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a b s t r a c t

We study the lubricated (wet) contact mechanics of a smooth hard cylinder sliding on a randomly rough
nominally flat surface of a linear viscoelastic solid. We calculate the rolling and sliding friction, and study
the transition from the boundary lubrication to the elasto-hydrodynamic lubrication regime. For the
viscoelastic contact the minimum (average) separation does not monotonically increase with the sliding
velocity, and the Stribeck curve exhibits new structures not shown for elastic solids.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Wet rubber friction is a topic of huge practical importance.
It involves contact mechanics between rough surfaces, and polymer
dynamics of compliant bodies, and it occurs in a remarkably wide
range of applications such as tire-road contact [1], rubber sealing
[2,3] and wiper blades contacts [4], in the mechanics of biological
interfaces [5,6] and, consequently, of bio-inspired (e.g. adhesives
[7]) and bio-medical devices (e.g. prosthesis [8], scaffolds [9], and
gliding devices [10]).

Studies of friction involving viscoelastic solids have mainly
focused on the investigation of dry contacts [11–14]. Rolling
friction experiments for smooth surfaces are usually performed
with a hard cylinder or sphere rolling on a flat rubber substrate
[14–17]. However, sliding friction experiments will give nearly the
same friction if the interface is (almost) shear stress free, e.g. for
lubricated surfaces where the fluid film has a thickness much
smaller than the rigid penetration of the ball, but larger than the
amplitude of the surface roughness [14].

Most analytical theories of rubber rolling friction are based on a
simplified description of the rubber rheology [12,13], i.e. on a
single term Prony series. However, the relaxation spectrum of real
polymers is usually very wide and the rolling friction of real
rubber compounds cannot be predicted using those exact theories.
Therefore, rolling friction experiments have so far been analyzed
mainly using the well known Greenwood and Tabor formula [14],

which relies on an unknown α-factor determined by the viscoe-
lastic hysteretic behavior of the rubber.

Recently, one of us (BNJP) has developed a Fourier-space based
approach for the prediction of rolling friction for real rubber
materials [11]. This approach, accurate to linear order in the loss
tangent, is able to predict quantitatively reliable results, as shown
for both line [11] (see also in the following) and point contacts
[18], with negligible computational effort. Unfortunately, the latter
approach does not allow to determine the traction and the
displacement fields occurring at the contact.

Full numerical solutions of the viscoelastic contact problem, of
interest for many tribological applications, have only very recently
been presented for smooth and rough contacts, see e.g. Ref. [18].
This should not surprise at all, due to the numerical complexity of
the underlying problem, which is even more pronounced in case
of real (multiscale) rough contacting surfaces. As a result, the
hysteretic rubber friction coming from local sliding contacts can
be, nowadays, only effectively calculated using homogenized
contact mechanics theories [19].

Despite the huge number of practical applications, the role of
viscoelasticity in the contact mechanics of wet interacting real
solids has not been studied theoretically to the same extent as for
dry contact. Very interesting pioneering works on viscoelasticity
and lubrication have been presented by Hooke and Huang [20],
and by Elsharkawy [21]. These authors consider the influence of
rubber hysteresis on lubricated contacts in the hydrodynamic
regime. For steady sliding contacts they highlight the role of the
viscoelasticity retardation process on the generation of a peculiar
asymmetric fluid pressure field, a feature which will be also shown
in the following. However, we are not aware of a (even qualitative)
study of the influence of viscoelasticity on the Stribeck curve for
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the whole range of sliding speeds. In this paper we give our first
contribution to this topic, and in particular by studying the effects
of viscoelasticity and random surface height fluctuations on the
Stribeck curve, as well as on the traction and separation fields
occurring at the contact interface of steady sliding line contacts.
It will be shown, for the first time, how the solid bulk hysteresis
influences the mixed lubrication by varying the lubrication con-
ditions of a generic contact.

We introduce the rolling number Q ¼ vGT=vML, where vML is a
typical sliding velocity in the mixed lubrication (ML) region, and
vGT a typical velocity in the transition region from rubbery to
glassy response of the rubber (named glassy transition in what
follows). The latter can also be defined as the velocity determined
by v� ~ω wð ~ωÞ, where ~ω is the frequency where the loss tangent
tan δðωÞ is maximal, and where wð ~ωÞ is the width of the nominal
cylinder-substrate contact region. For Q51 the dissipation origi-
nating from the rubber hysteresis will occur in the boundary
lubrication regime, whereas for Qb1 the viscoelastic dissipation
will superpose to the wet sliding friction in the hydrodynamic
regime. The full Stribeck curve, including all sources of energy
dissipation, will also be calculated for real rubber materials.

The paper is organized as follows. In Section 2 the wet
viscoelastic contact mechanics model is presented and discussed,
whilst a comparison with existing results is reported in Section 3.1.
In Section 3.2, for a viscoelastic solid with simple rheology, the
investigation focuses on the combined effect of the rubber-to-glass
transition and mixed-lubrication transition on the Stribeck curve
and on the mean fields describing the contact. Finally, in Section 4
the rolling friction is discussed for real rubber materials, for which
a correct rheological description is required in order to obtain
accurate friction predictions. In the Appendix A–D the details
about the numerical model, as well as a brief introduction on the

role of viscoelasticity in the fluid-induced asperities flattening, are
reported.

2. Mean field theory for randomly rough wet viscoelastic
contact

We now develop a mean-field theory for the lubricated contact
of viscoelastic solids with randomly rough surfaces. The fluid is
assumed to be Newtonian, and operating in isothermal and
isoviscous conditions. The geometry is shown in Fig. 1 (line-
contact case).

Consider a rigid cylinder with a perfectly smooth surface in
relative sliding motion with respect to an isotropic viscoelastic half
space with a randomly rough surface. At the macroscopic level a
steady state prevails. Assuming a large separation of length scales
between the width of the (apparent) cylinder-substrate Hertz0s
contact region and the wavelength of the longest relevant surface
roughness component, a steady state will to a good approximation

Nomenclature

C(q) roughness power spectral density (m4)
Df fractal dimension for the case of self-affine roughness
E(ω) rubber complex elastic modulus (Pa)
E0 relaxed (i.e. low frequency) rubber elastic modulus (Pa)
E1 stiff (i.e. high frequency) rubber elastic modulus (Pa)
Er0 relaxed (i.e. low frequency) reduced rubber elastic

modulus, Er0 ¼ E0=ð1�ν2Þ (Pa)
Er1 stiff (i.e. high frequency) reduced rubber elastic mod-

ulus, Er1 ¼ E1=ð1�ν2Þ (Pa)
ErðωÞ reduced rubber complex elastic modulus, ErðωÞ ¼ EðωÞ=

ð1�ν2Þ (Pa)
FN normal load, applied on a cylinder length L (N)
J (t) rubber creep function (Pa�1)
L (t) rubber spectral density [(Pa s)�1]
R cylinder radius (m)
ΓðtÞ ΓðtÞ ¼ Eð1Þ R10 dτ½LðτÞ=τ�e� t=τ (s�1)
η fluid viscosity (Pa s)
η0 low shear fluid viscosity (Pa s)
v0 sliding velocity (m/s)
ss frictional shear stress in the real contact area (Pa)
~JðωÞ rubber complex creep function ~JðωÞ ¼ 1=EðωÞ (Pa�1)
fN line normal load (N/m)
f shapeðxÞ rigid cylinder profile (m)
hrms root-mean-square roughness (m)
q0 small wavelength cut-off (m�1)
q1 large wavelength cut-off (m�1)
Q rolling number

μ friction
μRc solid contact rolling friction
μRf wet rolling friction
μSc solid contact sliding friction
μSf wet sliding friction
a0 Hertzian semicontact length calculated with the

relaxed (i.e. low frequency) rubber elastic modulus
E0 (m)

p0 Hertzian maximum pressure calculated with the
relaxed (i.e. low frequency) rubber elastic modulus
E0 (Pa)

umin minimum (locally averaged) interfacial separation (m)
A=A0ðxÞ normalized real contact area
J(x) mean field fluid flow (m2/s)
τðxÞ τ¼ τf þτc (Pa)
τcðxÞ mean field wall shear stress coming from solid

contact (Pa)
τf ðxÞ mean field wall shear stress coming from fluid action (Pa)
v(x) fluid velocity (m/s)
x generic position x¼(x,y) in the contact domain (m)
ϕfpðxÞ (tensorial) pressure friction factor
ϕf ðxÞ and ϕfsðxÞ (tensorial) shear friction factors
ϕpðxÞ (tensorial) pressure flow factor
ϕsðxÞ (tensorial) shear flow factor
p0ðxÞ p0 ¼ pcþpf (Pa)
pcðxÞ mean field contact pressure (Pa)
pf ðxÞ mean field fluid pressure (Pa)
u (x) mean field interfacial separation (m)
uzðxÞ mean field surface (out-of-plane) displacement (m)

Sliding velocity

Viscoelastic solid

Rigid cylinder

Fig. 1. A smooth rigid cylinder in steady sliding contact with a randomly rough
viscoelastic counterpart (schematic).

M. Scaraggi, B.N.J. Persson / Tribology International 72 (2014) 118–130 119



prevail also at the roughness length scale. As shown in the
magnification insert of Fig. 1, at the roughness length scale the
contact (between the cylinder and the substrate) will be partial in
the most general case and, in particular, this will strictly depend
on the actual lubrication regime. The exact local contact condition
can be easily calculated within the model developed in the
following, which describes the transition from the boundary to
the visco-elastohydrodynamic lubrication regime.

Consider the fluid flow at the interface between the solids. The
fluid velocity field vðx; tÞ is assumed to satisfy the Navier–Stokes
equation, and the fluid to be incompressible, i.e. ∇ � v¼ 0. Neglect-
ing the non-linear term v � ∇v in the momentum equation, which
is usually a good approximation for the fluid flow between
narrowly spaced solid walls, the Navier–Stokes equation can be
simplified to

η
∂2v
∂z2

¼∇p; ð1Þ

where η is the fluid viscosity and p the fluid pressure. At the
smallest roughness length scales the Newtonian-fluid assumption
is not expected to hold due to the nanometer sized average surface
separations, and the resulting high shear rates. However, this
aspect can be easily taken into account in the homogenized fluid
formulation [22–25], which is briefly summarized in the following.

One way to integrate out the surface roughness in Eq. (1) is by
using the renormalization-group procedure, see Ref. [23] for the
theory. In this procedure one eliminates or integrates out the
surface roughness components in steps and obtains a set of
renormalization-group flow equations describing how the effec-
tive fluid equation evolves as more and more of the surface
roughness components are eliminated. One can show that, after
eliminating all the surface roughness components, the average
fluid flow obeys the following equation [23]:

J¼ �u3ϕpðuÞ
12η0

∇pf þ
1
2
uv0þ

1
2
hrmsϕsðuÞv0; ð2Þ

where the pressure flow factor ϕp and the shear flow factor ϕs (for
anisotropic surface roughness) are 2�2 matrices. η0 is the low
shear-rate viscosity, u¼ uðxÞ and pf ¼ pf ðxÞ are, respectively, the
(locally averaged) interfacial separation and fluid pressure, hrms is
the rubber root mean square roughness, and v0 is the cylinder
sliding velocity. Mass conservation demands that

∇ � J¼ 0: ð3Þ
The locally averaged (cylinder) wall shear stress τ ¼ ðτzx; τzyÞ is

the sum τ ¼ τf þτc of a fluid contribution τf , and a contribution
from the area of contact τc [23]:

τf ¼ �ðϕf þϕfsÞ
η0v0
u

�ϕfp
1
2
u∇pf ; ð4Þ

τc ¼ � v0

jv0j
A
A0
ss; ð5Þ

where ϕf , ϕfs and ϕfp are frictional correction factors [23], ss is the
frictional shear stress in the real solid contact areas A. Due to the
(approximately) steady-state contact condition occurring at the
roughness length scale, the flow as well as the frictional correction
factors, entering in Eqs. (2) and (4), are similar to those developed
in Ref. [23] for the elastic solid bulk rheology, with the only
difference that in this case the rubber elastic modulus, which
enters in the correction factors calculation through the Persson0s
contact mechanics [19], is varying with the sliding velocity
(see later).

In the most general case, the (real) contact shear stress ss

[entering in Eq. (5)] depends on the local (asperity-scale) contact
condition, i.e. on the local boundary state. Recent studies have
shown that for a wetting liquid (positive spreading pressure S) an

ordered packaging of few lubricant monolayers [26,27] (of
nanometers sized gap) with almost solid-like properties may form
in the contact regions. In such a case, the shear stress can be nearly
proportional to the logarithm of sliding velocity for low sliding
velocity (of order 10 μm=s, or even larger), as a consequence of
thermal activation [28]. However, in the well studied case of
hydrocarbons lubrication [27], the relation between the sliding
velocity and shear stress can be quite complex, and will depend on
the exact number of trapped (in the asperity contact regions)
lubricant monolayers [26,27].

For simple fluids and locally smooth contacts, if the spreading
pressure S is negative, below a critical sliding velocity Vd a
dewetting transition will occur (i.e. leading to a dry asperity
contact). Vd is approximately given by [29]1

Vd2em¼ k
η
jS2j
Ee

; ð6Þ

where k is a prefactor of order one, η is the lubricant bulk viscosity,
E the elastic modulus and S the spreading pressure, given by
S¼ γSR�ðγSLþγLRÞ [S compares the interfacial energies between
dry (γSR) and lubricated (γSLþγLR) contact conditions, e.g. So0 for
a dewetting contact]. The smallest local (asperity-scale) separation
is denoted by e, and may be the width of a single lubricant
monolayer, but is usually larger. If v0oVd the contact regions will
preferentially occur in a dry state, but nucleation of dewetting is
often a thermally activated process, and will involve some activa-
tion time which depends on the energetic barriers involved (which
depends on the fluid film thickness). If the contact regions are in
the dry state the effective shear stress will be the sum of three
contributions [10]: ss ¼ ss1þss2þss3. Here ss1 corresponds to the
shear stress coming from the breaking of (usually) weak bonds
(e.g. van der Waals or hydrogen bonds) formed by the rubber
binding to the hard substrate [30,31], ss2 is the shear stress related
to the energy dissipation in the crack opening processes occurring
at the edge of the contacting regions, whereas ss3 is related to the
energy dissipation originating from the pulsating indentations of
the rubber by the hard asperities of the counter surface (the latter
mechanism is absent in the contact configuration we study, where
the counter-surface is assumed perfectly smooth). In this work ss

is considered constant but our findings are not expected to be
qualitatively affected by the correct description of ss. Finally, note
that the speed of dewetting may depend on the viscoelastic
hysteresis which was not included in deriving Eq. (6). However
the major limitation to the application of Eq. (6) is the multiscale
nature of the surface roughness which exists on almost all real
surfaces, and the lack of physical modeling of the collective
dynamics of dewetting asperities, whose long-ranged interactions
are due to both the (visco-) elasticity of the solids and the fluid
flow conservation constraint. Unfortunately a model for such
dewetting dynamics has not been presented in the literature.

In this work, the (locally averaged) asperities interactions, originat-
ing from the rubber bulk deformation, are described within the
Persson0s contact mechanics theory [19,32–34]. Observe that, in the
adopted contact configuration, the substrate asperities (at all
length scales) in the cylinder-substrate contact region undergo pulsat-
ing deformations characterized by the deformation frequency
ωH � πv0=aH, where a2H ¼ 4f NR=ðπjErðωHÞjÞ, with f N ¼ FN=L the line
load (force per unit length), R the cylinder radius and ErðωHÞ the
complex reduced elastic modulus [ErðωHÞ ¼ EðωHÞ=ð1�ν2Þ], where
EðωHÞ is the complex Young0s modulus (at frequency ωH) and ν is the
Poisson ratio (assumed independent of frequency, see also in the

1 A critical sliding velocity, describing the transition between a wetted and a
dewetted state, can be determined by balancing the flow expelled from the
junction, as induced by the spreading pressure S, to the forced wetting flow
introduced by the sliding action [29].
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following). If the cylinder would exhibit surface roughness too, a more
complex theory would be required, which will be the subject of a
companion contribution.

The contact mechanics formalism of Persson is based on
studying the interface between two contacting solids at different
magnification ζ. When the system is studied at the magnification
ζ it appears as if the contact area (projected on the xy-plane)
equals AðζÞ, but when the magnification increases it is observed
that the contact is effectively incomplete, and the surfaces in the
apparent contact area AðζÞ are in fact separated by the average
distance uðζÞ. Within this formalism, the real normalized contact
area A=A0 is given by [19,32–34]

AðxÞ
A0

¼ 1

ðπGÞ1=2
Z pcðxÞ

0
ds e�s2=ð4GÞ ¼ erf

pcðxÞ
2G1=2

� �
; ð7Þ

with

G¼ 1
8
jErðωHÞj2

Z
q0 r jqjrq1

d2q q2CðqÞ;

where q0 and q1 are, respectively, a low and high roughness
frequency cut-offs, and where the surface roughness power
spectrum:

CðqÞ ¼ 1
ð2πÞ2

Z
d2x〈hðxÞhð0Þ〉e� iq�x ;

where hðxÞ is the surface roughness profile, with 〈hðxÞ〉¼ 0. Here
〈⋯〉 stands for an ensemble average and pc ¼ pcðxÞ is the (locally
averaged) solid contact pressure. The average interfacial separa-
tion uðxÞ can be calculated from [34]

uðxÞ ¼√π
Z q1

q0

dq q2CavgðqÞwðqÞ �
Z 1

pcðxÞ=jErðωHÞj
dp0

1
p0
e�½wðqÞp0 �2 ; ð8Þ

where

wðqÞ ¼ π
Z q

q0

dq0 q03Cavgðq0Þ
 !�1=2

and Cavgðq¼ jqjÞ ¼ 〈CðqÞ〉θ , with 〈〉θ the angular average operator.
In order to determine the locally averaged surface deformation

of the viscoelastic half space, we assume that the quasi-static bulk
dynamics holds, i.e. inertia effects are neglected. If a stress szðx; tÞ
acts on the surface of a semi-infinite viscoelastic solid it will result
in a normal surface displacement uzðx; tÞ which is linearly related
to szðx; tÞ via an equation which is particularly simple when the
spatial and time coordinates are Fourier transformed [19]:

uzðq;ωÞ ¼Mzzðq;ωÞszðq;ωÞ; ð9Þ
where

Mzzðq;ωÞ ¼ �2ð1�ν2Þ
qEðωÞ : ð10Þ

In this work the Poisson ratio νðωÞ is assumed independent of
frequency. This assumption is a good approximation in most cases
(see e.g. Ref. [11]), and it means that the dynamics of relaxation in
orthogonal directions proceeds equally in time. If a rigid cylinder is
sliding in steady state on a semi-infinite rubber solid we have

szðx; tÞ ¼szðx�vtÞ;
which gives

szðq;ωÞ ¼ δðq � v�ωÞszðqÞ: ð11Þ
For the cylinder geometry with the cylinder axis along the y-
direction, szðxÞ is independent of y and we write szðxÞ ¼ �pðxÞ so
that

szðqÞ ¼ �pðqxÞδðqyÞ: ð12Þ

Using Eqs. (9)–(12) gives

uzðq;ωÞ ¼ 2ð1�ν2Þ
jqxjEðωÞpðqxÞδðqyÞδðqxvx�ωÞ:

Thus we get

uzðx; tÞ ¼
Z

d2q dω uzðq;ωÞeiðq�x�ωtÞ

¼
Z

dω
2ð1�ν2Þ
jωjEðωÞ pðω=vxÞeiωðx=vx � tÞ: ð13Þ

Now because of causality one can write

1
EðωÞ ¼

1
Eð1Þþ

Z 1

0
dτ

LðτÞ
1� iωτ

; ð14Þ

where LðτÞ is the spectral density and τ a rubber relaxation time.
Note that we can also write

1
EðωÞ ¼

1
Eð1Þ 1þ

Z 1

0
dt ΓðtÞeiωt

� �
; ð15Þ

where

ΓðtÞ ¼ Eð1Þ
Z 1

0
dτ

LðτÞ
τ

e� t=τ :

We write

pðqxÞ ¼
1
2π

Z
dx0 pðx0Þe� iqxx

0
: ð16Þ

Substituting (15) and (16) in (13) gives

uzðx; tÞ ¼
ð1�ν2Þ
πEð1Þ

Z
dx0
Z

dω
1
jωjpðx

0Þ

� eiαω=vx þ
Z t

0
dt0 Γðt0Þeiβðt0 Þω=vx

� �
; ð17Þ

where α¼ x�x0 �vxt and βðt0Þ ¼ x�x0 �vxðt�t0Þ. Now consider the
integral:

I¼
Z 1

�1
dω

1
jωje

iαω=vx :

We write ω=vx ¼ qx and get

I¼ 2
Z 1

0
dqx

cos ðαqxÞ
qx

:

This integral diverges. The problem arises from the small wave-
vector region qx-0 and, as well known, reflects the infinite size of
the system. For a finite (but very large) solid with linear dimension
L we must replace the lower integration limit with π=L so that

I¼ 2
Z 1

π=L
dqx

cos ðαqxÞ
qx

:

Let us denote jαjqx ¼ ξ so that

I¼ 2
Z 1

jαjπ=L
dξ

cos ξ
ξ

:

For large (but fixed) L this will give

I� const:�2log jαj:
Using this result in Eq. (17) gives

uzðx; tÞ ¼ const:�2ð1�ν2Þ
πEð1Þ

Z
dx0 pðx0Þ

� log jx�x0 �vxtjþ
Z t

0
dt0 Γðt0Þlog jx�x0 �vxðt�t0Þj:

� �
ð18Þ

In what follows we study the system in a coordinate system fixed
in the cylinder which corresponds to replacing x-xþvxt, with
vx ¼ v0. We also denote the high-frequency modulus Eð1Þ with
E1, and the low-frequency modulus Eð0Þwith E0. We consider long
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times t-1 where the sliding is steady state, where uðx; tÞ ¼ uðxÞ
(in the moving reference frame) is time independent. With these
assumptions, and denoting the pressure p(x) by p0ðxÞ, we get

uzðxÞ ¼ const:�2ð1�ν2Þ
πE1

Z
dx0 p0ðx0Þ

� log jx�x0jþ
Z 1

0
dt0 Γðt0Þlog jx�x0 þv0t0j:

� �
ð19Þ

The derivation above is for a homogeneous viscoelastic half-space,
but can be easily generalized to a layered material, which just
introduce in (10) an additional factor Sðq;ωÞ which is known
analytically (see e.g., Ref. [35]). The viscoelastic deformation
equation links the average pressure p0ðxÞ to the average interfacial
separation. For a cylinder contact we have, finally:

uðxÞ ¼ u0þ
x2

2R
� 2
πEr1

Z 1

�1
dx0 p0ðx0Þ

log jx�x0j
log jx0j

� 2
πEr1

Z 1

�1
dx0 p0ðx0Þ

Z 1

0
dt ΓðtÞlog jx�x0 þtv0j

log j�x0 þtv0j
; ð20Þ

where Er1 ¼ E1=ð1�ν2Þ and where u0 is the average central
separation [i.e. u0 ¼ uðx¼ 0Þ] and p0ðxÞ ¼ pf ðxÞþpcðxÞ. u0 can be
implicitly calculated with the load balance equation:Z 1

�1
dx0 p0ðx0Þ ¼ f N; ð21Þ

where f N ¼ FN=L is the cylinder load per unit length, as before. Eqs.
(3), (7), (8), (20), and (21) have to be solved to determine the
unknown variables pf , pc, u and u0. In the theory presented above,
cavitation is assumed to occur only on the macroscopic scale.

Finally, the total friction coefficient μ, related to the friction
force acting on the rigid cylinder, is the sum of four contributions
in the adopted contact condition (see Fig. 2), i.e.:

μ¼ μRcþμRf þμScþμSf ;

where the solid contact rolling friction μRc and the wet rolling
friction μRf can be calculated, respectively, from

μRc ¼ � 1
f N

Z
dx pcðxÞf shape 0ðxÞ

μRf ¼ � 1
f N

Z
dx pf ðxÞf shape 0ðxÞ;

and where the solid contact sliding friction μSc and the wet sliding
friction μSf can be calculated, respectively, from

μSc ¼
1
f N

Z
dx τc

μSf ¼
1
f N

Z
dx τf :

f shapeðxÞ corresponds to the rigid cylinder profile, i.e. x2=ð2RÞ in the
parabolic assumption.

3. Numerical results: model rubber

3.1. Dry rolling friction: role of surface roughness

We first study rolling friction in the case of negligible fluid
(viscous) effect, i.e. in the boundary or dry lubrication regime. In
this case the solid contact rolling friction results obtained using
our theory can be compared to the predictions for smooth surfaces
presented by one of us [11].

Consider a rigid smooth cylinder in sliding (or rolling) contact
with a randomly rough viscoelastic half-space characterized by a
single relaxation time, with E1=E2 ¼ 9 (see Appendix B) and
with relaxation time τr. The rough surface has isotropic,
self-affine fractal roughness with fractal dimension Df ¼ 2:2, small
wavevector cut-off q0 ¼ 2� 105 m�1, high wavevector cut-off
q1 ¼ 7:8� 109 m�1, and the root-mean-square roughness

FRc

rubber

rigid
cylinder

τf τc

FSc = τc Ac

FSf = τf Af

FRf

v v

v

Fig. 2. Friction sources at the sliding contact interface (schematic). (a) The solid contact rolling friction contribution corresponds to the projection on the sliding plane of the
resultant of the (locally averaged) solid contact pressure acting on the cylinder. It arises from the rubber deformation losses. (b) The wet rolling friction contribution
corresponds to the projection on the sliding plane of the resultant of the (locally averaged) fluid pressure acting on the cylinder. Depending on the rolling number Q, it may
arise mainly from the rubber deformation losses or from the fluid viscous losses. (c) The third friction contribution comes from the shear stresses (τf and τc) acting on the
cylinder wall from the fluid or the asperity contact regions.
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hrms ¼ 〈h2〉1=2 ¼ 0:1; 0:3; 1; 3; 10 μm (with 〈h〉¼ 0). The frictional
shear stress in the area of real contact is assumed to vanish. Fig. 3
shows μRc as a function of the dimensionless sliding velocity
v0τr=a0, where a0 is the calculated (Hertzian) half-width of the
contact strip, obtained using the relaxed elastic modulus E0.
Results are shown for different values of root-mean-square rough-
ness (black curves). The blue curve is calculated with the theory
developed in Ref. [11], and the red curve is the exact rolling
friction for cylinder contact [12,13] (both theories assume perfectly
smooth surfaces).

Observe that the maximum value of the rolling friction
decreases with increasing roughness, Fig. 4. For negligible rough-
ness magnitudes, the rolling friction is very close to the curve
analytically calculated for smooth bodies [12,13]. The presence of
surface irregularities at the contact interface increases the width of
the apparent contact area, and reduces both the peak of the
nominal contact pressure and the indentation amplitude. The
net result is that the rolling friction decreases with increasing
surface roughness (see below). The same is true for a ball-flat
contact (contact region with radius r), where the dissipated energy
is proportional to the volume � r3 where the dissipation occurs,
times the square of the strain amplitude. The strain ε� u=r where
u¼ F=K � F=ðErÞ (where K � Er is an effective spring constant).
Thus the dissipated energy will scale with the radius of the contact
region as � r3=r4 � 1=r, i.e. it decreases with increasing size r of
the nominal contact region. A similar argument can be used to

show that also for the cylinder contact case the energy dissipation
decreases with increasing surface roughness. However, this result
is only valid as long as there is not an important contribution to
the rolling friction from the asperity deformations.

The successful comparison presented in Fig. 3 confirms the
validity of the viscoelastic macroscopic contact model.

3.2. Rubber hysteresis and mixed lubrication

In this section we discuss the combined effect of roughness and
viscoelasticity on the frictional properties of a generic contact. We
study the transition from the boundary (BL) to the hydrodynamic
(HL) regime for the case of a smooth, rigid cylinder sliding on a
semi-infinite viscoelastic solid (rubber) with a randomly rough
surface. The rubber rheology is assumed to be described by a
single relaxation time in order to reduce the set of contact
parameters; results for real rubber will be presented later.

Fig. 5 shows the Stribeck curve, i.e. the friction coefficient as a
function of the product v0η of the velocity v0 and the viscosity η (red
curve), as well as the different sources of energy dissipation. The
sliding contribution (μSc and μSf ) and the rolling contribution (i.e. the
contribution from the hysteretic behavior of the contact) are shown
separately. From dimensional arguments the mixed lubrication regime
occurs for sliding velocities vML � 10h2rmsEr=ðRηÞ, whereas the largest
values of the loss tangent (and therefore of rubber-induced rolling
friction) occurs for vGT � a0=τr, where η is the fluid viscosity, τr the
rubber relaxation time and where a0 is the half-width of the (infinitely
long) rectangular (Hertz) contact region, calculated using the relaxed
rubber modulus (in this case a0 � a1). In the simulation of Fig. 5, the
rolling number Q ¼ vGT=vML � ðR2〈p〉η=ð10h2rmsErτrÞ � 10�5, resulting
in very different velocities where the maximum in the solid contact
rolling friction μRc occurs, and where the transition to the hydro-
dynamic regime occurs (see Fig. 5). It is interesting to observe that the
highest values of the wet rolling friction μRf (the friction resulting from
the fluid pressure asymmetry), is of the same order of magnitude as
the solid contact rolling friction μRc, but shifted to much higher sliding
velocities. Also note that μRf is always comparable with the friction
coming from the fluid shear stresses acting on the cylinder wall, μSf ,
which includes both the contribution from the Couette and the
Poiseuille flows. The condition μRf � μSf is expected to hold only in
soft contacts, where the shape of the average surface separation is far

Fig. 3. (Colour online) Dry rolling friction as a function of the dimensionless sliding
velocity v0τr=a0 for different values of root-mean-square roughness (black curves).
The blue curve is calculated with the theory developed in Ref. [11], and the red
curve is the exact rolling friction for smooth cylinder contact [12,13]. For
E1=E0 ¼ 10.

Fig. 4. (Colour online) Magnification of the highest friction region of Fig. 3. Observe
that increasing the roughness magnitude reduces the maximum rolling friction.
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Fig. 5. (Colour online) Friction coefficient as a function of the product v0η (red
curve), shown together with all the dissipation sources occurring in the lubricated
(wet) rubber contact for Q � 10�5. For a viscoelastic material characterized by one
relaxation time τr ¼ 0:1 s and E1=E0 ¼ 10, with E0 ¼ 3:6 MPa and ν¼ 0:5. The
cylinder radius R¼1 cm and the load f N ¼ 1 kN=m. For self-affine isotropic surface
roughness with fractal dimension Df ¼ 2:2, low frequency cut-off q0 ¼ 2 105 m�1,
high frequency cut-off q1 ¼ 7:8� 109 m�1, and root-mean-square roughness
hrms ¼ 3 μm. The solid contact shear stress sc ¼ 1 MPa is assumed constant. Fluid
viscosity η¼ 10�4 Pa s.
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from being Grubin0s like.2 Due to the very different nature of the
rubber and the fluid bulk rheologies, the rubber rolling friction as a
function of velocity has a maximum related to the maximum of the
loss tangent, whereas the fluid-pressure asymmetry, and its contribu-
tion to the friction, increases continuously with increasing sliding
velocity.

The Stribeck curve in Fig. 5 shows an increase of the friction
with decreasing velocity starting at v0η� 10�4 Pa m. This effect is
not related to a transition from the fluid to asperity contact, but it
is a consequence of the increase of the solid contact rolling friction
(dashed black curve) and of the sliding contact friction (solid black
curve) with decreasing sliding velocity. The increase of sliding
contact friction with decreasing velocities can be explained obser-
ving that increasing the sliding velocity results in an increase of
the effective elastic modulus jErðωHÞj (ωH � πv0=aH), so that
μSc ¼ssAc=FN � ss=jErðωHÞj at low load where Ac � FN=jErðωHÞj.

Figs. 6 and 7 show the (locally averaged) solid contact and fluid
pressure fields, respectively, as a function of the contact position,
at increasing sliding velocities (the numbered marks refer to
Fig. 5). Note that, due to the small value of Q, the viscoelastic
transition region occurs in the boundary lubricated (BL) regime
and, as expected, it results (with increasing sliding velocity) in a

reduction of the nominal contact length and the consequent
increase of the average contact pressure, see Fig. 6. In particular,
the short contact time (corresponding to high perturbing frequen-
cies) at the inlet side of the contact results (for high enough sliding
velocities) in a glassy (hard) rubber response, i.e. in higher contact
pressures at the inlet side of the contact. However, upon a further
increase of the sliding speed, the spike position is displaced
toward the outlet of the contact, to finally disappear during the
mixed lubrication regime. On the other hand, as the fluid pressure
field is unaffected by the glassy transition (due to the small Q), the
viscoelastic-hydrodynamic regime simply corresponds to the EHL
regime for the stiff rubber elastic modulus E1.

Fig. 8 shows the average interfacial separation u as a function of
contact position, at different sliding velocities. In contrast to elastic
contacts, the minimum average interfacial separation is not strictly
monotonically increasing with the sliding velocity. In particular, at
the beginning of the viscoelastic transition region the minimum
separation is located at the inlet first, and move toward the outlet
at larger sliding velocities, as expected from the solid contact
pressure curves. This is also shown in Fig. 9, where the minimum
interfacial separation as a function of v0η is reported. Two plateau
characterize the curve in the BL regime, with the lower value of
separation corresponding to the contact in the rubbery region.

For the rolling number Q � 1 we expect a coupling between
the viscoelastic and mixed lubrication transition regions.
Fig. 10 shows the friction coefficient as a function of v0η (red
line) and, separately, the rolling and sliding friction contribu-
tions for Q � 0:3. For elastic solids the minimum of the friction
usually occurs in the mixed lubrication regime. For viscoelastic
solids, however, when the rolling number � 1 the maximum in
the loss tangent roughly coincides with the mixed lubrication
transition range of velocities, and this aspect strongly affects
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Fig. 6. Dimensionless average solid contact pressure pc=p0 as a function of the
dimensionless contact position x=a0. p0 and a0 refer, respectively, to the Hertz
maximum pressure and semi-contact length occurring with the relaxed rubber (i.e.
at E0 elastic modulus). Curves shown at different sliding velocities, with numbered
marks referring to Fig. 5. For the same parameters of Fig. 5.
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Fig. 7. Dimensionless average fluid pressure pf =p0 as a function of the dimension-
less contact position x=a0. p0 and a0 refer, respectively, to the Hertz maximum
pressure and semi-contact length occurring with the relaxed rubber (i.e. at E0
elastic modulus). Curves shown at different sliding velocities, with numbered
marks referring to Fig. 5. For the same parameters of Fig. 5.
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Fig. 8. Dimensionless average interfacial separation u=hrms as a function of the
dimensionless contact position x=a0. Curves shown at different sliding velocities,
with numbered marks referring to Fig. 5. For the same parameters of Fig. 5.
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Fig. 9. Dimensionless minimum average interfacial separation umin=hrms as a
function of the product sliding velocity and fluid viscosity. For the same parameters
of Fig. 5.

2 In 1949, Grubin presented the first accurate estimation of the film thickness
in a steel–steel lubricated sliding contact (belonging to the hard-
elastohydrodynamic regime). He postulated that during sliding, the solids would
basically retain an Hertzian shape, with surfaces separated by a thin, uniform film
of lubricant in the Hertzian area. Within this assumption, Grubin was able to
analytically solve the lubrication problem.
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the Stribeck curve, both in the velocities where the frictional
minimum occurs, as well as in the magnitude of the minimal
friction. In particular, this could result in the occurrence of a
second hydrodynamic regime (as indicated in Fig. 10), which
could be erroneously attributed to local micro-EHL asperity
contacts. In a recent experiment by one of us (MS), the
existence of a similar secondary hydrodynamic regime was
pointed out for a rough PDMS in contact with a sliding smooth
ball [36]. However, in that case the origin of the double
hydrodynamic regime was likely due to a cooperative micro-
EHL effect occurring at the contact interface, i.e. the frictional
collection of local micro-elastohydrodynamic lubrication con-
ditions at the asperities scale [note: the friction enhancement
could not have been ascribed to a rubber hysteretic effect, since
the sliding contact was probed in its relaxed configuration
(steady rubber in contact with a rotating ball)]. Observe also
(see Fig. 10) that both the rolling friction sources (μRc and μRf )
are of the same order of magnitude during the viscoelastic and
mixed lubrication transitions and, moreover, the wet rolling
friction is roughly one order larger that the wet sliding friction.
The latter phenomenon is very interesting, but is not a surprise
since the transfer of normal load from the asperity contacts

determines an increase of the locally averaged fluid pressure as
compared to the solid contact pressure. As a consequence, the
rubber is hysteretically stimulated by the fluid–asperity inter-
actions as well, resulting in the remarkable increase of the wet
rolling dissipation with respect to the wet sliding friction.

Fig. 11 shows the (locally averaged) solid contact (solid line)
and fluid pressure (dashed) fields as a function of the contact
position, at different sliding velocities. The concurrent occurrence
of the ML and glassy transition determines, interestingly, the
appearance of the inlet spike on both pressure fields, as high-
lighted with the number-2 mark in the figure.

The results presented above shows that the classical way of
presenting the Stribeck curve, with the friction coefficient as a
function of ηv0, is less useful for viscoelastic solids as it does not
take into account the viscoelastic behavior of the contact. That is,
the construction of a smooth master-curve for μ as a function of
ηv0 by combining measurements using different fluid viscosities
will in general be impossible, in particular when non-negligible
hysteretic contributions from bulk viscoelasticity are expected to
occur in a short range of relaxation times.

To illustrate this, Fig. 12 shows the friction coefficient μ as a
function of v0η, calculated with the same surface roughness and
rubber rheology as in Figs. 5 and 10, but for different viscosity
values (equally spaced in a log 10 scale). In the figure, the mixed
lubrication transition occurs for all viscosities in a range of v0η
which is close to the marked red line (determined by the sliding
reduced velocity value v0η at which the normal load is equally
shared by asperity- and fluid–asperity interactions). Interestingly,
for a viscoelastic solid the mixed lubrication transition cannot be
determined by looking to the macroscopic characteristics of the
contact such as friction. Indeed, apparent secondary hydrody-
namic as well as apparent mixed lubrication regimes are char-
acterizing the generic wet sliding rubber contact. As an example,
for the lower fluid viscosity the apparent mixed lubrication
transition occurs at v0η� 10�6 Pa m, i.e. four velocity decades
before the real mixed lubrication transition. Moreover, observe
that the Stribeck curves do not overlap. This is very interesting and
suggests that the viscoelastic effect can be used, as recently shown
for the case of micro-EHL, to tune the friction of wet sliding rubber
contacts. Indeed, observe that for the before-last value of viscosity
(Q � 1), the friction is kept to large values in the entire range of
sliding velocities. On the contrary, the smallest values of rolling
parameters Q can help to strongly decrease the friction in a
remarkably wide range of sliding velocities. This suggests that an
accurate understanding of the soft contact mechanics could help
to produce tailored friction pairs in applications such as, e.g., tire-road
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Fig. 10. (Colour online) Friction coefficient as a function of the product v0η (red
curve), shown together with the all dissipation sources occurring in the rubber wet
contact for Q � 0:3. For a viscoelastic material characterized by one relaxation time
τr ¼ 0:1 s and E1=E0 ¼ 10, with E0 ¼ 3:6 MPa and ν¼ 0:5. The cylinder radius
R¼1 cm and the load is f N ¼ 1 kN=m. For self-affine isotropic surface roughness
with fractal dimension Df ¼ 2:2, low frequency cut-off q0 ¼ 2� 105 m�1, high
frequency cut-off q1 ¼ 7:8� 109 m�1, and root-mean-square roughness
hrms ¼ 3 μm. Solid shear stress set constant to 1 MPa. Fluid viscosity η¼ 1 Pa s.

Fig. 11. Dimensionless average solid contact pressure pc=p0 and fluid pressure
pf=p0 as a function of the dimensionless contact position x=a0. p0 and a0 refer,
respectively, to the Hertz maximum pressure and semi-contact length occurring
with the relaxed rubber (i.e. at E0 elastic modulus). Curves shown at different
sliding velocities, with numbered marks referring to Fig. 10. For the same
parameters of Fig. 10.

Fig. 12. (Colour online) Stribeck curves as a function of the product v0η. The vertical
red line mark indicates the mixed lubrication transition. For different values of fluid
viscosity.
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sliding contact (where high friction is required) and dynamical rubber
sealing (where low friction is required).

Fig. 13 shows the rolling friction dissipation (μRcþμRf ) as a
function of the Deborah number v0τr=a0 for different values of
fluid viscosity. Note that the fluid strongly modifies the classical
rolling friction curve. On the lower velocity side all curves overlap
as expected, since the contribution to the friction from the fluid
shearing is negligible. However, increasing the sliding velocity or
the fluid viscosity shows up the (non-bounded) rolling dissipation
behavior of the fluid. This also suggests that estimating (even
approximately) the contribution to the rolling friction for wet
contacts using results (from experiment or theory) for dry contact
may not allow to capture the correct physics or magnitude of the
rolling friction contribution [37,38].

4. Numerical results: real rubber

Viscoelastic solids such as rubber have usually a very wide
distribution of relaxation times. Fig. 14 shows the complex
creep [~J ðωÞ ¼ 1=EðωÞ] of an unfilled and filled rubber compound.
In particular, the real and imaginary part of 1=EðωÞ as measured
(dots) and fitted by Prony series (dashed blue and red curves)
are reported.

We have calculated the sliding friction (cylinder on flat) for the
compounds in Fig. 14 in water environment (viscosity
η¼ 0:001 Pa s), for a self-affine isotropic roughness with fractal
dimension Df ¼ 2:2, low frequency cut-off q0 ¼ 2� 105 m�1, high
frequency cut-off q1 ¼ 7:8� 109 m�1, and the root-mean-square
roughness hrms ¼ 0:5 and 5 μm. The interfacial shear stress

ss ¼ 1 MPa. In Figs. 15 and 16 we show, respectively, the Stribeck
curve, i.e., the friction coefficient as a function of v0η, for the
unfilled and filled rubber at hrms ¼ 0:5 μm (Q fil ¼ 3� 10�5,
Qunfil ¼ 3� 10�4). Note that due to the different stiffness char-
acteristics, the unfilled rubber has a larger friction than the filled
one, in almost all the range of sliding velocities. The same fact is
observed in Fig. 17, where we show Stribeck curves at different
values of rubber root mean square roughness, and is due to the
larger real contact area (which increases the sliding solid contact
friction μSc) and to the larger loss tangent in the unfilled compound
(which increases the rolling friction μRc). The minimum interfacial
separation as a function of sliding velocities is shown in Fig. 18 for the
unfilled and filled rubbers, respectively. Note that for the unfilled case
the minimum separation is not increasing monotonically with v0η: an
increasing indentation in the rubber occurs for v0η� 10�5 Pa m,
which corresponds to a velocity in the viscoelastic transition region.
For the filled rubber the minimum separation, instead, monotonically
grows with increasing sliding speed.

Note that for real rubbers the Stribeck curves (Fig. 17), differently
from the separation curves (Fig. 18), seem not to quantitatively

Fig. 13. Total rolling friction (μRsþμRf ) as a function of the dimensionless sliding
velocity v0τr=a0. For different values of fluid viscosity.

Fig. 14. (Colour online) Real and imaginary part of the complex creeping function
~J ðωÞ ¼ 1=EðωÞ as measured (dots) and fitted by Prony series (dashed blue and red
curves). For unfilled (thick line) and filled rubber. In log 10� log 10, with j~J j in Pa�1

and ω in s�1.

Fig. 15. (Colour online) Friction coefficient as a function of the product v0η (red curve),
shown together with all the dissipation sources occurring in the rubber wet contact for
Q ¼ 3� 10�4. For the unfilled rubber. The cylinder radius R¼1mm and the load is
f N ¼ 117 N=m. For self-affine isotropic surface roughness with fractal dimension
Df ¼ 2:2, low frequency cut-off q0 ¼ 2 105 m�1, high frequency cut-off
q1 ¼ 7:8� 109 m�1, and root-mean-square roughness hrms ¼ 0:5 μm. Solid shear stress
set constant to 1 MPa. Fluid viscosity η¼ 0:001 Pa s.

0 Pa m

Fig. 16. (Colour online) Friction coefficient as a function of the product v0η (red curve),
shown together with all the dissipation sources occurring in the rubber wet contact for
Q ¼ 3� 10�5. For the filled rubber. The cylinder radius R¼1mm and the load is
f N ¼ 117 N=m. For self-affine isotropic surface roughness with fractal dimension
Df ¼ 2:2, low frequency cut-off q0 ¼ 2� 105 m�1, high frequency cut-off
q1 ¼ 7:8� 109 m�1, and root-mean-square roughness hrms ¼ 0:5 μm. Solid shear stress
set constant to 1 MPa. Fluid viscosity η¼ 0:001 Pa s.
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show the dissipation mechanisms highlighted for simple rubber
rheologies (discussed in Section 3.2). However, this is mainly
ascribed to the particular operating conditions adopted in the
calculations of Figs. 15–17, and less to the widening or suppression
of the dissipations modes of the particular rubber compound. As an
example, temperature is well known to enormously affect the
viscoelastic response of a generic rubber, e.g. an increase of � 5
degrees may shift the complex elastic modulus curves reported in
Fig. 14 by one decade along the frequency axis (toward higher
frequencies). Hence, with respect to Fig. 15, a temperature increase
of about ten degrees of the rubber (at constant fluid viscosity) could
result in a rolling number � 1 and, therefore, of a friction curve
similar to that observed in Fig. 10.

Finally, we observe that the model developed above can help
predicting the optimal viscoelastic spectrum to obtain a particular
lubrication condition, e.g., to couple (uncouple) the different
mechanisms of dissipation occurring in a wet contact in order to
maximize (minimize) the friction coefficient.

5. Conclusions

We have described the different sources of friction prevail-
ing in the steady sliding of a hard cylinder on a wet viscoelastic
solid with surface roughness, as often encountered in rubber
and bio-tribology applications. We have discussed the role
of the rubber viscoelasticity and of the (fluid) viscosity in
determining the Stribeck curve μðvÞ, for both simple (model)
and real (measured) rubber rheologies. In particular, rubber
viscoelasticity may result in apparent (or false) mixed and
hydrodynamic regimes, which are instead a consequence
of the contact stiffening. Moreover, depending on the rubber

viscoelastic characteristics, the standard procedure to obtain a
friction mastercurve (Stribeck curve) by using different fluid
viscosities, and plotting the friction coefficient as a function of
ηv, may not work for viscoelastic solids. Finally, we have shown
that the rubber viscoelastic modulus and surface roughness
may be chosen or designed to obtain a μðvÞ curve suitable for a
particular application.
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Appendix A

For the line contact case, Eq. (20) can be discretized as
following. In particular, the average interfacial separation is

uðxÞ ¼ uðx0Þþ f shapeðxÞþwðxÞ�wðx0Þ;
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Fig. 18. Dimensionless minimum average interfacial separation umin=hrms as a
function of the product v0η for the two different rubber compounds. For
hrms ¼ 0:5 and 5 μm.
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Fig. 19. (Colour online) The intensity of the fluid–asperity interactions, expressed
in term of ɛf , as function of the normalized average separation. Red curves
corresponds to limiting values of H. For the unfilled rubber and for self-affine
isotropic surface roughness with low frequency cut-off q0 ¼ 2� 105 m�1, high
frequency cut-off q1 ¼ 7:8� 109 m�1, and root-mean-square roughness
hrms ¼ 3 μm. Fluid viscosity η¼ 0:01 Pa s.
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Fig. 20. (Colour online) The intensity of the fluid–asperity interactions, expressed
in term of ɛf , as function of the normalized average separation. Red curves
corresponds to limiting values of H. For the filled rubber and for self-affine
isotropic surface roughness with low frequency cut-off q0 ¼ 2� 105 m�1, high
frequency cut-off q1 ¼ 7:8� 109 m�1, and root-mean-square roughness
hrms ¼ 3 μm. Fluid viscosity η¼ 0:01 Pas.
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Fig. 17. Stribeck curves as a function of the product v0η for the two different rubber
compounds. For hrms ¼ 0:5 and 5 μm.

M. Scaraggi, B.N.J. Persson / Tribology International 72 (2014) 118–130 127



where the out-of-plane displacement field reads

wðxÞ ¼ �2
π
1�ν2

E1

Z
dx0p0ðx0Þlog x�x0j

��
�2
π
1�ν2

E1

Z
dx0p0ðx0Þ

Z 1

0
dt ΓðtÞlog xþtv0�x0 :j

��
By integrating the elastic term of the surface displacement on a
grid space of length δ, the well know discrete elastic kernel is
recovered:
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whereas the viscoelastic term can be determined as follows:
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where LðτÞ is the creep spectrum, with d1Dve ðx; v0τÞ ¼R1
0 dt e� tD1D

E ðxþtv0τÞ, which can be integrated to give
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Therefore, for the cylinder contact case the discrete viscoelastic
kernel for the half space has an analytical expression as for the
elastic case. By considering the creep spectrum as decomposed in
an array of Nτ relaxation times:

LðτÞ ¼ 1
E1

∑
Nτ

i ¼ 1
Aiδðτ�τriÞ; ð22Þ

we have

D1D
VE ðxÞ

2
π
1�ν2

E1
p0

¼ ∑
Nτ

i ¼ 1
Aid

1D
ve ðx; v0τriÞ:

The discrete viscoelastic kernel (of grid length δ) to be used in the
average macroscopic deformation of the rubber surface can then
be easily determined:

D1DðxÞ ¼D1D
E ðxÞþ2

π
1�ν2

E1
p0 ∑

Nτ

i ¼ 1
Aid

1D
ve ðx; v0τriÞ:

Appendix B

Here it is considered the case where a rubber block in a traction
experiment behaves with a complex elastic modulus given by a
spring E1 in series with a paired E2 spring and τrE2 dashpot:

EðωÞ
E1

¼ 1� iωτr
1þE1=E2� iωτr

:

The previous complex elastic modulus can be also obtained from
Eq. (14) for LðτÞ ¼ E�1

1 Aδðt�τrÞ (single relaxation time), when
E1=E2 ¼ A. In such a case the viscoelastic component of the
discrete deformation kernel is simply given by

D1D
VE ðxÞ

2
π
1�ν2

E1
p0

¼ E1
E2

d1Dve ðx; v0τrÞ:

The previous result can also be obtained by making use of the
creep function [39] JðtÞ:

JðtÞ ¼HðtÞ Jðt ¼ 0Þþ
Z 1

0
dτLðτÞð1�e� t=τÞ

� �
;

where HðtÞ is the Heaviside step and Jðt ¼ 0Þ ¼ E�1
1 . JðtÞ is simply

related to ΓðtÞ with ΓðtÞ ¼ E1½∂J=∂t�t40, whereas the complex
creep function ~JðωÞ can be linked to the Fourier transform of the
real creep function with

~JðωÞ ¼ iωJðωÞ ¼ EðωÞ�1;

from which the complex elastic modulus can be obtained.

Appendix C

Here we characterize the fluid-induced asperity flattening [24]
occurring at the interface of our viscoelastic contact. In the
reference associated to a representative moving control volume,
the frequency representation of the displacement field reads

uzðq;ωÞ ¼ �2
q Erðω�q � vRÞ

pðq;ωÞ;

where q is the wave-vector, ω the pulsating frequency, and vR is
the half space translational velocity relative to the control volume.
Now we focus on the surface height fluctuations included in the
representative elementary volume of contact (REV). Assuming that the
two surfaces are sliding one against the other at different constant
velocities v1 and v2 (relative to the REV, with 1-subscript indicating
the lower surface, and 2- the upper surface), the roughness occurring
at the interface can be described with hrðx; tÞ ¼ hr1ðx�v1tÞþ
hr2ðx�v2tÞ, whereas in the frequency domain: hrðq;ωÞ ¼
hr1ðqÞδðω�q � v1Þþhr2ðqÞδðω�q � v2Þ. hrðx; tÞ=uoo1 usually. At
first order in the fluid pressure field, p1ðq;ωÞ (first order fluid
pressure) is correlated to uzðq;ωÞ (first order out-of-plane displace-
ment) by

uzðq;ωÞ ¼ Kcðq;ωÞp1ðq;ωÞ; ð23Þ
where Kcðq;ωÞ ¼ �2=½Erðω�q � vRÞq�, as calculated before. Thus the
first order separation fluctuation reads

hðq;ωÞ ¼ hr1ðqÞδðω�q � v1Þþhr2ðqÞδðω�q � v2Þ
þKcðq;ωÞp1ðq;ωÞ: ð24Þ

The first order fluid pressure p1ðq;ωÞ, caused by the fluctuating
surface profiles, has been shown to be obtained by perturbing the
thin film fluid flow equation, and by collecting the first orders [24]:

p1ðq;ωÞ ¼ hðq;ωÞK f ðq;ωÞ; ð25Þ
where the kernel K f ðq;ωÞ is

K f ðq;ωÞ ¼ i
3q � ∇pf
uq2

�12μðωþq � vmÞ
u3q2

� �
:

Substituting Eq. (24) in Eq. (25) we determine the relation, in the
Fourier space, between the separation fluctuation (deformed by the
same fluid action) and the first order fluid pressure p1ðq;ωÞ, resulting
in

p1ðq;ωÞ ¼ Gðq;ωÞ
�½hr1ðqÞδðω�q � v1Þþhr2ðqÞδðω�q � v2Þ�; ð26Þ

where the kernel Gðq;ωÞ describes the interaction between the fluid
particles and the asperities (local fluid–structure interactions, lFSI) of
the rough surfaces:

Gðq;ωÞ ¼ K f ðq;ωÞ
1�K f ðq;ωÞKcðq;ωÞ

: ð27Þ
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It is interesting to note that Eq. (27) converges to ½�Kcðq;ωÞ��1 for
average separations close to zero, so that the transition from lubricated
to boundary lubricated conditions occurs smoothly. The average
square separation fluctuation can be calculated by substituting
Eq. (26) in Eq. (24), resulting into (after some algebra) 〈h2〉¼ 〈h02

1 〉þ
〈h022 〉, with

〈h02i 〉¼ ɛsðuÞ �
Z

d2qj1þKcðq;q � viÞGðq;q � viÞj2CiðqÞ; ð28Þ

where ɛsðuÞ is the apparent roughness smoothening parameter
originating from the occurrence of solid contact areas, see Ref. [24].
However, here we only focus on the viscous-induced asperity flatten-
ing, described by the function λiðq;u;∇pf ÞZ1 (which modulates the
power spectral density, see Eq. (28)):

1
λiðq;u;∇pf Þ

¼ ½1þKcðq;q � viÞGðq;q � viÞj2:

Since

1þKcðq;q � viÞGðq;q � viÞ ¼
1

1� iKcK f
;

we have

λiðq;u;∇pf Þ ¼ ð1þ2kcimðq � viÞkfimðq;q � viÞKðqÞÞ2

þðkcreðq � viÞkfimðq;q � viÞKðqÞÞ2; ð29Þ
where K f ðq;q � viÞ ¼ ikfimðq;q � viÞ. Moreover, by using the Prony series
for the viscoelastic rheological description, LðτÞ ¼ E�1

1 ∑iAiδðτ�τriÞ,
and by considering KðqÞ ¼ �2=½Er1q�:
Kcðq;q � viÞ ¼ KðqÞ½kcreðq � viÞþ ikcimðq � viÞ�;
with

kcreðq � viÞ ¼ 1þ∑
i

Ai

1þ½τriq � ðvi�vrÞ�2

kcimðq � viÞ ¼ q � ðvi�vrÞ∑
i

Aiτri
1þ½τriq � ðvi�vrÞ�2

:

Observe that kfimðq;q � viÞKðqÞ can be rephrased in Eq. (29) with

kfimðq;q � viÞKðqÞ

¼ � 6

ζ2
1

u=hrms

∇pf
q20hrmsEr1

� q
q

" #
þ 6

ζ2
1

u3=h3rms

4μ½2vm7Δv�
q20h

3
rmsEr1

� q
q

" #
;

with Δv¼ ðv2�v1Þ=2, vm ¼ ðv2þv1Þ=2 and ζ ¼ q=q0. We can finally
define a lFSI parameter 0rɛfi r1, with i¼1 (lower surface) or 2
(upper surface):

ɛfi ðu;∇pf Þ ¼
Z

d2q
CiðqÞ

λiðq;u;∇pf Þ
=

Z
d2qCiðqÞ; ð30Þ

which characterizes the intensity of the fluid–asperity interaction
occurring on the i-indexed surface: the more ɛfi-0 the more intense
is the viscous flattening [24]. The effect of fluid–asperity interactions
on the local separation is completely captured by the parameter
λiðq;u;∇p0Þ which, because of the viscoelastic nature of the solids,
presents a more complex formulation with respect to the elastic case
[24]. In particular, the amplitudes of the spectral components of the
fluid film thickness are given by the weighted sum of the spectral
amplitudes of the original undeformed rough surfaces (where the
weights are given by λ�1

i ) multiplied by the smoothing parameter
ɛsðuÞ, resulting in an average separation fluctuation 〈h2〉¼ ɛs

ðɛf1h2rms;1þɛf2h
2
rms;2Þ [24]. The presence of local squeeze motions,

combined to the viscous action coming from the flow driving term
vm, determines different λi parameters for the two surfaces.

In our contact case, only the viscoelastic half space is covered
by roughness (C2ðqÞ ¼ 0), and we have v2 ¼ 0 and vR ¼ v1. We then
expect kcreðq � viÞ ¼ 1þ∑iAi and kcreðq � viÞ ¼ 0, i.e. the fluid-induced

asperities flattening occurs under a relaxed rubber deformation.
However, the time-frequency at which asperities are deformed by
the fluid action, even in the present case, is not exactly zero, but
has a physical zero given by the lowest pulsating deformation at
frequency ωH � πv=aH. Therefore we use

kcre ¼ 1þ∑
i

Ai

1þ½τriðπv=aHÞ�2
; kcim ¼ ðπv=aHÞ∑

i

Aiτri
1þ½τriðπv=aHÞ�2

;

where a2H ¼ 4f NR=ðπjErðωHÞjÞ. Finally, by neglecting the average
fluid pressure gradient source of viscous flattening ð∇pf � 0Þ:

kfimðq;q � viÞKðqÞ ¼
1

u3=h3rms

6Fs
ζ2

e1 �
q
q

� �
;

where e1 is the unit vector along the sliding direction, and where a
viscous flattening source Fs can be defined as

Fs ¼
6μv0

q20h
3
rmsEr1

:

Hence, by using q¼ qf cos θ; sin θg, we have λ1ðq;u;∇pf Þ ¼
λðζ ¼ q=q0;θ;uÞ to be used in Eq. (30):

λðζ ¼ q=q0;θ;uÞ ¼ 1þ2kcim
1

u3=h3rms

6Fs
ζ2

cos θ

 !2

þ kcre
1

u3=h3rms

6Fs
ζ2

cosθ

 !2

: ð31Þ

As a further result, not shown for simplicity, in the present contact
case, the mean square deformed roughness 〈h2

1〉 covering the
viscoelastic half space can be shown to be equal to the mean
square separation 〈h2〉¼ 〈h02

1 〉¼ 〈h21〉.
In Figs. 19 and 20, respectively for the filled and unfilled rubber,

ɛf is shown as a function of the average interfacial separation for
different values of roughness fractal dimensions Df . The adopted
roughness is isotropic and self-affine, with q0 ¼ 2� 105 m�1,
q1 ¼ 7:8� 109 m�1 and hrms ¼ 3 μm, the fluid viscosity η¼ 0:01.
Observe first that, in both cases, even to large sliding velocities
(curves at 0.1 m/s), a nonnegligible flattening occurs only for
values of average interfacial separations u=hrms of order 0.1, a
value common for high pressure rubber contacts (as tire contacts).
Moreover, note that increasing the sliding velocity by two orders
of magnitude does not strongly affect the magnitude of the viscous
flattening. Indeed, increasing the sliding velocity increases both
the fluid shearing action and the elastic modulus of the local
asperities (as a consequence of the rubber stiffening). Therefore,
the (local) deformations induced by the (local) pressure gradients
are markedly attenuated in real rubbers. Observe finally that by
reducing the Hurst exponent H, which is related to the fractal
dimension as Df ¼ 3�H, the viscous flattening is less effective.
This must not surprise since larger fractal dimensions, for a fixed
value of mean-square-roughness, correspond to a larger content of
small scale surface fluctuations, which are well known (see e.g. Eq.
(31)) to be less affected by viscous flattening.

Appendix D

Eqs. (3), (7), (8), (20) and (21) have been solved with two different
approaches depending on the lubrication regime. In particular, we
adopted the BLP and MHLS algorithms, successfully applied in
Ref. [23] for the resolution of the mixed-elastohydrodynamic soft
lubrication problem, with two major modifications. In particular,
due to the loss of diagonal dominance in the discrete formulation of
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Eq. (20) as Fredholm equation, we have adopted the LU decomposi-
tion for determining the Newton step at the generic iteration.
Moreover, the (implicit) resolution of Eq. (21) as a function of u0 is
not successful by choosing u0 ¼ uðx¼ 0Þ. Indeed, due to the non-
monotonic increase of the minimum and central average separation
as a function of the reduced sliding speed v0η, u0 has been chosen to
be u0 ¼ uðx0Þ, with x0 ¼ f �1

N

R
dx xp0ðxÞ. Thus, the position x0 of the

reference separation u0 changes by changing the sliding speed,
allowing to stabilize the numerical scheme.
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