ~14!

where q052p/l0 . We can relate C0 to the root-mean-
square ~rms! roughness amplitude using ~6!

^h2&5E d2q C~q !52pC0q0 .

Following earlier studies we define h0
2
52^h2& so that

C05h0
2/~4pq0!. ~15!

Substituting ~14! in ~13! and using ~15! gives

geff5DgF12~q0h0!
2

1

2q0d

~q0d !3

61~q0d !3
G . ~16!

~b! Self-affine fractal surface: It has been found that many
‘‘natural’’ surfaces, e.g., the surfaces of many materials gen-
erated by fracture, can be approximately described as self-
affine surfaces over a rather wide roughness size region. A
self-affine fractal surface has the property that if we make a
scale change that is appropriately different along the two
directions, parallel and perpendicular, then the surface does
not change its morphology.8 Recent studies have shown that
even asphalt road tracks ~of interest for rubber friction! are
~approximately! self-affine fractal, with a long-distance cut-
off length l052p/q0 of order a few mm. For a self-affine
fractal surface8 for q.q0

C~q !5

H

2p
S h0
q0

D 2S q

q0
D 22(H11)

, ~17!

where H532D f ~where the fractal dimension 2,D f,3),
and where q0 is the lower cutoff wave vector. For q,q0 we
take for simplicity C(q)50. The parameter h0 determines
the rms roughness amplitude, ^h2&5h0

2/2. We note that C(q)
can be measured directly, using many different methods, in-
cluding stylus instruments and optical instruments.
Substituting ~17! in ~13! gives

geff

Dg
512~q0h0!

2
1

q0d
f ~H !, ~18!

where

f ~H !5HE
1

q1 /q0
dx

~q0d !3x322H

61~q0d !3x3
. ~19!

The short distance cut wave vector cutoff q1 depends on
the system under study. If it is assumed that the substrate is
self-affine fractal on all length scales, then q1'2p/a , where
a is of order a substrate lattice spacing, i.e., of order a few

FIG. 6. ~a! When the wavelength l0 of the surface roughness is much
longer than the thickness d of the elastic slab, l0@d , the elastic slab de-
forms so that the upper surface of the slab takes the same form as the
substrate roughness profile. ~b! When l0,d the upper surface of the slab is
nearly flat ~the displacement field decays as u;exp(22pz/l0) with the dis-
tance z away from the substrate surface!.
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angstrom. Thus, the largest possible q1 is '1010 m21. How-

ever, if the elastic solid has a thin, very soft ~say, liquidlike!
layer at its surface, as one of us has speculated before may be
the case for the the lizard foot pad, then the effective cutoff
wave vector q1 will be smaller. For example, if a D;60 Å
high mobility ~liquidlike! layer occurs then one expects q1
'2p/D'109 m21. Similarly, if a thin ~thickness D) ~typi-
cally organic! contamination layer occurs on the surface,
which is able to rearrange itself at the interface and fill out
nanoscale cavities, then again q1'2p/D . In some cases
~e.g., for flies, beetles, and other insects! a liquid substance
injected into the contact area will have a similar effect of
acting as a large wave vector cutoff in the q-integration in
Eq. ~19!.

Let us apply Eq. ~18! to the adhesion of a lizard toe to a
rough substrate. The elastic modulus of keratin is in the
range 1–4 GPa and, assuming the typical van der Waals
surface energy difference,9 Dg'1–3 meV/Å2 gives d
'1 Å. In Fig. 7 we show the calculated @from ~18! and ~19!#
effective surface energy for a typical case. We have used
h0520 nm, which was obtained from the measured height
profile of a sandpaper ~the measurement refers to a linear
dimension l0 of order a few hundred nanometers, i.e., to the
lateral size of the leaflike structure at the end of the spatula!.
We also used q052p/l0'107 m21 and q15109 ~dashed
lines! and 1010 m21 ~solid lines!. Since the spatula end con-
sists of a platelike structure with an average thickness of d
'5–10 nm, it is clear that in the typical case of H50.8 the
adhesion will be suppressed strongly ~see also below!. How-
ever, there is considerable uncertainty in the value of d ~we
have used d51 Å), since the elastic modulus E and the
interfacial energy difference Dg have not been measured ac-
curately until now. Similarly, the thickness of the leaf plate
will vary from a maximum at the basis, to a smaller value
close to the periphery of the plate.
~c! Sandpaper: Finally, let us present some numerical re-
sults for a sandpaper surface for which we plan to study
gecko adhesion in the near future. We have measured the
height distribution h(x) ~over a rectangular area Lx3Ly) us-
ing an atomic force microscope ~AFM!. Using a recently
developed computer program10 we have obtained the surface

height distribution Ph and the surface roughness power spec-
tra C(q) from the height data.

In Fig. 8 we show the height probability distribution Ph

for the sandpaper surface with particle size of order 0.3 mm.
The root-mean-square roughness 93 nm was measured over a
surface area of the linear size l0'30 mm. Note that Ph is a
near-perfect Gaussian, and one can show that randomly
rough surfaces have Gaussian height distributions. Figure 9
shows the surface roughness power spectra C(q) for the
same surface. The height profile was measured with a lateral
resolution a529.3 nm, corresponding to the wave vector q
'p/a'108 m21; in Fig. 9 we have made a linear extrapo-
lation to larger q vectors. Note that C(q) has a power law
region ~i.e., a linear region between logC and log q), charac-
terized by the exponent H'1.1.

Figure 10 shows the variation of the ~normalized! effec-
tive interfacial free energy geff with the thickness d of the
plate. Curves ~a!–~d! correspond to different ~short distance!
cutoff wave vectors q1 , namely ~a! 107; ~b! 108; ~c! 109; and
~d! 1010 m21. In the calculation we have used the power
spectra C(q) shown in Fig. 9, and d51 Å. It is interesting
to note that using the large wave vector cutoff q15109 or
1010 m21 gives nearly the same result. This implies, e.g.,
that at least in the present case a very soft thin ~nanometers!
layer at the interface will not increase the adhesion to any
appreciable extent, i.e., such a layer may not be necessary in
order for the lizard to adhere to rough substrates.

FIG. 7. The variation of the ~normalized! effective interfacial free energy
geff with the thickness d of the plate. Results are shown for q15109 ~dashed
lines! and q151010 m21 ~solid lines! for H50.5, 0.6, . . . ,1, where the
magnitude of geff monotonically increases with increasing H . In the calcu-
lation d51 Å.

FIG. 8. The height probability distribution Ph for a sandpaper ~particle
diameter '0.3 mm) surface with a root-mean-square roughness of about 93
nm.

FIG. 9. Surface roughness power spectra C(q) as a function of the wave
vector q for the same sandpaper surface as in Fig. 8.
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The curves in Fig. 10 were calculated using Eq. ~13!
with the power spectra C(q) shown in Fig. 9, which start at
q0'2.13105 m21. However, when studying the adhesion
between the lizard leaflike plate and the substrate we should
only include roughness components with wavelengths
shorter than the lateral size of the leaf plate, which is of order
l0'300 nm. In Fig. 11 we compare the results from Fig. 10
@curves ~b!–~d!# with the effective surface energy obtained
when we only include roughness wave vector components
with q.q052p/l0'23107 m21 ~dashed lines!. The thick-
ness of the platelike structure at the end of the spatula is in
the range of d'5–10 nm. Based on Fig. 11 @curve ~d!#, one
would expect to observe a strong decrease in the adhesion on
this surface as compared to a perfectly smooth substrate ~see
also Sec. IV!. Experiments to check these predictions are in
progress. A detailed comparison between theory and experi-
ment would, however, require that the height profile h(x) be
measured with higher resolution (;3 nm) so that C(q) can
be calculated at least up to q;109 m21, rather than extrapo-
lated to large q as in the present case ~see Fig. 9!.

IV. COMMENTS

In this section we make two comments related to the
theory above. First, we note that when detached regions are
included, the effective interfacial energy as function of the
thickness d of the slab will have a tail toward larger d . This
is shown schematically in Fig. 12 ~dashed line! for case ~b!
in Fig. 10. We shall study this effect in detail in the future by
generalizing the theory of Ref. 2, which is valid for semi-
infinite solids rather than plates.

However, even when the minimum free-energy state cor-
responds to complete contact, the elastic plate may ~because
of friction! be trapped in a metastable state as illustrated in
Fig. 13. In this case, because the kinetic friction is smaller
than the static friction, sliding or vibrating the plate may
increase the contact area. This effect is known experimen-
tally: By sliding the lizard toe pad for a short distance the
adhesion force can be increased.3

Measurements have shown that the friction between the
adhesive pad of a beetle ~Gastrophysa viridula!, and the
sandpaper surface discussed in Sec. III~c! is about 5 times
smaller than on the smooth substrate ~of the same material!.
One interpretation of this result is that the area of real contact
may be ;5 times smaller on the rough substrate compared
with the smooth substrate. The theory presented in this paper
assumes complete contact, but when the theory predicts
geff /Dg!1 ~as in Sec. III! one may, in fact, expect only
partial contact ~see above!; this would be consistent with the
beetle friction data. When sandpaper with larger particles

FIG. 10. The variation of the ~normalized! effective interfacial free energy
geff with the thickness d of the plate. Curves ~a!–~d! correspond to different
short distance cutoff wave vector q1 , namely ~a! 107; ~b! 108; ~c! 109;
and ~d! 1010 m21, for the power spectra C(q) shown in Fig. 9 and with
d51 Å.

FIG. 11. The variation of the ~normalized! effective interfacial free energy
geff with the thickness d of the plate. Curves ~b!–~d! correspond to different
short distance cutoff wave vectors q1 , namely ~b! 108; ~c! 109; and ~d!

1010 m21, for the power spectra C(q) shown in Fig. 9 and with d51 Å.
The solid curves are the same as in Fig. 10, while the dashed curves are
obtained by only including roughness wavelength components q.q052
3107 m21.

FIG. 12. When detached regions are included, the effective interfacial en-
ergy as a function of the thickness d of the slab will have a tail toward larger
d . For the case ~b! in Fig. 10 ~schematic!.

FIG. 13. The free energy is minimal for the complete contact state, but
because of friction the plate is not able to deform to follow the substrate.
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was used (.1 mm) the friction was nearly the same as on
the smooth substrate, indicating complete contact in these
cases. Unfortunately, no AFM data of the height profile were
reported for these cases.

It has been pointed out that on a smooth surface only
0.03% of the gecko’s setae are necessary in order to support
its body weight, and the question has been raised why the
geckos are so overbuilt.3 However, it is clear from the cal-
culations presented in Sec. III and from Fig. 12 that on a
rough substrate the spatulae–substrate adhesion may be
strongly reduced, and we believe that this may be the main
reason why the gecko’s adhesive system is so apparently
overbuilt.

V. DISCUSSION

How can a fly or a cricket walk on a glass window, or a
lizard move on a stone or concrete wall? In order to explain
the observed adhesion, these questions can be reformulated
as follows: how is the extremely soft surface layer, which
must exist on the adhesion pads, designed? This fundamental
question has interested scientists for many years, and re-
cently very important work has been performed in order to
gain a deeper insight into this problem.1 Thus, it is now
known that the adhesive systems, adapted to attachment to a
variety of surfaces, are built in a hierarchical manner from
fibers and plates with very small bending elasticities, making
it possible for the molecular attraction at the interface to pull
the two surfaces into nearly complete contact without storing
a large elastic deformation energy at the interface.

In this paper we have focused on dry adhesion, which
seems to be relevant for lizards.3 In Ref. 5 one of us pre-
sented a simple model study of fiber adhesion on surfaces
with roughness on many length scales, and applied it to the
adhesion between a lizard toe and a smooth or rough hard
substrate. In this paper we have extended that study, and
considered the spatula–plate adhesion.

Naturally occurring surfaces ~e.g., a stone wall! have
surface roughness on all length scales, from macroscopic to
atomic. Adhesion between two bodies is only possible if the
surfaces are able to deform ~elastically or plastically! to
make direct ~atomic! contact at a non-negligible fraction of
the nominal contact area. For ‘‘hard’’ solids this is nearly
impossible and as a result adhesion is usually negligible be-
tween hard rough surfaces.11

The skin of the gecko toe pad is able to deform and
follow the substrate roughness profile on length scales much
longer than the thickness d'100 mm of the elastic keratin
film, say beyond ;1000 mm. At shorter length scales the
keratin film, because of its high elastic modulus ~of order 1
GPa!, can be considered as rigid and flat. Elastic deformation
of the pad surface on length scales shorter than ;1000 mm
involves the compliant setae fiber array system, with fibers
of thickness ;4 mm. In Ref. 5 we have shown that if the
surface roughness root-mean-square amplitude, measured
over a patch D3D with D'1000 mm, is smaller than a
characteristic length ~the adhesion length! ~see Ref. 5!, then
the fiber array system is able to deform ~without storing a lot
of elastic energy! to follow the surface roughness in the

wavelength range 10,l,1000 mm. However, if the setae
fiber tips were blunt and compact, they would not be able to
penetrate into surface ‘‘cavities’’ with diameters less than a
few mm. Thus, negligible atomic contact would occur be-
tween the surfaces, and the adhesion would be negligible.
For this reason, at the tip of each long ~thick! fiber an array
of ;1000 thinner fibers ~diameter of order ;0.1 mm) oc-
curs. These fibers are able to penetrate into surface roughness
cavities down to length scales of a few tenths of a microme-
ter. However, if the thin fibers had blunt and compact tips
made from the same ‘‘hard’’ keratin as the rest of the fiber,
then one would still obtain very small adhesion, since a lot of
elastic energy would be necessary to deform the surfaces of
the thin fibers to make atomic contact with the substrate.
Therefore, the top of the thin fibers end with thin, leaflike
plates, which can easily be bent ~without storing a lot of
elastic energy! to follow the surface roughness profile. In
Ref. 5 one of us speculated that the spatula tips are covered
with a very soft compliant layer, e.g., a liquidlike ~high mo-
bility! layer of polymer chains grafted to the tip of the thin
fibers. This liquidlike layer, if thick enough, would be able to
adjust to the substrate roughness profile over lateral distances
below ;10 nm. However, the calculation presented above
~Figs. 10 and 11! indicate that such a layer may not always
be necessary in order for strong adhesion to occur. However,
the calculations presented in Fig. 6 show that, for rough sur-
faces with the fractal dimension D f532H.2.2, very small
adhesion may occur in most cases.

Finally, we note that lizards are the heaviest living ob-
jects on this planet that are able to adhere to, e.g., a rough
vertical stone wall. Since the surface area of a body increases
more slowly than the volume ~or mass! with an increase of

FIG. 14. The adhesive system of beetle and lizard.
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the linear size of the body, the adhesive system in large liv-
ing bodies such as lizards must be more effective ~per unit
attachment area! than in smaller living objects such as flies
or beetles.1 This implies that lizards have the most effective
adhesive systems in the biological evolution for the purpose
of locomotion. This is confirmed by electron microscopy
studies. Let us compare the spatula of the adhesive systems
of beetles with lizards ~Fig. 14!. Note that the spatula is
thinner in lizards than in beetles. Also, the diameter of ter-
minal branches is smaller. This implies that less elastic en-
ergy per unit surface area will be stored in the lizard adhe-
sive system, and that the effective interfacial energy geff will
be larger for lizards than for beetles.

VI. SUMMARY AND CONCLUSION

We have studied the adhesion of elastic plates to rough
substrates, which is relevant to biological systems, e.g., flies,
crickets, and lizards, where the adhesive microstructures
consist of a hierarchical array of thin fibers and plates. The
effective elastic modulus of the fiber–plate arrays is very
small on all relevant length scales ~from mm to nm!, which
is of fundamental importance for adhesion on rough sub-
strates. We have shown how the adhesion depends on the
nature of the substrate roughness, and applied the theoretical
results to the adhesion pads of lizards. Experiments to test
the theoretical results are underway. Finally, we note that the
construction of manmade adhesives based on fiber and plate
arrays may be an attractive alternative to the usual adhesives
based on thin polymer films. Some pioneering experiments
have indeed shown enhanced adhesion for fiber array sys-

tems, but no manmade system of the hierarchical nature used
in biological systems has so far been produced.12,13
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