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The effect of surface roughness on the adhesion of elastic solids
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We study the influence of surface roughness on the adhesion of elastic solids. Most real surfaces
have roughness on many different length scales, and this fact is taken into account in our analysis.
We consider in detail the case when the surface roughness can be described as a self-affine fractal,
and show that when the fractal dimensibp>2.5, the adhesion force may vanish, or be at least
strongly reduced. We consider the block-substrate pull-off force as a function of roughness, and find
a partial detachment transition preceding a full detachment one. The theory is in good qualitative
agreement with experimental data. ZD01 American Institute of Physics.
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I. INTRODUCTION They found that already a relative small surface roughness
can completely remove the adhesion. In order to understand
Even a highly polished surface has surface roughness ahe experimental data they developed a very simple model
many different length scales. When two bodies with nomi-based on the assumption of surface roughness on a single
nally flat surfaces are brought into contact, the area of redength scale. In this model the rough surface is modeled by
contact will usually only be a small fraction of the nominal asperities all of the same radius of curvature and with heights
contact area. We can visualize the contact regions as smdbllowing a Gaussian distribution. The overall contact force
areas where asperities from one solid are squeezed againghs obtained by applying the contact theory of Johnson,
asperities of the other solid; depending on the conditions th&endall, and RoberfSJKR) to each individual asperity. The
asperities may deform elastically or plastically. theory predicts that the pull-off force, expressed as a fraction
How large is the area ofeal contact between a solid of the maximum value, depends upon a single parameter,
block and the substrate? This fundamental question has exhich may be regarded as representing the statistically aver-
tremely important practical implications. For example, it de-aged competition between the compressive forces exerted by
termines the contact resistivity and the heat transfer betweethe higher asperities trying to pry the surfaces apart and the
the solids. It is also of direct importance for sliding frictibn, adhesive forces between the lower asperities trying to hold
e.g., the rubber friction between a tire and a road surface, artthe surfaces together. We believe that this picture of adhesion
it has a major influence on the adhesive force between twdeveloped by Tabor and Fuller would be corrécthe sur-
solid blocks in direct contact. One of us has developed daces had roughness on a single length scale as assumed in
theory of contact mechaniésjalid for randomly roughe.g.,  their study. However, when roughness occurs on many dif-
self-affine fractgl surfaces, but neglecting adhesion. Adhe-ferent length scales, a qualitatively new picture emefges
sion is particularly important for elastically soft solids, e.g., the following), where, e.g., the adhesion force may even van-
rubber or gelatine, where it may pull the two solids in directish (or at least be strongly reducedf the rough surface can
contact over the whole nominal contact area. be described as a self-affine fractal with fractal dimension
In this paper we discuss adhesion for randomly roughD;>2.5. We also note that the formalism used by Fuller and
surfaces. We first calculate the block-substrate pull-off forceTabor is only valid at “high” surface roughness, where the
under the assumption that there is complete contact in tharea of real contadtand the adhesion forgés very small.
nominal contact area. We assume that the substrate surfat@e present theory, on the other hand, is particularly accurate
has roughness on many different length scales, and consid&ar “small” surface roughness, where the area of real contact
in detail the case where the surfaces are self-affine fractaéquals the nominal contact area.
We also study pull-off when only partial contact occurs in
the nominal contact area.
The influence of surface roughness on the adhesion bdl QUALITATIVE DISCUSSION
tween rubbe(or. any other ela§tic soljcand a hard substrate Assume that a uniform stress acts within a circular
has been studied in a classic paper by Fuller and -Iadborarea(radius R) centered at a poinP on the surface of a

semi-infinite elastic body with elastic modulks see Fig. 1.
dElectronic mail: b.persson@fz-juelich.de This will give rise to a perpendicular displacementf P by
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FIG. 1. A uniform stressr, acting within a circular aregadiusR) on the
surface of a semi-infinite elastic medium, gives rise to a displacement  FIG. 2. The adhesion interaction pulls the rubber into complete contact with
the rough substrate surface.

a distance which is easy to calculate using continuum me- 2H
chanics:u/R~¢/E. This result can also be derived from A7A>Eh§()\—>
simple dimensional arguments. First, note thamust be a
proportional too since the displacement field is linearly re- or

lated to the stress field. However, the only other quantity in N1ZHZ1 A
the problem with the same dimension as the stre$s the (_ <L2a_ (1)
elastic modulu€& sou must be proportional to/E. SinceR Na Eh;

is in turn the only quantity with the dimension of length we aAssume first thatH>1/2. In this case, ifA,<\ we get
get at onceu~(o/E)R. Thus, ifh and\ represent perpen- (\/).)2H~1>1 and condition(1) gives Ayna/ERZ>1.
dicular and parallel roughness length scales, respectivelyphus, adhesion will be important on any length scale
then if h/A~o/E, the perpendicular pressucewill be just <) |n particular, if\ is the long-distance cutoff lengthy,
large enough to deform the rubber to make contact with thg, the self-affine fractal distribution, thecomplete contact
substrate everywhere. will occur at the interface More generally, ifA=Eh%/Ay

Let us now consider the role of the rubber—substratec)  the contact consists of a set of disconnected contact

surface cavity of the substrate, an elastic endygi=EXh?  gccurs.

will be stored in the rubber. Now, if this elastic energy is Consider now insteall <1/2. In this case, ik ;<\ we
smaller than the gain in adhesion energy~ —AyA%  get (\h,)2H <1, and condition(1) no longer guarantees
where— Ay is the local change of surface free energy uponghat A y\ ,/Eh2>1. In fact, it is easy to show that at short
contact due to the rubber—substrate interactishich usu- enough length scala,, Ay\,/Eh3<1. Thus, without a
ally is mainly of the van der Waals typethen(even in the  short-distance cutoffadhesion and the area of real contact
absence of the loaéy) the rubber will deformspontane- | vanish Hence, in spite of the fact that the contact at first
ously to fill out the substrate cavities. The conditibh,= may seems to be perfect on large scak#sceA y\>Eh?),
—Ugqgivesh/h~(Ay/EN)"™ For example, for very rough there s, in fact, no contact at all sindey\ < Eh? holds at
surfaces witth/A~1, and with parameters typical of rubber gnort enough length scalk,. In reality, a finite short-

_ _ 2 R i i _ ) . :
E=1MPa andAy=3 meV/A?, the adhesion Interaction  gistance cutoff will always occur, but this case requires a
will be able to deform the rubber and completely fill out the jore detailed study(see Sec. Il Also, in the above-

cavities ifA <0.1um. For very smooth surfacdsA~0.01  mentioned analysis we have neglected that the area of real
or smaller, so that the rubber will be able to follow the sur-cqntact depends oh (i.e., it is of ordern? only whenh/x
face roughness profile up to the length scate1 mm or <1). A more accurate analysis follows.
longer.
The above-mentioned discussion assumes roughness on
a single length scal. But the surfaces or real solids have Ill. INTERFACIAL ELASTIC AND ADHESION
roughness on a wide distribution of length scales. AssumeENERGIES FOR ROUGH SURFACES

for example, a self-affine fractal surface. In this case the  assume that a flat rubber surface is in contact with the
statistical properties of the surface are invariant under th?ough surface of a hard solid. Assume that because of the

transformation rubber—substrate adhesion interaction, the rubber deforms
x—x{, z—zd", elastically and makes contact with the substrate everywhere,
see Fig. 2.

wherex=(X,Y) is the two-dimensional position vector in the
surface plane, and where<tH <1. This implies that ifh, is
the amplitude of the surface roughness on the length sca
N2, then the amplitudén of the surface roughness on the
length scalexn will be of order

Let us calculate the difference in free energy between the
L‘%bber block in contact with the substrate and the noncontact
se. Letz=h(x) denote the height of the rough surface

above a flat reference plafehosen so thath)=0). Assume
first that the rubber is in direct contact with the substrate over
h~h (M. the whole nominal contact area. The surface adhesion energy

" . : is assumed proportional to the contact area so that
A necessary condition for adhesional-induced complete con- prop

tact on the length scale is thatE.s>E,, i.e., AyN>Eh?,
Wh|Ch gives g ad el Y Uad: _A,yf d2x[1+(Vh(X))2]1/2
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1
A0+§f dzx(Vh)Z}, () Ayer=Avy

1+7TJQ1dq Fc(q)

Y
where we have assum¢®h|<1. Now, using oE a
, . —quodq q2C(q)}. (10
h(X)=f d“gh(q)e'"™
The above-given theory is valid for surfaces with arbi-

we get trary random roughness, but will now be applied to self-
affine fractal surfaces. It has been found that many “natural”
j d2x(Vh)2=f dzxf d?q d’q’'(—0o-q’) surfaces, e.g., surfaces of many materials generated by frac-
ture, can be approximately described as self-affine surfaces
x(h(q)h(q")) el(a+a’)x over a rather wide roughness size region. A self-affine fractal

surface has the property that if we make a scale change that
is appropriately different along the two directions, parallel

and perpendicular, then the surface does not change its
morphology’ Recent studies have shown that even asphalt

=<2w>2f d2q Gh()h(—q))

=A, f d%q g?2C(q), (3)  road tracks(of interest for rubber friction are (approxi-
mately self-affine fractal, with an upper cutoff length,
where the surface roughness power spectrum is 227T/q0 of order of a few miIIimeter§. For a self affine
L fractal surfacé:® C(q)=0 for q<qo, while for q>qp:
= 2 —igx 2 —2(H+1)
Q) : (1Y
2m\do/ Qo

where(--- ) stands for ensemble average. Thus, using Egs.
(2) and (3): whereH=3-D; (where the fractal dimension<2D;<3),
and whereq, is the lower cutoff wave vector, anld, is
1+ EJ d%q ?C(q) |. (5) determined by the rms roughness amplitude) =h2/2. We

2 note thatC(q) can be measured directly, using many differ-

Next, let us calculate the elastic energy stored in thét methogs, e.g., using stylus instruments or optical
deformation field in the vicinity of the interface. Lej(x) be  'nstruments. . .
the normal displacement field of the surface of the elastic ~ Substituting Eq(11) in Eq. (10) gives

Uad™= —AcAy

solid. We get Ayt 1 Eh2q
_ - 2 o 040
Uer~— Ej dX(Ux(X) 04(X))
where
B (277)2f ) H qq| 1 2H
=—— | da{ua)o(—0a)). (6) f(H)=15q (%) -1],
Next, we know that (ql)zu—H) }
Hy=-—|| -1].
LD =M, £Q)(q), @ 7|l
where If we introduce the lengtld=4(1— v?)Ay/E, then Eq.(12)
2 takes the form
M) = — 2 ®) A 1 1
z ! Y
Ed A;ﬁ=1+(QOho)2(§9(H)—@W"))- (13

E being the elastic modulus andthe Poisson ratio. If we
assume that complete contact occurs between the solids, thénFig. 3 we showf(H) andg(H) as a function oH. Note

u,=h(x) and from Eqgs(4) and(6)—(8), that the present theory is valid only ifih)?g(H)/2<1,
(2m)?2 otherwise the expansion of the square-root function in Eg.
Ue—— f da(u(Qu,(— )M~ )] (2) is invalid.

Let us emphasize that the present theory is strictly valid
AE only for purely elastic solids; many real solids.g., most

= —zf d?q qC(q). (9)  polymers®® behave in a viscoelastic manner, and in these

41=v%) cases\ y may be much larger than in the adiabatic limit, and

The change in the free energy when the rubber blockhe theory presented in this paper is no longer valid. Vis-

moves in contact with the substrate is given by the sum ofoelastic effects may be particularly important for rough sur-

Egs.(5) and(9): faces, where, during pull off, the roughness introduces fluc-

Uit U oie — Ay tuating forces with a wide distribution of frequencies. The

el Yad Vet same effect operates during sliding as described in a recent

where work on rubber frictiont!
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FIG. 3. The functiond(H) andg(H) are defined in the text.

Consider first an elastically very soft solid, e.g., jelly. In
this case, usingE~10*Pa andAy~3 meV/A2, we gets
~10um, and since typicallygo=27/\o~(10um) ! and
g(H)>f(H), we expect\ y.>Ay. Thus, for anelastically

B. N. J. Persson and E. Tosatti

tact with most hard solidsAy~3 meV/A? we get E,

~1 MPa. This is in very good agreement with experimental
observations. Thus, Briggs and Bristbebserved a strong
roughness-induced increase in the pull-off force for rubber
with the elastic modulu€=0.06 MPa, but a negligible in-
crease whefE=0.5 MPa. Similarly, Fuller and Robetfsob-
served an increase in the pull-off force for rubbers wih
=0.4, 0.14, and 0.07 MPa, but a continuous decrease for
rubbers withE=1.5 and 3.2 MPa. It would be extremely
interesting to perform a detailed test of the theory for sur-
faces for which the surface roughness power speC{@)

has been measured.

According to Eq.(13), the roughness-induced contribu-
tion to Ay Scales as~ hS. This scaling is exact for the
contribution from elastic deformatioriss long as complete
contact occurs but is only valid for small enough, for the
adhesion contribution. For lardg, the expansion in Eq2)
is invalid, and one obtains instead

Uadw—AyJ d?x|Vh(x)],

which varies linearly witthy. Thus, for large enough, the
(negative contribution to A y.¢ from the elastic deforma-
tions will always dominate, and this explains why the pull-
off force always decreases for large enough) even when
the elastic modulus of the rubber is very sntaft? In fact,
we can derive an expression fdry.s which is approxi-
mately valid also for largdng, as follows: Let us write Eq.
(2) as(see Appendix B for the derivation of the exact repsult

Uag= —AyAx([1+(Vh(x))?]?)
~—AyA[1+((Vh(x))?]*2,

where

very soft solid the adhesion force may increase upon rough-
ening the substrate surface. This effect has been observed
experimentally for rubber in contact with a hard, rough

1 q
((Vh(x))?)= A_f dZX(Vh(X))2=27Tj "dq C(q).

0 q
substraté?'3 and the present theory explains under exactly °

what conditions that will occufsee the following

Note that if the conditiorg(H)/2>f(H)/(qyd) is satis-
fied, the adhesion forcéor small enoughhg) will increase
with increasing amplitudda, of the surface roughness. We
may define a critical elasticiti, such that IfE<E., A yex
increases with increasinigy, while it decreases iE>E;.
E. is determined by the conditiog(H)/2=f(H)/(qy9),
which gives

Ec=2(1-v*)Ayqog(H)/f(H).

Thus, for a self-affine fractal surface E(L3) is replaced
with

Ave !
3o =L+ (Ah0)%g(H)J2— (Goho)? g 51(H). (143

If we denoteé=hyq,gY? then Eq.(143 becomes

A Yert 2\1/2
A—y—(1+§ ) o

2E. £, (14b

This expression foE. depends on the nature of the surfaceThis function is shown in Fig. 4 foE./E=1 and 2(dashed

roughness via the cutoff wave vectgg and the fractal ex-

lines). The solid lines in Fig. 4 are obtained using the exact

ponentH=3—-D;. These quantities can be obtained fromresult derived in Appendix Bsee Eq.(B2)]. If we assume

measurements of the surface roughness power spettya

that the pull-off force is proportional td vy [as expected

Such measurements have not been performed for any of tHer a rubber ball, see E§21)], we obtain theh, dependence
systems for which the dependence of the adhesion on thef the pull-off force shown in Fig. 4, which is in good quali-
roughness amplitudeh, has been studied. However, tative agreement with experimehi.

measurementof C(q) for similar surfaces as those used in
the adhesion experiments have shown that typiddhy0.8
and \o=2m7/qy~100um. For H~0.8, Fig. 3 gives
g(H)/f(H)~100 and with the measuretbr rubber in con-

If it would be possible to prepare surfaces with different
roughness amplitudh, but constang, (andH), then it is
easy to prove from Eq14b) that the maximum oAy as a

function of hg is
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FIG. 5. When the interaction between the “glue” film and the substrate is
“strong,” the separation may involve internal rupture of the glue film rather
than detachment at the interface.

Ayeff 1Ay

between the solids, and a decrease in the elastic deformation

energy stored in the solids: both effects will tend to increase

of the pull-off force.(Note: The elastic energy stored at the

0 ' > ' 4 interface during the compression phase is almost entirely

hoag g'2 given back during slow pull-off.Since we use a frequency
independent elastic modulus, such time-dependent effects

FIG. 4. The effective change in surface energy as a function of the dimenare, of course, not taken into account in the analysis pre-

sionless parametdefoqog'l’2 for Ec/E=1 and 2. The solid lines are obtained sented previously.

3323 tt?]z Zﬁig;ﬁﬂ;ggﬁ%?y B@2), while the dashed lines are obtained o jntarfacial free energy is a sum of the adhesive part
U .4, Which is proportional to the area of real contact, and the
elastic energyJ, stored in the strain field at the interface. As

Ayl E E. long asAU = U 44+ U4 <0, a finite pull-off force will be nec-
(Ayeff)maXZT( ) essary in order to separate the bodies. When the amplitude of

E. E the surface roughness increas&t) will in general increase
The maximum occurs fong=h,: and when it reaches zero, the pull-off force vanishes. Sup-
E.\2 112 pose now that an elastic slab has been formed between two
qohczgl’ZHEC) - 1} . solids from a liquid “glue layer,” which has transformed to

the solid state after some hardening time. For example, many
Thus if, e.g.,E./E~10, the maximal pull-off force should glues consist of polymers which originally are liquid, and
be ~5 times larger than for perfectly smooth surfaces. Thisslowly harden, e.g., via the formation of cross bridges. In this
type of enhancement & y.+ has been deduced from rolling case, if the original liquid wets the solid surfaces, it may
friction experiment§® using very soft rubbergwith E penetrate into all surface irregularities and make intimate
~0.07 MPa, but the interpretation of the data is complicated contact with the solid walls, and only thereafter harden to the
by the fact that the rubber is not perfectly elastic, but rathesolid state. Ideally, this will result in a solid elastic slab in
exhibit (rate-dependehtiscoelastic properties. perfect contact with the solid walls, amdthout any interfa-

For most “normal” solids, Ay~Ea, wherea is an cial elastic energy stored in the systeie., withU¢=0. (In
atomic distancéof order~1 A) andE the elastic modulus. practice, shrinkage stresses may develop in the glue layer,
Thus, 5~a~1A and typically 16,6~ 10 so that the(re-  which will lower the strength of the adhesive joirithus the
pulsive energy stored in the elastic deformation field in thelast term in the expression fdry.q vanishes, and g will
solids at the interface, and proportional tH), largely increase with increasing surface roughness in proportion to
overcomes the increase in adhesion energy derived from thee surface area. This will result in an increase in the pull-off
roughness induced increase in the contact area, described force, but finally the bond breaking may occur inside the
the term €oho)%g(H)/2. glue film itself1* rather than at the interface between the glue

Let us note the following very important fact. Many sol- film and the solid walls(see Fig. % from here on no
ids respond in an elastic manner when exposed to rapid datrengthening of the adhesive bond will result from further
formations, but flow plastically on long enough time scalesroughening of the confining solid walls.

This is clearly the case for non-cross-linked glassy polymers, Thus, the fundamental advantage of using liquidlike
but it is also to some extent the case for rubbers with crosglues (which harden after some solidification tilpecom-
links. The latter materials behave as relative hard solidpared to pressure-sensitive adhesives which consist of thin
when exposed to high-frequency perturbations, while theolid elastic E~10*—1@ Pa) films, and which develop tack
deform as soft solids when exposed to low-frequency perturenly when squeezed between the solid surfaces, is that in the
bations. Thus, when such a solid is squeezed rapidly againgirmer case no elastic deformation energy is stored at the
a substrate with roughness on many different length scales,iaterface (which would be given back during the removal
large amount of elastic energy may initially be stored in theprocess and hence reduce the strength of the adhesive, bond
local (asperity induced deformation field at the interface. while this may be the case for the latter type of adhesive,
However, if the system is left alor(@é the compressed state unless the interfacial stress distribution is able to relax to-
for some time, the local stress distribution at the interfacevard the stress-free statavhich requires the absence of
will decrease(or relax, because of thermal excitation over cross links, or such a low concentration of cross links that
the barrierg, while the area of real contact simultaneously “thick” liquidlike polymer layers occur at the interfacgs
increases. This will result in an increasing adhesion bond If we define
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a=(doho)*g(H)/2, (15
Ehgdo
Tai-Asy 1o

then Eq.(12) takes the form
Ayer=Ay(1+a—6f(H)). (17 (0)

In what follows we will assumer<1 and neglect the: term

in Eqg. (17). Note that without a low-distance cutoff.e.,
g1/qp==), f(H)= for H<1/2 and it is clear that in this
limiting case no adhesive interaction will ocandependent

of the magnitude ofA y. (This statement is only strictly true
as long as the attractive interaction responsible for is
assumed to have zero spatial exteiihe physical reason is
that in this case the elastic energy stored in the deformation
fields in the solids will always be larger than the adhesion

energy which is proportional tAy. Note that for the impor-  FIG. 6. The block—substrate bond is broken by a crack propagedjirigpm

tant caseH~1/2. and ifa<1 Eq (17) gives the periphery of the contact area, @) by a crack which has nucleated
! ! ’ somewhere in the contact area, e.g., at an imperfeq@piefinition of the

1 a: displacementi.
AyeﬁwA){l——Hln —”, (18
2 Yo
which (for g, /go> 1) is rather insensitive to the actual mag- Fy=A0EU/L. (19

nitude ofq,/qo.
In the above-mentioned study we have compared th
free energies for the case of complete contact between t

rubber and the substrate, with the case when no contact o )
cur. In reality, for large enough surface roughness the fre ubstrate bond is broken. We expect the bond between the

energy may be minimal for partial contact. Indeed, the ex- lock and th:atSL{{er]stratefto break wh_en the elastic energy be-
perimental results of Fuller and TaBa@uggest this to be the comes equatfo Ihe suriace energy, 1.€.,

é\low, considelF>0. The block—substrate bond clearly can-
ot break if the elastic energy stored in the block is smaller
E_an the surface energg,Ay created when the block—

case(see Sec. I, and in Sec. V we will consider this case in 1 u\?

greater detail. SALE| ] =Addy
or

IV. CONTACT MECHANICS WITH ADHESION: 2AyL\ 12

COMPLETE CONTACT u= E

We consider the simplest possible case, namely a rectamnd the pull-off forceFy=F [from Eq.(19)]:
gular elastic block with flat surfaces, in contact with a nomi- DA VE| L2
nally flat substrate surface. Assume that the block has a Fc:AO( Y ) ] (20)
heightL,=L and the bottom surface arg®=L,L,. As- L

sume that the upper surface of the block is camped in thghe above-used condition to determine the adhesion force
perpendicular directiofiindicated by the thin(rigid) black  £_ namely that the elastic energy stored in the block equals
slab in Fig. §, and pulled vertically with the forcEy. We  the created surface energy, is only valid if the strain field in
assume that the bond between the block and the SUbStr% block is Constar(which is the case in the present Simp|e
breaks via the propagation of an interfacial crack, which mayyeometry, but not in more complex geometries, e.g., when a
nucleate eitheta) at the periphery of the contact area,(bf  pa|l is squeezed against a flat substraite general, this con-

at some point inside the contact aresee Fig. 6 In the  dition must be replaced with the condition thatis station-
following we will make the simplifying assumption that the ary as the contact area is varied, i&U/3dA,=0. We note
stress in the block far away from the crack is uniaxial, asthat the present theory of adhesion is really a Griffith calcu-
would be the case if the elastic film would be able to slide injgtion in fracture mechanics.

the parallel direction. ThUS, if the upper Clamped surface is The free energy minimization calculation performed pre-
moved upwards with the distance then the elastic energy viously can be extended to more complicated systems. For
stored in the block(in the absence of the cracks  example, when an elastic sphe@dius R,) is in contact

AoLE(u/L)?/2. Thus, assuming zero surface roughness, Wgyith a substrate, the pull-off force becorrese Appendix A
write the potential energy for the system (@se Fig. 6

5 F.=(3m/2)RpA . (21
1 u
U=—-Fnu+ EAOLE(E> —ApAy. This result was first derived by Sperlitfgand (indepen-
dently) by Johnson, Kendall, and Robeft&endall has re-
Minimizing this expression with respect togives ported similar results for other geometries of intefést.
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FIG. 7. The pull-off forceF., in units of the maximum pull-off force, as a andqg are the same for all the different surfageEhe solid
function of the surface roughness amplitite The solid and dashed lines  and dashed lines are theoretical curves for a spherical ball
are theoretlcal curves for a spherical pall and for_a rectangular block, 'eand for a rectangular block, respectively, assuming complete
spectively, assuming complete contact in the nominal contact(aeeathe . .
text). The circles are experimental data from Ref. 3, and the dotted-dashefiOntact in the nor_mnal (_:OntaCt area. The agreement between
line is a guide to the eye. theory and experiment is good for small rms roughness val-
ues, hg/hpnax<0.2 (where h,., is the hy value for which
_ _ 0f(H)=1, i.e.,hna—=2(1— 1) AYEqgf(H)*?, but for large
Consider now the same problems as previously, but ag;  the experimental pull-off force falls somewhat below the

sume that the substrate surface has roughness described B%oretical prediction. This may be due to the fact that for
fche functionz=h(x). _We now study how the adheS|or_1 force “large” surface roughness the free energy is mininahen
is reduced from the ideal valu@0) or (21) as the amplitude £ — ) for partial rubber—substrate contact, rather than for

of the surface roughness is increased. Let us first assume ““Laémplete contactor zero contadt as assumed previously
the adhesive interaction is so strong that the elastic solid is igge Fig. 8.

cqntact with the substrgte everywhere. In this case We can | fact, for surface roughness on a single length scale,
still use result(20), but with Ay replaced byA yei as given g g 7—h cos@), it is easy to convince oneself that there
by Eq.(13). Thus if <1 we get for a rectangular block in || he a discontinuousletachment transitiofrom complete
contact with a nominally flat substrate: contact to partial contacFig. 9 when the pull-off forcgor
Fe=(Fo)mal1— 0f(H)]Y2 (220  the amplitude of the roughneks) is increased. This can be

seen directly if we consider a very narrow detached region at
the bottom of a valley as in Fig. 10. We can treat the de-
tached region as a crack of width As is well known in that
Fo=(FOmall— 0f(H)], (23)  casé’ the stress at the crack edges will be proportional to
(b/r)*2, wherer is the distance away from a crack edge.
Thus, the local stress at a crack tip will increase with the
width b of the crack, so that after nucleation the crack will

where F.)max IS given by Eq.(20). Similarly, for an elastic
sphere in contact with a nominally flat substrate

where F¢)max IS given by Eq.(21). Note thatF.—0 as
0f(H)—1; whenof(H)=1 the elastic energy stored in the

deformation field at the interface equals the surface energy L . .
) xpand to a finite size. Thus partial detachment on a single
AyA (whereA is the area of real contg¢tand no “external” P P 9

energy is necessary in order to break the block—substratlgngth scale is a first-order transition. We have performed a
bond. Whendf(H)>1, the elastic energy stored at the inter- reliminary study® [for a cos() profile] which shows that

; O . n increasing the pull-off forcéor increasindy, at vanishing
face is larger than the gain in surface energy which WOUIdgxternal forcgthe system first “flips” from a state with com-

result from the direct contact between the block and the sub-
strate; this state is stable only if the solids are squeezed
against each other with an external force.

In Fig. 7 we compare the present theory with the experi-
mental results of Fuller and Tabor for several glass surfaces
with different surface roughness rms amplitufi&e assume
here, and in what follows, that the roughness paraméders

FIG. 10. When the amplitudk, of the surface roughness, or the pull-off
force Fy, is increased beyond a critical value, a discontinuous detachment
transition takes place from a state of complete contact to partial contact. The
FIG. 8. For “large” surface roughness the free energy is minifwetien transition can be considered as resulting from the nucleation of a crack at the
Fn=0) for partial rubber—substrate contact, rather than for complete con-bottom of the valley, followed by rapid expansion of the crack until it
tact. reaches a width of order \/2.
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plete contact to another “asperity contact” stateig. 8
where the width of the contact region is less tha as
indicated in Fig. Ybottom.

Real surfaces do, of course, exhibit roughness on many
different length scales, and the relation between the pull-off
force and the center of mass displacement is therefore likely
to be continuous for most systems of practical interest. Nev-
ertheless, during pull-off rapid flip events may take part at FIG. 11. Definition of the displacementsandv.
the interface, where the solids first undergo local detachment
in the valleys of the roughness profile, followed at large
enough pull-off force by complete detachment, the asperity , ,
contact areas detaching the last. Because of the long-range Let us consider the case of a reptangular block in contact
nature of the elastic interaction, one may expect a cooperdVith @ rough substrate. The potential energy for the system
tive behavior of the detachment process, where detachmeht
in one local area may induce detachment in other interfacial
surface areas. Fuller and Robéfteave studied the line of U=—Fyu+

2
+V(v), (24

A LE| —
0 L

1

peeling (crack edgg during pull off (see also Ref. 19 For 2
smooth surfaces the line is straight and peeling occurs uni-

formly. Roughening the counterface makes the line increasWhereu ando are the(lateral averagediisplacements of the

ingly irregular, and peeling is intermittent, involving short upper and lower surfag:e .Of the plod{ee F|g.. 13, and the
sections of the front at a time. This mode of behavior indi—bIOCk_SUbStrate asperity interaction energy is

cates variation in the strength of the adhesion over the con- -

tact area as a result of the irregularly fluctuating surface V=nvof dzp(2)Uasfz—0). (25)
roughness. The exact nature of the detachment process and Zc

its possible collective behavior represents an interestin%
problem for future studies.

Fuller and Tabor performed experiments with three dif-
ferent rubbers with very different elastic modul&s The
dependence of the adhesion on the magnitude isfin good
agreement with the above-presented theoretical prediction

o Is the concentration of macroasperitiék,s, the interac-

tion energy between a substrate asperity and the elastic
block, andz, is the smallest asperity height for which block—
substrate contact occurs. The asperity height distribution
$(2) is assumed to be Gaussian so that

B(2)=(mhd) V2~ @ho)?*, (26)

V. CONTACT MECHANICS WITH ADHESION: . . .
PARTIAL CONTACT The radiusr of an asperity contact region can be related to

the compressiorh=z—wv via (during pull-off, h<0) (see

We will now show that the discrepancy between theoryAppendix A and Ref. %

and experiment fohy/h,,,,>0.2 in Fig. 7 is due to rubber—
substrate detachment, which reduces the area of real contact K:??_(zﬂlf% (27)
and the pull-off force for large surface roughness. We assume
again that the rough surface is a self-affine fractal with a longHere r = «RT and h=«a?Rh, where a= (A yer[EXR)Y3
distance cut-off\o=27/q,. We will refer to the “asperi-  (where Ay.s=Ay1—6f(H)]), defines the dimensionless
ties” on the length scalgéy as the macroasperities. The mac- quantitiesr_andK The energysee Eq(A11)]
roasperities are covered by shorter wavelength roughness
down to the lower cutoff length ,=27/q;. We assume the _E*p3,.5/ 875, 72 48 12
contact between the rubber and the substrate to involve just a asp= E7REa (554 17— 520 5. 28
fraction of the macroasperities. We will refer to a ComaCtSubstituting Eqs(26) and (28) in Eq. (25) and definingz
region between a macroasperity and the substrate as the “as- «?RZ gives
perity contact area.” We now make the basic assumption that
the rubber is in direct contact with the substrate in the asper- © o
ity contact areas and we will take into account the short- V:nvoﬁd Za?R(hj) Ve Z(«"R/ho)
wavelength surface roughness simply by using the effective fe
Ay introduced previously, where, however, the surface 8 4
roughness on the length scalehy, which now is treated xXE* R3a5(E75+?2— §73(2751/2 : (29
explicitly, has been removed from the surface roughness pro-
file when calculating\ y.%° Thus, the present problem re- Now, let us change integration variable, fr@io 7. Using
duces to the study of Fuller and Tabor, except that we musf—p 1 ;,/42R and Eq.(27) gives
replaceAy with Avygs. Since A y.s—0 as6f(H)—1 it is

still true that the pull-off force vanishes wheff(H)=1. dz=dr[2r—(2r) 7.
However the pull-off force before detachment will not be the
same. Thus,
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Y 0.4
V=neA, f_ dr[2r—(2r) " ¥2]a?R(7h3) 12
[

X ef['i*(zﬂller U/ozZR]Z(ozZR/ho)2 0
XE*R3aS(&ET5+T12- 513(2n)1?). (30)

We must now determing;. Under conditions of increasing
negative load, separation of the surfaces occur wher
dF/dh=0 which impliesr.= (9/8)3. However, under con- )
dition of increasing displacement, stable equilibrium prevails
until dF/dh=c, which impliesr.=1/2 (see Appendix A
This latter condition is relevant in the present case. Note thai

o ?R [ 7A yeﬁRl/z 213 -1 0 o 1 2
= = 0
ho E*h3”
ar
4

where we have assumed thaR#/q3h,. If we denoter”
=x for simplicity, then Eq.(30) gives

-1.2

FIG. 12. The normalized forc§N=h0 dV(H,v/hO)/dv as a function of the
displacement (in units of hy) of the bottom surface of the block. Fer

0~ 21— 0f(H)]%3, (3D =0.3and 0.6, and witti(H)=1.

2/3

Fe 2
V=—npAcA vesRhoV(6,v/hy), (329 2A0LE< AoE V(v)=0 (35
- » Using Egs.(32a), (35), and Rhyno)*?~(ny/qd)*?~1/27
V= \mG)ZL/zdx[Zx— (2x) —1/2]e—[(~)(x2—(2x)1/2)+v/h0]2 gives
20 yeE\ "2 1 12
X (Ex5+x2— 4x3(2x)1?). (32b Fe~Ao| — > LV(8,v/ho) J7%
Minimizing Eg. (24) with respect tau gives or, comparing to Eq(20),
Fn=AoE(u—v)/L. (33 Fe~(Fo)mall— 0f(H) 1Y V(6,0/hy) 142 (36)
Similarly, minimization with respect to gives Using EQgs.(34) (with Fy=F.) and (36) gives an equation
“y dv for v/hy. Now, sinceF.~L 2 in the limit of largeL, F,
AOEu +-—=0. will be very small and we can obtain the relevaiih, to be
L dv used inV(8,v/h) in Eq. (36) by puttingFy=0 in Eq.(34),
Using Eq.(33) this gives i.e.,dV/dv=0. In Fig. 13(dashed lingwe show the result-
F _v 34
N_dv . ( ) 5
Note thatFy only depends o9 andwv/hgy. In Fig. 11 we
show Fy=hodV(6,v/hg)/dv as a function ofv/hy for 6 0.8} \\
=0.3 and 0.6and withf(H)=1]. Fuller and Tabordeter- N
mined the pull-off force from curves such as in Fig. 12 by \‘\
the conditiondFy/dv=0. However, this is usually not the & %€f }i
correct condition: If the elastic energy in the block becomes™, R
equal to the interfacial energyioA ye¢ before the conditon 0.4} NN .
dFy/dv =0 is satisfied, then the pull-off force will be deter- \O\\
mined byU.=—U 4. The latter condition is relevant if the i2 ‘\\\
size of the block is large enoudkee the following, which “I \O\\
will be assumed to be the case in what follows. \.§
The pull-off force is determined by the condition that the 0 : : : T
. . L 0.2 0.4 0.6 0.8 1
elastic energy stored in the system is just large enough tc
break the attractive block—substrate bond. This gives ho / Pmax
1 _,\2 FIG. 13. Solid line: The relation between the pull-off force and the rough-
—A(LE| ——]| +V(v)=0 ness amplitude, assuming complete contact between the ball and the sub-
2"0 L ' strate in the nominal contact area. Dashed line: The relation betiweand
h, for partial contact forf (H)=1.0. Points are the same experimental data
or, using Eq.(33), as Fig. 7.
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Fn (20) [or Eq.(22)]. These rapid flips clearly did not play any

major role in the experiments of Fuller and Tabor, but do

occur in many practical applications involving glues. Usually

the standard theory of crack motion can be used to treat these

more complicated cases, bty must now be replaced by

the strain energy release ra®e which is the energy needed

to propagate the crack by one unit area. When only revers-

ible processes occur at the crack (i rapid flip processes

FIG. 14. The transition from complete contact to detached area may involvé&> = Ay (0Or A ¢ for rough surfacgsbut if cavity formation

a region of partial detachment, called the “process zone.” and fibrillar structures occuG may be 1000 time&r more
larger thamA y. The topic of designing glues exhibiting large

. . G is of great practical importance.

ing pull-off force as a function offiy. Note that there are no The region in space where the block—substrate detach-

fitting parameters in the theory, and that the calculation is ir}nent occurs at a crack edge is usually called the crack “pro-

good agreement with the experimental trend, especially neglygg zone'(see Fig. 14 In some extreme cases the width of

hmax- In fact, the present modgl calculation is only valid this zone may become comparable (t larger thah the

when the a;perlty contact area IS very small compared to width L, (or L) of the nominal contact region. In this case it

(only then is the JKR theory validi.e., the theory holds is no longer corrector usefu) to think about the block—

stnctl_y _onlyt:]ort ht(;]close to(_but ?G:OV\)dhmatx_- Th_us’tr']t IS n(l)lt ﬁsubstrate bond breaking as involving crack propagation. This
surpnsing that the experimental reduction In h€ PUl-oll g0 5 16 pe the case for many practical glues. The theoretical

go_;:: dfot: hothvgeltlhzglrowlr\]lgaxeltsheslg?sevﬁzt (I)argrear"thar;l!ct);?_— etreatment of these cases cannot be based on the theory of
! y Y- : v quaitative, o ck motion, but involves new physics, such as the micro-
form of detachment-induced pull-off force reduction is in

. : scopic site of cavitatiofi.e., the question whether the nucle-
good agreement with the experimental data. b 4 d

. . ) . ation occurs right at the interface or in the bulk of the glue
Let us close this section by discussing the two alternaﬁlm) the concentration and spatial distribution of cavities
tive pull-off conditions(a) dFy/dv=0 and(b) Uy=—U_q ’ P '

(or, more generallyU . /dA,=0). Condition(a) corresponds and the evolution from cavities to fibrilar structures. These
to :';1 uniform(over theto;lominal .contact aredetachment of processes have been intensively_ studied _recently for a flat
the block—substrate asperity contact areas, witilecorre- probe geometr%? where a block with a nominal flat surface

i . . is squeezed against a flat substrate covered by dubirally
sponds to crack propagation, either from the periphery of thi~1OO m) polymer film acting as a pressure-sensitive ad-
nominal contact area, or from some poiaotack nucleation K

centey inside the contact area. As stated earlier, if the blockheswe‘ After a short contact time the block is removed with

i enobgh,cas wil corespond to th smalest ul- £, 151 DU veloey ne e reton perveen e
off force, and will hence prevail. ' P

shot pictures show the geometrical evolution of the adhesive
film. It is found that very soft adhesive undergoes cavitation
V1. DISCUSSION and fibrillation processes when subjected to a tensile stress.
Consider an elastic block on a substrate. When the thickA slight degree of cross linking is beneficial for the stability
nessL=L, of the block increase¢but we assume,>L, of the fibrils, but excessive cross linking can lead to a pre-
andL,>L,), the pull-off stress=. /A, decreases asL 2, mature failure of the fibrils, therefore significantly reducing
see Eq.(20). Thus, for largel the (average perpendicular the adhesion energy.
stress at the block—substrate interface will be very sftfzl The voids first nucleate in the region which was last
is the reason why glue films should be very thin in order tobrought in contact with the probe and thereafter relatively
give a maximal pull-off forc#), and the magnitude of the homogeneously over the whole contact area. Nucleation will
surface roughness alone will determine whether the elastitake place near the maxima in the pull-off force. The cavities
media is in complete contact with the substrate or only inusually nucleate at the probe/film interface. The fact that
partial contact(The same is true if instead of a block, an nucleation occurs fairly homogeneously has been interpreted
elastic ball is in contact with the substrate. In this case théo imply that the negative hydrostatic pressure is fairly ho-
average stress in the contact area at pull-off decreases asgeneous under the probe surface. We do believe this is
R51’3, with increasing radiufx, of the ball) Of course, indeed correct, but only after the nucleation of the cavities
stress concentration will occur at the crack tip, so that partiahas startedsee the following
detachment may occur in a small region around the crack tip, Experiments with probe surfaces exhibiting different sur-
even if complete contact occurs far away from the tip insideface roughness have shown that even when cavitation and
the contact region, see Fig. 14. In the latter case, even if thstringing occur, the pull-off force increased significantly
crack propagates slowly, at the crack tip rapid flip eventsvhen going from rough probe surfaces to smooth Gfes.
may occur as the individual block—substrate asperity contacthis is in accordance with the theory presented earlier. Si-
areas are broken. This may lead to large energy dissipatiomultaneously, there appeared a striking difference in the
as the elastic energy stored in the elongated bridges is lostorphology of the de-bonding area. Thus, only the rough
during the rapid flip events, and under those circumstancesrobe (1.2 um rms roughnegsgave a significant fibrilar
the pull-off force will be much larger than predicted by Eq. structure. The other probe surfaces0.1um rms rough-

“process zone”
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FIG. 15. The external forcE) induce detached areas. The concentration of

detached areas is highest in the center of the contact region, where thG. 16. Elastic deformation of the substrate walls during pull-Sthe-
tensile stress would be highest in the absence of the detached (@elze- matic)

matic)

nes$ did not evolve into a fibrilar structure so that, in the
end, the adhesion energiébe energy to separate the probe
from the substrafewere all quite comparable.

Let us discuss the process of cavity formation. Let u
consider a thin polymer filnfthicknessL) between two flat
rigid surfaces. If the polymer is considered as fully incom-
pressible, then the pressysen the film is approximatef#?3

even before any macroscopic detached regioasitieg can
be observed. As the strain is increased further, some of the
Smicroscopic detached areas will grow into macroscopic cavi-
ties. Hence, when the strain becomes so ldsgy 0.3 that
(macroscopit cavities can be observed it is clear that they
must be more or less uniformly distributed in the contact
area. This picture is consistent with the experimental obser-
vation that the cavitation stress is directly related to their
' (37 shear modulus rather than their bulk moduffis.
, ) , Another mechanism which will also contribute toward
Wh_erepext IS t_he external _pressure,=AL/L |s_the strain and making the stress in the contact area uniform has recently
o is the_radlus of thze u;cula}r pontact_ region. The averagg,oap, suggested by CretéhThe negative pressure at the
Pressure=pe,— Eerg/2L". Itis interesting to note that this e face will deform the solid walls in such a wésee Fig.
pressure distribution is similar to that for an incompressible g) 55 15 make the tensile stress more uniform in the contact
fluid (e.g., a polymer melt without cross linkssee, €.9., zreq |t is easy to show that this effect is important also for
Ref. 1: elastically stiff materials such as steel. Thus if a constant
pressure acts within a circular regiortry on a semi-infinite
) (38 elastic media, it will result in a displacementof the center
_ of the circular region given bysee Sec. )l u=~(p/E)rg.
where u is the viscosity and&=L/L. In fact, for a periodic Using the typical valuesy=1cm andp=1 MPa, and as-
oscillating straine=—iwe, and defining the complex elas- suming steel walls so thaE~10Pa givesu~0.1um,
tic modulusE(w) = —iwu, Eq.(38) takes the same form as which is just of the right order of magnitude in order to give
Eq. (37) except for a factor of 3. For a “nearly” incompress- a strong reduction in the pressure at the center of the contact
ible material, say with the Poisson ratic=0.49, the pres- region (see the previous discussjonThus the substrate
sure distribution becomes much flattéiHowever, the bulk  bending must be taken into account in any accurate discus-
modulus of polymers is of order 30Pa, while the elastic sion of the pressure distribution in the polymer film during
modulusE~ 10" Pa(typical for pressure-sensitive adhesives pull-off. We note that this effect is very similar to the defor-
at low deformation rateso that 0.5- v~10%; under these mations occurring during separation of two bodies squeezed
conditions the pressure distribution in the polymer film will together in a liquid, where cavity formatidin the liquid),?®
deviate negligibly from that calculated under the assumptiorand elastic deformation of the solid walls have been ob-
of an perfectly incompressible material. We must thereforeserved, and also studied theoretically using elastohydrody-
ask why the macroscopic cavities occur uniformly in thenamics.
contact area, in spite of the very nonuniform pressure distri-  Finally, let us comment on the influence @mal) con-
bution [Eq. (37)] which occurs before the nucleation. We tamination particlege.g., dust on adhesion. It is generally
believe that the explanation of this puzzle may be related tdelieved that dusty rubber surfaces provide bad adhesion.
detachment, as follows. Now, while this is true in most practical situations, one can
First, note that the typical maximéhverage pressure in  imagine cases where it is not true. First, note that the adhe-
a pull-off experimerft is of order 0.4 MPa. Using Eq37)  sion between two smooth, cleéidentica) rubber surfaces is
with L=100um, ro=21cm (so thatry,/L~100, and E  in general very goodsee Fig. 1¥. Now, if a monolayer(or
=10*—10° Pa gives the true straie~10 3 corresponding les9 of small particles is deposited between the rubber sur-
to the displacememiL=€eL~0.1um. Now, the rms surface faces, this may lead to an even larger pull-off force than for
roughness of the probe surface was approximatelynd.  the clean rubber surfaces. This follows from the fact that the
Thus, it is clear that if a low concentration of microscopic particle—rubber adhesion may be stronger than the rubber—
local detachments occurs at the interface when the stress isibber adhesiofthe van der Waals force is proportional to
increasedsee Fig. 9, then this will locally reduce the stress the polarizability, which is usually larger for haitheavy
in the contact region. If we assume some characteristic streswlids(e.g., rock than for rubberk However, if a bilayeror
(“yield stress”) in order to induce a local detachment, the more of particles occurs between two rubber surfaces, neg-
detached areas will be distributed in such a Wsse Fig. 15  ligible adhesion is observed, as the separation now occurs at
that a nearly uniform stress may arise in the contact regiothe particle—particle interface. Similarly, a monolayer of par-

ra—r2
p:pext_EE( L2

ra—r?
LZ

P=Pexi— 3uE
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FIG. 18. A rubber ball squeezed against a flat rigid substrate.
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. . NANORUB.
We have studied the influence of surface roughness on

the adhesion of elastic solids. Most real surfaces have rougixpPENDIX A
ness on many different length scales, and this fact has been In this appendix we present for the reader's con-
taken into account in our study. We have considered in detail PP P '

the case when the surface roughness can be described b)}l nlﬁnce,ha sgorctrderllq\;a'tlon Oftth? ‘JKtﬁ the.or.)é. ﬁtotnsm:%r an
self-affine fractal, and shown that when the fractal dimensiorr 25uc SPheraradius ) in contact with-a rigid fiat sofl

D;>2.5, the adhesion force may be strongly reduced. Wésurfs\tl:s(;ee ;Ig.trizt there is an attractive interaction between
studied the behavior of the block—substrate pull-off force a ssu reis ractive | .

a function of roughness. For single scale roughness we finds.fge two solids so that the sphere deforms elastically at the

partial detachment transition before full detachment. Fina“ymterface forming a “neck” as indicated in the Fig. 18. Ligt

we studied the full detachment transition for the self—affinebitF?eV\r/i(:ruesRo_]c kt]héc%rﬁglzg C;giijcrt] ?)reetsv:gr? t?f:‘égi;:‘?)tf
fractal surface, and found that total detachment is characteF— ’ P

: . : he sphere and the substrdte=e Fig. 18 In order for the
ized by exactly the same paramegts in the simpler theory deformed elastic sphere to take the shape indicated in Fig.

of Fuller and Tabor. The partial detachment which occurs 8 th p £ 1h h ¢ displ ndicated b
before full detachment, however, results in a very substantiat  the surface of the sphere must dispiace as indicated by
e arrows in Fig. 18 and given by the relation

reduction in the pull-off force prior to full detachment. That
is in good qualitative agreement with experimental data. u,=h—R(1-cos6).
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But sinceRsin#=r we get h=const. The total energy is given by the elastic energy plus
cosf=[1— (r/R)2]Y2~1—r2/2R? the change in the surface energyA y=rr3, so that
and thus 2hry 1713
2 UtotZE* hzro—gﬁ g@ —qurré.
u~hj 1= 2h R)' (AL) Let us introduce dimensionless variables. If we define

=(wAy/E*R)® and introducer,=aRT, and h=a?Rh

which is valid for 0<r<r,. Let us now determine the pres-
then the total energy takes the form

sure distribution which gives rise to the displacemgii).
S_incgh<R (andry<R) we can determine the pressure dis- Uyo=E* R3a5(ﬁ h 3+ é?g—rﬁo (A8)
tribution under the assumption that the surface of the sphere

is locally flat. Using the theory of elasticity, it has been The forceF is given by

shown that when the surface of a semi-infinite elastic solid is

exposed to the pressure Fe_ &Utot: 1 U
p2\ —172 r2\ 12 dh @’R gh
O=09p 1——2 +0’1 1——2) (AZ)
fo fo *R243| 2hra 2_4
for r<ry, and zero otherwise, then the elastic deformation =E"R%a”) 2hro- §r° ' (A9)
field (for r< .g., Ref. . _
leld (for r<ro) becomedsee, e.g., Ref. 36 The conditiondU,,,/dr,=0 takes the form
o 1 r? — L,
u;= E* 0-Ci—‘r_ 20-1 1- ng ) (A3) (h—r0)2:2r0
whereE* =E/(1— v?). Comparing Eq(A3) with Eq. (A1) with the solutions
gives _:rﬁoi (Zr_o) 12 (A10)
*
UozE_(E_ r_o) (A4)  The two =+ solutions correspond to different total energies,
o R and the correct solution is the one which minimizes the total
E* 2r0 energy. Substituting EqA10) in Eq. (A8) gives
ST R (AS) *p3 .5 U
U= E"Ra (15ro+ro— 3o To(2re) ). (A11)

Let us calculate the elastic energy stored in the deformatio
field in the elastic sphere in the vicinity of the substrate. This
can be obtained using the general formula

Hhus the minus sign solution gives the lowest energy.
Under conditions of increasing negative load, separation
of the surfaces occurs whedF/dh=0 or, equivalently,
1 ) dF/dry=0. Using Egs.(A9) and (A10) this givesry=r
Ue=5 J d*xa(X)ug(x), (A6)  =(9/8)3 and the pull-off forceF = —(3m/2)RAy. How-

] . ) ever, under condition of increasing displacement, stable equi-
where the integral is over the surface arear,. Substitut-  iprium prevails untildF/dh=c, which impliesdh/dr=0

ing Egs.(A2) and (A3) in Eq. (A6) gives and from Eq.(A10), T.= 1/2.
fo 2\ -2 r2\ 12
Ue|=7rhf drr 00(1——2 +o0, 1——2> }
0 I'o I'o
) APPENDIX B
x| 1= m) : In this appendix we present a more accurate treatment of

_ 02 the averaging of the surface energy term. First note that
If we introduceé=1-r</ry we get

whr? 1 2
UeIZTofodf(U'ofl/2+0'1§1/2)[1_m(1 f)}
'n'hr(z)

B 5 o o1 ro g
=2 |[1“7hr/| T3] ThR +€'

Substituting EqstA4) and(A5) in Eq. (A7) gives after some
simplifications

<[1+(Vh)2]1’2>=f d2w(s(w—Vh))(1+w?)1?

= (Zi)zf dZWJ' d2k<eik~(w7Vh)>
(A7) i

X (1+w?)1?

:_(23;)2 f dZWf deeik‘w<e—ik.Vh>

X (1+w?)Y2,

2hrd 1713
UeI=E*(h2fo‘§?+W-

In order to determine the radiug of the contact area, we If we assume, as is usually done, theix) is a Gaussian
must minimize the total energy under the constraint that theandom variable, then
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|
l

<e—ik'Vh>:<eXp{ _ik.f d?qh(q)(iq)e T

IGXPB<U d?gh(q)(k-g)e'*

1
=exr{ - 2K f d?q ¢°C(q)

If we denote

a= f d?q ¢°C(q),

then

1 :
27172\ 2 21, alkew
([1+(Vh)2]¥? (Zw)zfd wfd ke
1 2 2\1/2
X ex _Zak (1+w?)
1 2
= _f d2w(1+w2)1/2e7w la
Ixes
2 (= 2\1/24 - w2l
:;fo dw w(1+w?)Y%e . (BY
If we write x=w?/«, Eq.(B1) gives

([1+(Vh)2Y2 = fwdx(1+ax)1’2e"‘.
0

For a self-affine fractal surface we havysee Sec. I)l «
1/2

=(goho)?g(H) and denotingt= qohog? gives
Aver [~ 2\ 1/24—x 2
A_’}’_J'o dx(1+&°x)7e *— 2EC§ . (B2

To quadratic order i, the formulagB2) and(14b) give the
same result. In the limiE/E.<1, only £&>1 is of interest,
and Eq.(B2) reduces to

A et " A2ax_ _E 2
uy e oot e e
T 1/2 E )
=\z] ¢3¢ (B3)
to be compared with
AYGﬂ E 2
5, i aE (84)

as obtainedin the limit £>1) from the approximate formula

(14b). From Eq.(B3), A ye/Ay is maximal for

T 1/2 E E
—| *1/2_C% —-1/2_C

B. N. J. Persson and E. Tosatti
and
T E¢ E.
(A '}’eﬁ)mang EA Y= 0-39EA Y-

The prefactors 0.89 and 0.39 in the exact theory should be
compared with the prediction 1 and 0.5, which follows from
the simpler theoryEqgs. (14b) and (B4)].
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