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Abstract

Using a theoretical approach and computer simulations, we calculate the normal stiffness K⊥
and the transverse stiffness K‖ of the interface between two contacting isotropic solids with

randomly rough surfaces and Poisson ratio ν. The theoretical predictions for K⊥ agree well

with the simulations. Moreover, the theoretical result for the ratio K⊥/K‖ is (2− ν)/(2− 2ν),

as predicted by Mindlin for a single circular contact region. Finally, we compare the theory to

experimental ultrasonic data.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Contact mechanics between solid surfaces is the basis for

understanding many tribological processes [1–8] such as

friction, adhesion, wear and sealing. The two most important

properties in contact mechanics are the area of real contact and

the interfacial separation between the solid surfaces. For non-

adhesive contact and small squeezing pressure, the (projected)

contact area has been found to depend linearly on the squeezing

pressure [9–11].

When two elastic solids with rough surfaces are squeezed

together, the solids will generally not make contact everywhere

in the apparent contact area, but only at a distribution of

asperity contact spots. The separation u(x) between the

surfaces will vary in a nearly random way with the lateral

coordinates x = (x, y) in the apparent contact area. When

the applied squeezing pressure increases, the average surface

separation u = 〈u(x)〉 will decrease, but in most situations

it is not possible to squeeze the solids into perfect contact

corresponding to u = 0. One of us has recently developed a

theory which predicts that, for randomly rough surfaces at low

squeezing pressures, p ∼ exp(−u/u0), where the reference

length u0 depends on the nature of the surface roughness but is

independent of p [2, 12]. From the relation p = p(u) one can

calculate the normal interfacial stiffness K⊥ = −dp/du =

p/u0. In this paper we will show how one can obtain the

transverse stiffness K‖. We note that K⊥ and K‖ are very

important for many applications, e.g. they determine the sound

wave reflection from interfaces. Its measurement provides

one of the most important clues in quantitative nondestructive

evaluation on buried interfaces.

In a classical study, Mindlin [13] calculated the normal

and transverse stiffness for the junction (with elliptic shape)

formed by squeezing together two elastic bodies with quadratic

surface profiles. For the special case of an elastic ball

squeezed against a flat surface (giving a circular contact region)

he found that the ratio between the normal and transverse

stiffness is K⊥/K‖ = (2 − ν)/(2 − 2ν), where ν is the

Poisson ratio. Any theory which treats the contact regions

between two elastic solids as (uncoupled) circular Hertzian

contacts will give the same result for K⊥/K‖ as obtained

by Mindlin. However, it is now known that neglecting the

long-range elastic coupling between contact patches is a very

severe approximation [11, 14–16]. Such theories neglect

that, when an asperity is pushed downwards somewhere,

the elastic deformation field extends a long distance away

from the asperity, which will influence the contact involving

other asperities further away [17]. The most prominent

example is the Greenwood–Williamson (GW) model, in which

rough surfaces are approximated by spherical bumps of equal

radii. In the GW model the relation between the squeezing

pressure and the (average) interfacial separation is Gaussian-

like [10, 11, 15], p ∼ exp(−bu2) (where b is a constant

determined by the nature of the roughness) rather than the

(accurate) exponential relation [12] p ∼ exp(−u/u0). The

GW theory makes the same error in the prediction of K‖ as

for K⊥.
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Figure 1. The contact region (black area) between two elastic solids
observed at low (left) and high (right) magnification. For surfaces
which have fractal-like roughness all the way down to the atomic
length scale, the contact at the highest magnification (atomic
resolution) typically consists of nanometer-sized clusters (right). The
result in the picture was obtained using molecular dynamics (MD),
but since there is no natural length scale in elastic continuum
mechanics, it could also correspond to the contact between two
macroscopic elastic solids. The contact stiffness mainly depends on
the long-wavelength roughness and in general can be calculated
accurately from the nature of the contact observed at low
magnification (left). Adapted from [3].

Experimentally, K⊥/K‖ is approximately constant for

contacts formed by rough solids [18]. This observation does

not have to result from single-asperity mechanics, but may

as well be due to the self-affine properties of most surface

topographies, which result (for small load) in a pressure

distribution that remains unchanged with load [9, 19–21] and

produces fractal-like boundary lines [3, 22, 23], see figure 1.

These boundaries differ from the circular (or elliptical) contact

regions assumed in GW. Thus, both the normal and tangential

stress in the contact regions will be much more complex than

predicted by the Hertz and Mindlin theories. This is why

one should try to avoid directly involving the nature of the

contact regions when studying contact mechanics problems,

such as the contact stiffness or the heat or electric contact

resistance [24]. For all these reasons it remains unanswered as

to why K⊥/K‖ is constant and what the value of this ratio is,

when theories or simulations are used that properly reflect the

elastic coupling between asperities. In the contact mechanics

model of Persson [3, 9, 12, 19, 24, 25], which we use in the

present study, long-range elastic coupling [16] is included.

Another important discovery is that, for elastic contact, the

contact regions observed at atomic resolution may be just a few

atoms wide, i.e. the diameter of the contact regions may be of

the order of∼1 nm [20, 26, 27]. The stress acting in such small

contact regions may be very different from the stress acting

in macroscopic contact regions. However, for macroscopic

objects the contact stiffness is usually determined mainly by

the nature of the contact observed at much lower magnification

(i.e. larger length scales) and is therefore not sensitive to

the atomistic nature of the contact, and can be accurately

calculated using continuum mechanics. Finally, we note that

for elastically hard solids the area of real (atomic) contact A

may be a very small fraction of the nominal or apparent contact

area A0, even at high nominal squeezing pressures [7, 19].

The outline of this paper is as follows. In section 2.1 we

briefly review the theory for K⊥. In section 2.2 we derive an

Figure 2. Snapshot of an elastic block squeezed against a rigid rough
substrate as obtained in a small, two-dimensional, all-atom
simulation. The separation between the average plane of the substrate
and the average plane of the lower surface of the block is denoted by
u, i.e. the average value of ulocal shown in the figure. The elastic
energy is stored in the block in the vicinity of the asperity contact
regions. Normal and transverse directions have been represented by
different scales, as indicated in the figure. The lattice constant a
gives the spacing between two adjacent atoms in the elastic block.

expression for the asperity-induced elastic energy due to an

applied shear stress τ . In section 2.3 we derive an expression

for K⊥/K‖ and an alternative derivation is presented in

section 2.4. In section 3 we present numerical results for

K⊥/K‖ and compare them to the theoretical prediction. In

section 4 we review experimental results for K⊥/K‖ and

compare it to the theory prediction. Section 5 contains the

summary and conclusion.

2. Theory

2.1. Normal stiffness K⊥

The theory presented in this paper for K⊥ and K‖ depends

on the elastic energy (per unit area) U⊥ and U‖ stored in the

asperity contact regions as a result of the applied squeezing

pressure p and applied shear stress τ (see figure 2). The

applied stresses result in a normal and transverse displacement

of the (average) position of the bottom surface of the elastic

block. We denote the (average) normal separation of the

surfaces at the interface by u and the (average) transverse shift

by v.

Consider first the frictionless contact between an elastic

solid (elastic modulus E and Poisson ratio ν) with a flat

surface and a rigid, randomly rough surface with the surface

height profile z = h(x). The separation between the average

surface plane of the block and the average surface plane of the

substrate (see figure 2) is denoted by u with u > 0. When the

applied squeezing force p increases, the separation between

the surfaces at the interface will decrease and we can consider

p = p(u) as a function of u. The elastic energy U⊥(u) stored

(per unit surface area) in the substrate asperity–elastic block

contact regions must be equal to the work done by the external

pressure p in displacing the lower surface of the block towards
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the substrate. Thus

p(u) = −
dU⊥

du
. (1)

For elastic solids (1) is exact [12, 25].

Theory shows that, with increasing p, existing contact

areas grow and new contact areas form in such a way that,

in the thermodynamic limit (infinitely large system), the

interfacial stress distribution, and also the size distribution

of contact spots, are independent of the squeezing pressure

as long as these distributions are normalized to the real

contact area A [19]. From this it follows immediately that

A varies linearly with the squeezing force p A0. Thus, the

just-mentioned distribution functions will scale linearly with

p when they are normalized to A0 (the apparent contact area)

rather than to A. The same linear scaling will be found for

any quantity that derives from the stress distributions within

the vicinity of true asperity contact, such as the elastic energy

U⊥ stored there. (Note that the elastic energy density is

more localized than stress or strain fields are, because it is

proportional to their squares, see also figure 2.) Thus at small

loads, U⊥(u) = u0 p(u), where u0 must be of dimension

length. Equation (1) then takes the form

p(u) = −u0
dp

du
, (2)

and the normal stiffness becomes

K⊥ = −
dp

du
=

p

u0
, (3)

i.e. the stiffness is proportional to the nominal squeezing

pressure p. Note also that from equation (2) we get

p(u) ∼ e−u/u0 . (4)

Further analysis, see [12], shows that u0 is of the order of

the root-mean-square roughness amplitude, but (as assumed

above) independent of p.

In [28] (see also [29]) we presented experimental results

to test the theory predictions. We studied the squeezing of

a rubber block against an asphalt road surface and found

good agreement between the theory (equation (4)) and the

experiments.

2.2. Elastic energies U⊥ and U‖

Consider the contact between two elastic solids with rough

surfaces. We can write the elastic energy (per unit area)

induced by the normal stress and stored in the vicinity of the

asperity contact regions as

U⊥ =
1

2A0

∫

d2x 〈σz(x)uz(x)〉, (5)

where A0 is the nominal contact area, and where uz(x) and

σz(x) are the normal displacement and the normal stress,

respectively. We write

σz(x) =

∫

d2q σz(q)e
iq·x, (6)

and similar for uz(x). Substituting this in (5) gives

U⊥ =
(2π)2

2A0

∫

d2q 〈σz(q)uz(−q)〉, (7)

or using (see the appendix)

uz(q) = Mzz(q)σz(q) = (ρc2Tq)−1(1− ν)σz(q), (8)

we get

U⊥ =
(2π)2

2A0

1− ν

ρc2T

∫

d2q q−1〈|σz(q)|
2〉. (9)

It is interesting to note that in most cases the largest

contribution to the elastic energy arises from the long-

wavelength roughness components. This is clear if we

note that for self-affine fractal surfaces characterized by the

Hurst exponent H (or the fractal dimension Df = 3 −

H ) we have the (probably exact) scaling relation [14, 16]

〈|σz(q)|
2〉 ∼ q−(1+H ). Using this relation in (9) gives

U⊥ ∼

∫ q1

q0

dq q−(1+H ) ∼ q−H
0 − q−H

1 .

Since 0 < H < 1 (and typically H ≈ 0.8) the elastic

energy is dominated by the most-long-wavelength roughness

components (say, by the last decade of roughness wavelength,

corresponding to the range of wavevectors q0 < q < 10q0).

Since the stiffness K⊥ is determined by the elastic energy (see

section 2.1) the same conclusion holds for the stiffness. The

same conclusion can be derived by studying how different

surface roughness components contribute to the length u0
(see [24] for such an analysis).

Let us now apply a shear stress to the block with the force

vector pointing along the x axis. This will induce an elastic

energy (per unit area) stored in the asperity contact regions and

given by

U‖ =
1

2A0

∫

d2x 〈σx(x)ux(x)〉. (10)

We have (see the appendix)

ux(q) = Mxx (q)σx(q) = (ρc2Tq)−1[1− ν + ν cos2 φ]σx(q),

(11)

where φ is the angle between x̂ and e = ẑ × q̂ . Substituting

this in (10) gives

U‖ =
(2π)2

2A0

1

ρc2T

∫

d2q q−1[1−ν+ν cos2 φ]〈|σx(q)|
2〉. (12)

For a single circular contact region (Mindlin case), the stress

in the contact region depends only on the distance r from the

center of the contact region, so in this case σx(q) depends only

on q = |q|. We expect this to hold as a good approximation

in the present case and we will assume that 〈|σx (q)|
2〉 depends

only on q . In this case we can replace the term cos2 φ in (10)

by its angular average 1/2. This gives

U‖ =
(2π)2

2A0

2− ν

2ρc2T

∫

d2q q−1〈|σx(q)|
2〉. (13)

3
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We expect 〈|σx(q)|
2〉 ∼ q−(1+H ) to obey the same scaling

as for the perpendicular stress. Thus U‖ and hence K‖
will, just like for U⊥ and K⊥, be dominated by the most-

long-wavelength surface roughness components, i.e. short-

wavelength (e.g. nanometer) roughness is irrelevant. This also

implies that plastic yield and adhesion occurring in the contact

regions observed at very highmagnification (i.e. at short length

scale) may have a negligible influence on the contact stiffness

in most cases. A similar conclusion was drawn in [24] for the

heat and electric contact resistance.

2.3. Transverse stiffness K‖

Consider (11) and assume we can replace cos2 φ with its

angular average 1/2. We get

ux(q) = (2ρc2Tq)−1(2− ν)σx(q), (14)

which has the same form as (8) except for a numerical

prefactor. Thus one may be tempted to infer that the

displacement and stress fields of the two contact mechanics

problems are proportional to each other. However, this is not

the case since the two problems involves different boundary

conditions: the parallel displacement ux(x) is continuous in the

contact regions (since we assume no-slip boundary condition)

while uz(x) in the contact regions depend on the gap function

h(x). In particular, if the substrate is rigid, then ux(x) = 0

and uz(x) = h(x) in the asperity contact regions. That the

solutions of the two problems differ is, of course, well known

for the Mindlin problem of a single circular contact region,

where σz ∼ [1 − (r/r0)
2]1/2 while σx ∼ [1 − (r/r0)

2]−1/2.

However, as we now show, one can remove this difference in

the boundary conditions by reformulating the problem above

by using a simple observation first applied by Barber [30] (but

here we follow the presentation given in [24]) to the related

problem of the electric (or thermal) contact resistance between

elastic solids with randomly rough surfaces.

Note that uz and σz depend on the normal stress

or pressure p applied to the upper surface of the block.

Alternatively, since the average separation u between the

surfaces at the interface decreases monotonically with

increasing p we can consider uz and σz to depend

parametrically on u. Let us take the derivative of (8) with

respect to u. Denoting duz/du = u′z and similar for σz gives

u′z(q) = (ρc2Tq)−1(1− ν)σ ′z(q), (15)

with the boundary conditions that σ ′z(x) vanish in the non-

contact region while u′z(x) vanish in the contact regions (since

h(x) is independent of u). In addition, the condition

1

A0

∫

d2x σz(x) = p,

takes the form
1

A0

∫

d2x σ ′z(x) = p′.

If we denote ψz = σ
′
z/p′ we can write

1

A0

∫

d2x ψz(x) = 1,

and (15) takes the form

φz(q) = q−1ψz(q), (16)

where

φz = ρc2T(1− ν)
−1u′z/p′. (17)

Note that ux and σx depend on the tangential stress

τ applied to the upper surface of the block and obey

equation (14). The relevant boundary conditions are that σx(x)

vanishes in the non-contact region while ux(x) vanishes in the

contact regions (since ux(x) = 0 in the contact area; no-slip

boundary condition). In addition we must have

1

A0

∫

d2x σx(x) = τ.

If we denote ψx = σx/τ we can write

1

A0

∫

d2x ψx(x) = 1,

and (14) takes the form

φx(q) = q−1ψx(q), (18)

where

φx = 2ρc2T(2− ν)
−1ux/τ. (19)

Note that the systems of equations for (φz, ψz) and

(φx, ψx ) are identical and therefore φz = φx and ψz = ψx .

Using that φz = φx , from (17) and (19) we get

u′z(x) =
2(1− ν)

2− ν

p′

τ
ux(x). (20)

Next we note that
∫

d2x u′z(x) =
d

du

∫

d2x uz(x) =
d

du
A0u = A0,

while
∫

d2x ux(x) = A0v.

Thus, integrating (20) over x gives

A0 =
2(1− ν)

2− ν

p′

τ
A0v, (21)

or using that K‖v = τ and p′ = K⊥ we get

K⊥

K‖
=
2− ν

2− 2ν
, (22)

which is the same as the Mindlin result for a single circular

contact region.

2.4. Alternative derivation of K‖

In section 2.2 we derived the following expression for the

elastic energy (per unit area) induced by the normal stress and

stored in the vicinity of the asperity contact regions:

U⊥ =
(2π)2

2A0

1− ν

ρc2T

∫

d2q q−1〈|σz(q)|
2〉. (23)

4



J. Phys.: Condens. Matter 23 (2011) 085001 C Campañá et al

Similarly, the elastic energy induced by a parallel stress

U‖ ≈
(2π)2

2A0

2− ν

2ρc2T

∫

d2q q−1〈|σx(q)|
2〉. (24)

Note that σz(q) and σx(q) depend on the spatial variation

of σz(x) and σx(x), respectively. There are two contributions

to the spatial dependence of the stress, namely one derived

from the variation of the stress within a contact region, which

of course differs for σz(x) and σx(x), and one derived from

the fact that the stress is non-vanishing only in the area of

real contact, and this spatial dependence is the same for σz(x)

and σx(x). If the latter contribution would dominate in the

integrals (23) and (24) one would expect

∫

d2q q−1
〈|σx(q)|

2〉

τ 2
≈

∫

d2q q−1
〈|σz(q)|

2〉

p2
(25)

which effectively would mean that

σx(x)/τ ≈ σz(x)/p, (26)

where τ is the average shear stress and p the average normal

stress4. However, the correct result (for small load, where the

area of real contact is proportional to the load) is

∫

d2q q−1
〈|σx(q)|

2〉

τ 2
≈
1

2

∫

d2q q−1
〈|σz(q)|

2〉

p2
. (27)

Using (24) and (27) we get

U‖ =
(2π)2

2A0

2− ν

4ρc2T

(

τ

p

)2 ∫

d2q q−1〈|σz(q)|
2〉. (28)

Comparing this to (23) gives

U‖ =
2− ν

4(1− ν)

(

τ

p

)2

U⊥. (29)

We can also write

U‖ =
1

2
K‖v

2 =
1

2

τ 2

K‖
. (30)

Using (29) and (30) and that p/u0 = K⊥ and U⊥ = u0 p we

get
K⊥

K‖
=
2− ν

2− 2ν
. (31)

3. Simulations

3.1. Method

To assert the validity of the theory presented in this work,

numerical simulations were performed using the Green’s

4 In [24] one of us used a very similar approach to the contact heat transfer

problem (which has great mathematical similarities to the contact stiffness

problem). In appendix A in [24] it was argued that an equation similar to (25)

holds, with σx /τ replaced by Jz/J0, where Jz is the heat current at the interface

and J0 the average heat current. However, the correct relation will have an

additional factor of 1/2 as in (27) and the expression for the heat transfer

coefficient α (given by (26b) in [24]) should have an additional factor of 2.

function molecular dynamics (GFMD) technique [31]. In

GFMD, all the degrees of freedom related to the atoms that

do not belong to the bottom surface of the elastic block are

integrated out. Such integration of degrees of freedom yields

a two-dimensional elastic layer with renormalized atomic

forces that is equivalent to the original three-dimensional

elastic block. By ‘equivalent’ we imply that the GFMD

layer deforms identically to the bottom surface of the original

three-dimensional elastic block under the action of an external

squeezing pressure. Thus, lowering the dimensionality of

the problem via GFMD allows one to simulate larger contact

interfaces which represent better the continuum limit.

The interaction of the manifold atoms with the walls is

modeled via a hard-wall potential. Whenever the atoms have

violated the constraint that they have to remain above the

substrate at the end of a molecular dynamics time step, they

are artificially moved right on top of the substrate and their

velocity is zeroed. This is done until convergence is achieved.

The force between manifold atom and wall is then determined

indirectly by calculating the force within the manifold. These

two forces must have the same magnitude but opposite sign in

mechanical equilibrium.

In the GFMD simulations presented here, we created ran-

domly rough surfaces using a Fourier filtering algorithm [14].

The surfaces satisfied the small-slope approximation with an

rms roughness slope of ≈0.032. Different values of the

Hurst exponents were taken into account, i.e. H = 0.3, 0.5

and 0.8. The system size was kept fixed at a default size

N = 2048 × 2048 and a hard cutoff at a default value of

qc = 64 (in units of 2π/L, where L is the linear dimension

of the simulation cell) was imposed in order to reach the

continuum limit reasonably well (the shortest wavelength

divided by the lattice spacing equals 32). We did not explore

roughness down to the smallest scales, because our goal was

to test the validity of the solutions of a continuum theory

rather than to ascertain potential effects due to atomic-scale

roughness. A representative plot showing one of our surface

topographies and its height–height correlation function is

portrayed in figure 3.

In order to ensure that our GFMDmethodology is properly

implemented for the particular problem concerning us here,

we verified that our GFMD simulations could reproduce the

analytical prediction of Mindlin for a single spherical Hertzian

tip [13]. The elastic manifold employed in such a test had

Young modulus E = 2.5 and Poisson ratio ν = 1/4 which

gives a Mindlin stiffness ratio K⊥/K‖ = (2− ν)/(2 − 2ν) =

7/6. As expected, the previous analytical prediction was

properly reproduced by the numerical calculations. For system

sizes of N = 256 × 256, 512 × 512 and 1024 × 1024 we

obtained K⊥/K‖ = 1.1365, 1.1421 and 1.1512, respectively,

all in good agreement with the K⊥/K‖ = 7/6 ≈ 1.1666 value

stated by the theory. The difference between the computed

stiffness ratio and the exact one seems to disappear according

to the power law N−1/4 . We will use this scaling later in our

simulations of rough solids. Of course, there the prefactor for

the corrections will be distinctly larger, because each individual

contact patch will be much less resolved than in the Hertzian

test case.

5
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Figure 3. Graphical representation of a rough topography with Hurst
exponent H = 0.3 and its corresponding height–height correlation
function C(q) = 〈|h(q)|2〉 in Fourier space. The surface topography
was created using a Fourier filtering technique and a hard cutoff
qc = 64 was imposed on it in Fourier space (in units of 2π/L, where
L is the linear dimension of the simulation cell). The continuous line
represents the ideal algebraic scaling expected for the height–height
correlation function of such a surface.

Next, a second (cross-validation) test was done and

compared to previous molecular dynamics simulations that had

been performed by some of us [32, 33] using the smart block

method on smaller surfaces and at a fixed value (H = 0.8)

of the Hurst exponent. For this comparison we replaced the

Green’s function for elastically isotropic solids with those

for cubic systems that would have been relevant for the

older simulations. In these simulations we (re-)validated

the exponential functional form relating squeezing pressure

and average interfacial separation in rough contacts, derived

in [12]. All simulations shown in the following had been based

on an isotropic Green’s function, because the theory has been

specifically developed for isotropic solids.

3.2. Results

In order to calculate the relation p(u) between the pressure p

and the interfacial separation u, we need an accurate expression

for the elastic energy stored in the asperity contact region. The

elastic energy U⊥ = Uel is written as [16, 19, 34]

Uel =
E A0

4(1− ν2)

∫

d2q qC(q)W (q). (32)

For complete contact W (q) = 1 rendering an exact result for

the expression of the energy above. In [34] it was argued that

W (q) = P(q) = A(ζ )/A0 is the relative contact area when

the interface is studied at the magnification ζ = q/q0. The

qualitative explanation is that the solids will mainly deform

in the regions where they make contact, thus most of the

elastic energy will arise from the contact regions. Using

W (q) = P(q) assumes that the energy (per unit area) in the

asperity contact regions is just the average elastic energy (per

unit area) if complete contact would occur. This does not

take into account that the regions where no contact occurs are

those regions where most elastic energy (per unit area) would

be stored if complete contact would occur. Hence we expect

smaller stored elastic energy (per unit area) in the asperity

contact regions than obtained using W (q) = P(q). In [16, 25]

we found that using

W (q) = P(q)[γ + (1− γ )P2(q)], (33)

with γ ≈ 0.4 gives good agreement between theory and MD

simulations for H = 0.8. Note that for complete contact

P(q) = 1 and hence W (q) = 1, which reduces to the exact

result for the elastic energy in the limit of complete contact. In

the limit of small contact, P(q)≪ 1, thenW (q) ≈ γ P(q) and

with γ ≈ 0.4 this result in an elastic energy which is a factor

of 0.4 smaller than would result if the elastic energy (per unit

area) stored in the contact regions would be just the average

elastic energy (per unit area) for complete contact.

Using the elastic energy expressions given by (32)

and (33), for small squeezing pressures, results in a relation

p ∼ exp(−u/u0), where u0 ∼ γ . The area of real contact

for small load (where A ∼ p) also turns out to be a function

of γ and in [16] we have shown that it scales as γ−1/2. This

dependence of A on γ improves the agreement between theory

and numerically accurate simulations, which typically gave a

contact area somewhat larger than predicted by theory with

γ = 1. Thus for H = 0.8 the improved elastic energy

given by (32) and (33) gives good agreement between theory

and computer simulations both for the contact area and the

interfacial separation. Here we show that using γ = 0.45 gives

good agreement between theory and computer simulations also

for H = 0.3 and 0.5.

Comparison between the GFMD data and the theoretical

predictions is displayed in figure 4. As shown, the match

between the simulated and predicted behavior is very good.

Theory and simulations of rough contacts agreed in the

functional form that describes the applied pressure p as a

function of the average separation u over a wide range of

pressure values and roughness exponents. Recently, a value

of γ = 0.48 has been independently reported by Akarapu et al

[37] after analyzing a variety of rough contacts with roughness

down to the atomic scale, variable Poisson ratio and H = 0.5

and 0.8.

Similarly, the theoretical predictions and the numerical

outcome conveyed in describing the dependence of the

fractional contact area A/A0 as a function of the external

pressure. Support for the latter claim is provided in figure 5.

The results of the aforementioned calculations served to

strengthen our confidence in the correct application of GFMD

when measuring normal and transverse stiffness ratios in rough

contacts.

6
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Figure 4. Relation between applied squeezing pressure p and
average interfacial separation u: comparison between the GFMD
simulation data (for N = 2048× 2048 and qc = 64) and analytical
predictions for surfaces with distinct values of the Hurst exponent.

Figure 5. Relative contact area A/A0 as a function of the applied
pressure p for the surfaces corresponding to the results presented in
figure 4.

For the calculation of the K⊥/K‖ ratio in rough

contacts we performed simulations in which the GFMD

layer resolution, the surface cutoff, the random seed, the

pressure and the rms slope of the surfaces were varied.

However, the elastic properties of the GFMD layer remained

unaltered. Furthermore, two distinct ways of estimating K⊥
were considered. In the first one, K⊥ was ascertained from

the analytical slope of the pressure versus average interfacial

separation plots shown in figure 4. In the second approach K⊥
was computed by taking the finite differences ratio 1p/1u

in the limit of small 1p at fixed contact area. We did not

find noticeable differences between using either one of the

two approaches. Our numerical findings followed closely

the analytical predictions of the theory introduced in the past

sections. Results are shown in figure 6. One can see that

the numerical estimates seem to be somewhat larger than the

Mindlin ratio, however, only by ∼12%. These calculations

are plagued with large numerical scatter so that a precise

determination of the K⊥/K‖ ratio is rather difficult.

Figure 6. Stiffness ratio K⊥/K‖ as a function of N−1/4, where N is
the linear system size for different cutoff wavenumbers qc and Hurst
roughness exponents H . Errors are about 0.1 for each measurement.

4. Discussion of ultrasonic data

The interfacial stiffness can be measured using ultrasonic wave

interaction. In these experiments ultrasonic sound waves are

sent onto the interface under study. From the measured shear

and longitudinal reflection and transmission coefficients one

can deduce K⊥ and K‖, assuming that the wavelength λ of the

sound waves is much larger than the size and typical distance

between the asperity contact regions. (More precisely, λ must

be large compared to λ0, where q0 = 2π/λ0 is the roll-off

wavevector of the surface roughness power spectrum.) The

reason the reflection factor depends on K⊥ and K‖ is that

these quantities enter in the boundary conditions necessary in

solving the sound wave propagation at the interface. These

boundary conditions consist of the continuity of the tangential

stress σzx and the normal stress σzz , while the displacement is

discontinuous and determined by

σzz = K⊥[uz(0
+)− uz(0

−)],

σzx = K‖[ux(0
+)− ux(0

−)],

where u(0+) and u(0−) are the displacement just above and

just below the contacting interface, respectively.

A large number of ultrasonic measurements of K⊥ and

K‖ have been presented in the literature. For example,

Baltazar et al [35] studied the stiffness of the interface

between two aluminum blocks with randomly rough surfaces

prepared by sandpaper grinding and by sandblasting. The root-

mean-square roughness was in the range 0.2–0.7 µm. The

ratio K‖/K⊥ for low nominal contact pressure was 0.42 ±

0.03, which should be compared with the theory prediction

(equation (17) with ν = 0.33): 0.80. A summary of some

earlier ultrasonic measurements of K‖/K⊥ was presented by

Nagy [36] which we reproduce below.

Wooldridge, steel surfaces (root-mean-square roughness

0.2 µm):

K‖/K⊥(exp) = 0.38± 0.1, K‖/K⊥(theory) = 0.84.

7
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Pyrak-Nolte et al, fractured granite surfaces:

0.40(exp), 0.84(theory).

Yoshioka et al, granite surfaces (2–10 µm):

0.32± 0.05(exp), 0.84(theory).

Pyrak-Nolte et al, steel surfaces:

0.26(exp), 0.84(theory).

Nagy et al, aluminum surfaces (0.5 µm):

0.38(exp), 0.80(theory).

Hsu et al, poly(methyl methacrylate):

0.45± 0.1(exp), 0.80(theory).

It is clear from these data that, on average, the

experimental results for K‖/K⊥ are about half of what is

predicted by theory.

5. Summary and conclusion

In this paper we have extended Persson’s contact mechanics

theory to the calculation of the lateral stiffness K‖ of a

mechanical interface formed by two solids with rough surfaces.

This was done by assuming that no slip occurs at the true

contact points under a small external shear stress. The problem

of finding the dependence between lateral displacement and

shear stress was then mapped onto a similar dependence

for normal displacement and normal stress, which, however,

required a reformulation of the boundary conditions. The

resulting quotient of K‖ and the normal stiffness K⊥ turned

out to be K‖/K⊥ = (2 − 2ν)/(2 − ν), where ν is the

Poisson ratio. This result is identical to that found by Mindlin

for spherical contacts. As the theory for K⊥ had already

been developed previously and shown to exhibit the correct

linear dependence on load, and exponential dependence on

the interfacial separation, the present paper implicitly contains

a derivation of how K‖ depends on these variables as well.

The presented theory gives information about which length

scales are most important for the determination of the contact

stiffness, and can be generalized in various ways, e.g. to

include adhesion [32].

The theoretical results have been tested with large-scale

molecular dynamics simulations. First, we have shown that

the theory for the load–displacement relation works well for

different Hurst roughness exponents, complementing already

existing experimental and numerical evidence. The present

confirmation of the theory on K⊥ has the advantage that our

elastic solid was isotropic (as opposed to cubic in previous

simulations), and that the assumptions made in the model,

such as hard-wall interactions, no adhesion, exactly known

height profiles, linear elasticity, etc, are better realized in

the simulations than in experiment. Next, we computed the

stiffness ratio. This calculation turned out to be plagued

by large numerical scatter and size effects. However, most

results were close to the theoretical predictions. Despite

the remaining uncertainties about the precise value, we feel

confident to rule out that the exact solution of the model

would produce the relatively large stiffness ratios observed

in ultrasonic measurements that had been conducted in the

context of nondestructive evaluation on buried interfaces, and

turned out to be twice the Mindlin result for spherical contacts.

This may result from small (lateral) slip in the contact regions

(as already suggested in [37]), which would effectively reduce

K‖ or may be caused by other effects such as adhesion or

plastic yielding, which was not included in the theory presented

above.
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Appendix

Using the theory of elasticity (assuming an isotropic elastic

medium for simplicity), one can calculate the displacement

field ui on the surface z = 0 in response to the surface stress

distributions σi = σ3i . Let us define the Fourier transform

ui(q, ω) =
1

(2π)3

∫

d2x dt ui(x, t)e−i(q·x−ωt),

and similar for σi(q, ω). Here x = (x, y) and q = (qx , qy) are

two-dimensional vectors. In [9] we showed that

ui(q, ω) = Mi j (q, ω)σ j (q, ω),

or, in matrix form,

u(q, ω) = M(q, ω)σ (q, ω),

where the matrix (see [9]):

M = −
i

ρc2T

(

1

S(q, ω)

[

Q(k, ω)(ẑq− qẑ)

+

(

ω

cT

)2
(

pL ẑẑ + pTq̂q̂
)

]

+
1

pT
ee

)

, (A.1)

where q̂ = q/q , e = ẑ × q̂ and where

S =

(

ω2

c2T
− 2q2

)2

+ 4q2pT pL,

Q = 2q2 − ω2/c2T + 2pT pL,

pT = ±

(

ω2

c2T
± iǫ − q2

)1/2

,

pL = ±

(

ω2

c2L
± iǫ − q2

)1/2

,

where the + and − signs refer to ω > 0 and ω < 0,

respectively, and where ǫ is an infinitesimal positive number.
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In the equations above, ρ, cT and cL are the mass density, and

the transverse and longitudinal sound velocities of the solid,

respectively. Note that cT and cL are complex frequency-

dependent quantities given by

c2T =
E

2ρ(1+ ν)
,

c2L =
E(1− ν)

ρ(1+ ν)(1− 2ν)
,

where E(ω) is the complex elastic modulus and ν(ω) is the

Poisson ratio.

Here we are interested in low frequencies ω. As ω → 0

equation (A.1) reduces to

M = −
1

2ρc2Tq

[

−i(1− 2ν)(ẑq̂ − q̂ ẑ)+ 2(1− ν)+ 2νee
]

.

It is interesting to note that, for an incompressible material,

ν = 0.5, there is no coupling between the transverse

and normal directions, e.g. a normal stress gives a purely

normal displacement and a transverse stress a purely transverse

displacement. Note that

Mzz = −(ρc2Tq)−1(1− ν),

and

Mxx = −(ρc2Tq)−1[1− ν + ν cos2 φ],

where φ is the angle between x̂ and e.
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